
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2015 Wirtschaftsinformatik

3-5-2015

Moving Populations Event Recognition Under Re-
Identification and Data Locality Constraints
Wolfgang Maaß

Tom Michels

Follow this and additional works at: http://aisel.aisnet.org/wi2015

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2015 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Maaß, Wolfgang and Michels, Tom, "Moving Populations Event Recognition Under Re-Identification and Data Locality Constraints"
(2015). Wirtschaftsinformatik Proceedings 2015. 9.
http://aisel.aisnet.org/wi2015/9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301364616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2015%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015?utm_source=aisel.aisnet.org%2Fwi2015%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2015%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015?utm_source=aisel.aisnet.org%2Fwi2015%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2015/9?utm_source=aisel.aisnet.org%2Fwi2015%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


12th International Conference on Wirtschaftsinformatik, 

March 4-6 2015, Osnabrück, Germany 

Moving Populations Event Recognition Under Re-

Identification and Data Locality Constraints 

Wolfgang Maaß, Tom Michels 

Saarland University, Saarbrücken, Germany 

{wolfgang.maass,tom.michels}@iss.uni-saarland.de 

Abstract. For more than a decade tracking and tracing physical objects has 

been target of information systems within the realm of research on the Internet 

of Things. But application to human populations requires reconsideration of re-

identification and data locality requirements due to ethical and legal constraints. 

For this domain, we propose a generic event recognition architecture (GERA) 

and evaluate its applicability for developing a sensor-based information system 

for recognizing moving population densities by obeying non-re-identification 

and data decentrality requirements. Empirical evaluations show that this infor-

mation system provides mean structures for measuring event data and deriving 

predictions that are statistically equal to manually measured actual data. Finally, 

a general discussion on the integration of event recognition systems into busi-

ness process environments is given. 

Keywords: event recognition, predictions, population densities, sensor-based 

systems, Internet of things 

1 Introduction 

Integrating real-world activities with business processes is central to any Internet of 

Things application [1] and recently to Industry 4.0 [2]. Logistics has been a trailblazer 

for RFID-based systems that give unique identifiers to physical entities by means of 

small chips [3]. As part of the EPC Global Network architecture, incidents are meas-

ured by sensing systems and translated into business events that are used as input for 

business processes [4]. 

For various reasons, societies abstain from applying these approaches directly to hu-

mans, i.e. by tagging humans with electronic devices. In several countries, storing and 

evaluating video data in public and commercial spaces is subject to strong restrictions.  

The deployment of cameras with advanced image processing algorithms turned out to 

be a reasonable approach for capturing crowd densities or recognizing panic move-

ments in big crowds, but poses difficulties with respect to real-time analysis, privacy 

concerns and large scale deployments [5], [6], [7]. Therefore passive, decentralized, 

and non-identifying measures are better indicated for measuring population densities. 

Measuring population densities is a widespread task when heterogeneous masses of 

people move. Examples are sports arenas, exhibitions, fairs, malls, music concerts, 



and many others situations. For queue management [8], actual and perceived popula-

tion densities are important factors for managing resources, such as in retail stores [9]. 

However, for many customers, waiting in a service is associated to negative experi-

ences [10]. Researchers have argued, that managing waiting lines can generally be 

influenced with two different approaches: operation management or perception man-

agement [11]. In this paper we focus on the operation management approach, but 

extend the general idea, that this approach is only based on improving and ameliorat-

ing the effectiveness of the service provider dispatching speed.  

A general sensor-based event recognition model is introduced that translates 

incidents in real-world into business events as input for business processes. This gen-

eral model is applied to measuring moving population densities with spontaneous 

behavior. On technological level, a non-invasive event-capturing sensor-based system 

is presented that measures population densities and derives predictions in real-time 

without interaction with central services which makes it applicable for any environ-

ment. Limited computational resources of smart sensors require massive data reduc-

tions by preprocessing incident data effectively (cf. [12]). Due to the advanced 

preprocessing capabilities, realtime event recognition and prediction processing are 

supported. In fact, our approach resembles the ATLAS experiment for the Large Har-

don Collider (LHC) at Cern, where 300.000 MByte/s have been reduced around 300 

MByte/s by various filters [13]. 

Our research follows the problem solving paradigm and adopts a design sci-

ence research approach [14, 15]. In this paper we focus on the building phase for con-

structing artifacts that enable information systems to track population frequencies 

without re-identification. On the technical level, we obey a decentrality constraint, i.e. 

data is processed close to its incidents. Our work contributes to research on the Inter-

net of Things and in particular to decentralized control and data processing [16] and 

real-time information systems [17]. 

This paper is structured as follows. Section 2 discusses related research re-

sults Section 3 introduces generic architecture for event recognition. Section 4 pre-

sents an application of event recognition with moving populations. Section 5 evalu-

ates and discusses the accuracy of the generated events and section 6 presents a sum-

mary and conclusion of our paper and discusses open issues.  

2 Related work 

A variety of vision-based approaches for capturing movement data in public areas 

exist [18-20]. Drawing conclusions on populations based on image-processing algo-

rithms has been research for years, but is mostly being used to draw conclusions on 

the denseness of a crowd or recognize unnatural and panic movements [5-7]. Count-

ing the number of people based on image-processing algorithms has not been widely 

research and mainly has the disadvantages, that is might be considered as invasive by 

customers and that the counting algorithm has to be calibrated for each new environ-

ment [21]. 



Another method for capturing movement data is based on GPS-sensors in 

smartphones. This approach has been successfully deployed during the Olympic 

games in London in 2012 [22]. It allowed security personnel to determine where con-

glomerations of people exceeded critical levels. However, due to the lack of GPS 

signals indoors and privacy concerns, this approach is questionable for the purpose of 

this paper. 

A network for indoor and outdoor air quality monitoring based on sensors was pre-

sented in [23]. Advanced processing of multiple-input single-output neural networks 

has been implemented at the smart sensors to obtain temperature and humidity com-

pensated gas concentration levels. Others presented smart sensor platforms focussing 

on the advantages and disadvantages of the different wireless communication and 

networking challenges (e.g., [24]).  

In general, integration of physical real-worlds events with digitized business pro-

cesses is the target of any ERP system approach [25]. With further developments of 

low-cost optical and wireless sensor technologies, such as RFID [26], QR tags, and 

reacTIVision
1
, tight integration of objects and digital representations are supported for 

practical applications. Highly structured business processes with a focus on physical 

products show strong efficiency gains by applying RFID technologies implementing 

the EPC Global Network Architecture [4]. Event recognition is a central part of this 

architecture handled by the EPCIS Capturing Application that, in turn, is based on 

applications for filtering and collecting raw tag reads (ibid.). Example events are 

tracking and tracing events for products along the supply chain. 

In contrast to products, event recognition of humans underlie severe legal and ethi-

cal restrictions in many European countries. What can be applied to physical products 

is generally unacceptable for humans. It is an ongoing debate colored by cultural 

backgrounds what is perceived as being acceptable and lawful, e.g. differences be-

tween the UK and Germany. Therefore a discussion of requirements is crucial for any 

human event recognition application. For a more specific conceptualization, two di-

mensions for initially distinguish human event recognition applications are intro-

duced: (1) re-identification and (2) data locality. Re-identification defines the possi-

bility to derive the identity of a recognized entity. In RFID applications re-

identification is central because each EPC provided by a RFID tag provides a unique 

identifier for a physical entity [4]. For humans, re-identification is perceived as an 

ethical threat [27]. Therefore, event recognition of human behavior might have strong 

limitations on re-identification. In public spaces, re-identification is generally forbid-

den and typically requires criminal prosecution for overriding. Data locality defines 

the location where various forms of data are stored that is related to event recognition. 

This dimension is delimited by decentrally storing data on capturing devices only and 

storing all data on central systems with any combination and middle layers in-

between. Again, typical RFID applications use a central storage approach by which 

raw data is transferred to central databases due to little storage capacity on capturing 

devices [12]. In contrast, applications applying a decentralized storage approach cap-

ture raw and processed data on capturing devices and only transfer qualified data to 

                                                           
1 http://reactivision.sourceforge.net 



more central applications. Initial examples for the latter approach can be found in the 

medical field that enable storage of raw data near capturing devices and data ex-

changes are governed by decentralized permission management [28]. 

Based on re-identification and data locality, requirements for measuring moving 

population event recognition can be derived. In this paper, we will focus on an event 

recognition system for moving population densities under the requirement of non-re-

identification of individuals and by applying a decentralized storage and processing 

approach. 

3 Generic Event Recognition Architecture  

In the following, a generic event capturing model is presented that generalizes on 

object-centric approaches, such as the EPC Global Network Architecture [4]. 

3.1 System view 

The generic event recognition architecture (GERA) consists of three modules: (1) 

incident detector, (2) filtering, and (3) event producer. The event producer contains a 

set of sub-modules responsible for analytics of event related data, aggregation of data, 

and higher-order processing, such as prediction modules. The incident detector is the 

initial starting or triggering point of the system. At this point, raw data on incidents 

i.e. movements are being detected and captured through multiple sensing elements. In 

case of continuous movements, a data stream emerges. Subsequently, the respective 

data is forwarded to the filtering module. Since our approach is considering dynamic 

environments with non-identifiable moving individuals, the filtering module is play-

ing a key role in reducing noise and, thus, increasing the signal-to-noise ratio.  

Subsequently, the data is being aggregated to more abstract data types, for in-

stance, population denseness per time period. An event producer operates in two 

modes: (1) accumulative mode or (2) pre-processing mode. In the accumulative mode, 

event producers add abstracted data to raw data while raw data is replaced by ab-

stracted data in the pre-processing mode. The latter mode is important for event rec-

ognizing applications with data streams that exceed storage capacity (cf. [29]). For 

instance, the ATLAS experiment for the Large Hardon Collider (LHC) at CERN, 

generates 300.000 MByte/s by incident detectors which exceeds storage capabilities. 

Therefore this data stream is reduced to 300 MByte/s abstracted data by various filters 

[30]. 

Event producers provide events to other (business) processes that use events as 

triggers for various purposes, e.g. activation and deactivation of processes, personali-

zation, and contextualization. More abstract, event producers act as bridges between 

activities in physical to digital environments. Actuation producers take a reverse ori-

entation, i.e. from digital environments to physical environments. 



 

Fig. 1. System View 

4 Application of event recognition with moving populations 

We have tested the GERA model by applying it to the domain of student cafeterias. 

This domain fulfills the requirement of strongly restricted re-identification by event 

recognition. Furthermore university information systems are centralized, in large parts 

customized and historically grown systems. Extensions of these information systems 

are rarely possible and tend to be expensive. Therefore, decentralized data locality 

was defined as a requirement. According to GERA, domain-specific modules are 

described before details are given for human-computer interfaces used by students 

and members of the cafeteria workforce. Technical details are described at the end of 

this section. 

4.1 System architecture according to GERA 

In order to validate GERA by a feasibility study, an information system was devel-

oped and tested during two weeks at a University cafeteria. The incident detector 

consists of two distance sensors that were placed at a stair leading to a particular 

menu service of the student cafeteria. Distance sensors measure the depth of free 

space orthogonal to the movement direction. Maximum distance measures if no per-

son is standing in front of a sensor. Both distance sensors were located next to each 

other along the movement direction. Thus, the second sensor detected a person slight-

ly after the first sensor. Distances are only measured if incidents occur. 
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Measured distances of both sensors together with time stamps were forwarded to 

the filtering module where unrealistic and false values i.e. negative distances or dis-

tances exceeding the measurement range of the sensor were discarded. Distances 

values are subsequently being forwarded to the event producer. 

The physical design with two sensors supports event recognition by an hierarchical 

finite state machine (HFSM) [31]. Table 1 represents the possible states occurring in 

the state machine. Note that both, initial state I and goal state G, are represented by 

the same combination of sensor states, since before/after every movement detection 

cycle both sensors will not be covered.  

 
Table 1. Step model 

State of HFSM State of sensor 1 (S1) State of sensor 2 (S2) 

I/G Not Covered Not covered 
1 Covered Not covered 

2 Covered Covered 
3 Not covered Covered 

 

The HFSM is illustrated in Fig. 2. Labels on nodes represent the state of the 

HFSM. Labels on the edges illustrate incidents, representing a state change of a sen-

sor, ie. from covered to non-covered or vice-versa. As an example, assuming the state 

machine is at state 1, and the incident “S2 covered” has been detected, the state of the 

HFSM moves from state 1 to 2.  

 

 

Fig. 2. State machine process 

The dotted lines represent iterations over the same states or fallbacks to a lower 

state. In order to ensure clarity of Fig. 2, the incidence represented by those line have 

not been labeled. With the above-presented approach, movements in front of the inci-

dence detectors are only considered as valid (and thus increase the measured popula-

tion denseness) if the HFSM completes one cycle. Furthermore we are able to handle 

movements to and away from the incidence detectors (distance sensors), since those 

do not evoke a jump to another state of the HFSM. 

The number of cycles that the state machine has been traversed during a predefined 

time period (in the study it was set to 10 minutes) represents the measured denseness 

of a moving population. At the end of each time period, all detected cycles are con-

densed to one event, representing the denseness of moving population. In the follow-

1 2 3 

S2 covered S1 uncovered 

S2 uncovered 

I/G 

S1 covered 



ing paragraphs, we refer to these events as moving population denseness (MPD) 

events. Each MPD event consists of a denseness value, a time stamp, and the length 

of the time period. 

Based on past MPD events, the prediction module calculates a forecast for the next 

time period, i.e. for the next 10 minutes. Forecast values are referred to as predicted 

moving population denseness (pMPD) events. A forecasting algorithm with exponen-

tial smoothing and seasonal adjustment was selected because afflux to the cafeteria 

has a non-linear pattern for each day, starting low after opening, with a peak, and 

ending low before closing. Exponential smoothing supports quick reactions to recent 

changes due to decreasing weights over time. The forecasting algorithm has been 

implemented according to [32] and is sketched below. 

 

It =  
At

A̅
       (1) 

with It being the seasonal index, At the number of persons having passed the sensor at 

time t and �̅� the average number of persons having past the sensor in the last season. 

𝑆𝑡  =  𝛼 
𝐴𝑡

𝐼𝑡−𝐿
 +  (1 − 𝛼) 𝑆𝑡−1      (2) 

with St being the smoothed value, α the smoothing factor, It-L the seasonal index at 

time t during the last season. 

𝐹𝑡+1  = 𝑆𝑡  ∗  𝐼𝑡+1−𝐿    (3) 

with Ft+1 being the forecast for period t+1. Regarding the presented setup above, 

the seasonality is given by a day, since the afflux of people visiting the cafeteria is 

depending on their weekly schedule and lectures.. 

MPD and pMPD events are final outputs of the event producer. Both events are be-

ing sent to event receiver community A representing students that are likely to go to 

the restaurant in the short-term and event receiver community B representing the 

workforce of the cafeteria (cf. Fig. 3).  

 

 

Fig. 3. Actual and forecasted population denseness representation for the vent receivers 



4.2 Technical Realization 

Two infrared analog distance sensors by sharp with a maximal measurement dis-

tance of 150 cm have been connected through a PhidgetInterfaceKit
2
 to a Raspberry 

Pi
3
 Model B. We further installed a Raspbian

4
 Linux distribution on the Raspberry Pi 

and handled all pre-processing activities including filtering, analytics, aggregation, 

and event procedures implemented in Java. The complete setup is powered by a port-

able battery pack ensuring a very flexible and wireless deployment. The technical 

setup and installation of the smart sensor on the handrail is presented in Fig. 4. 

 

  

Fig. 4. Study setup at the University cafeteria 

5 Evaluation 

5.1 MPD events 

The precision of the sensory system for measuring moving population densities 

was evaluated by comparing system-defined MPD values and manually counted val-

ues during one day. The normalized root-mean-squared error (NRMSE) [33] between 

measured values by the system and manually counted number of persons is quite high 

(36%) for the respective day. Furthermore, the population denseness is consistently 

underestimated. The reason is based on the fact, that the sensor does not recognize 

more than one person at a time. Thus, if two individuals are walking next to each 

other and pass the sensor at the same time, the sensor is not able to detect both indi-

viduals. Due to the relatively constant under-estimation of the sensor, inflating the 

                                                           
2 PhidgetInterfaceKit is an I/O Board that converts analog inputs from sensors to digital out-

puts. (http://www.phidgets.com/products.php?category=0&product_id=1018_2) 
3 Raspberry Pi Model B (http://www.raspberrypi.org/product/model-b/) 
4 Raspbian is a free operating system based on Debian optimized for the Raspberry Pi hard-

ware. (http://www.raspbian.org) 



estimated number by a constant factor k can significantly improve the accuracy. As an 

example, inflating the computed number of persons by a factor k = 1.5 would de-

crease the NRSME from 36% down to 14% (cf. Fig. 5). 

For a more detailed analysis of the correlation between both samples, a two-sided 

paired difference t-test was applied evaluating the null hypothesis that the mean value 

of measured and actual denseness of moving population are statistically equivalent. A 

correlation between the two samples being at r = 86.7% supports the null hypothesis. 

By assuming a higher significance level of 5% as typical for exploratory studies, the 

null hypothesis cannot be rejected (two-sided paired difference t-test, .055 p-value). 

Thus, the mean values of measured and actual denseness of moving population cannot 

be considered as being unequal for our sample. Hence, MPD events are statistically 

significant approximations for the longitudinal curve of actual values. 

 

 

Fig. 5. Measurement accuracy 

5.2 pMPD events 

Taking measured values for moving population densities as proxies for actual val-

ues, we compare measured values with predicted values for pMPD. Data collection 

was performed over four days. It is not surprising that the NRSME is lower for meas-

ured and actual data because predictions are based on measured values. NRSME be-

tween measured and predicted values settled at about 21% (cf. Fig. 6).  

As before, a two-sided paired difference t-test was applied evaluating the null hy-

pothesis that the mean value of measured and predicted denseness of moving popula-

tion are statistically equivalent. 144 time periods were collected during 4 days result-

ing in a correlation of 61.6% (.000 p-value) between measured and predicted samples. 

Again, with a significance level of 5%, the null hypothesis cannot be rejected (two-

sided paired difference t-test, p=.268), ie. the mean values of measured and predicted 

denseness of moving population cannot be considered as being unequal with respect 
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to our sample (cf. Fig. 6 for one day). In more than 26% of all cases, we find support 

for the null hypothesis. Hence, there is not sufficient evidence to reject the null hy-

pothesis. This is taken as a robust result for an approximation with a standard forecast 

algorithm without considering deep context information. 

 

Fig. 6. Predicted vs. measured moving population densities (pMPD vs. MPD) 

5.3 Discussion 

By this experimental setup it was found that movement population densities are ef-

fectively measured by a distance sensor system that obeys non-re-identification and 

decentralization requirements. It was a crucial requirement that customers of the stu-

dent cafeteria could not be tagged or traced. Additionally, budget restrictions did not 

allow integration into existing, central information systems. Thus a decentralized 

approach becomes a necessity. 

Two hypotheses were tested empirically. First, it was found that longitudinal event 

values measured (MPD values) by the sensor system provide a data basis that is not 

significantly different from actual values of movement population densities. Higher 

levels of absolute correspondence are achieved by scalar weights. Therefore, meas-

ured event data has proven to be appropriate proxies for actual event data on move-

ment population densities. 

Additionally, it was found that predicted event data provides similar characteristics 

on the mean structure, ie. is not statistically dissimilar from measured event values. 

This means that the prognosis based on a forecast algorithm with exponential smooth-

ing with seasonal adjustment provides a statistically appropriate approximation of 

measured values. Furthermore it is concluded based on results of the first part that 

predicted event values are also a good approximation of actual events. 
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6 Summary, limitations, and open issues 

In this paper, we presented an event recognition system based on sensors that is 

governed by non-re-identification and decentralized data locality requirements. It was 

found that measured values strongly correlate with actual event values and that pre-

dicted values are strongly correlated with measured values. This setup support pre-

processing of data streams on decentralized sensor systems with low-cost compo-

nents. Compared to other approaches (e.g., [34] and [7]), the effort of deploying our 

sensor system is considered as relatively low and effective. 

On the measurement side we found high approximation values for heterogeneous 

moving populations. Nonetheless, the physical layout of the environment is assumed 

to be crucial for the MPD and pMPD calculations. For instance, if the average number 

of individuals moving together through the distance sensing system underlies large 

variations, the scalar weight k needs to be replaced by functions in particular using 

machine learning approaches. 

Furthermore, we indicated how the event recognition system connects real-world 

events with digital events and how this provides information to two communities, ie. a 

student community and cafeteria workforce community. Currently we investigate how 

both communities are actually affected by this dynamic information about actual and 

predicted events and corresponding situations. 

Another issue for future work is the extension of seasonality. For the cafeteria do-

main context information can be included. For instance, we assume that the type of 

meal has significant effects on movement population densities with respect to abso-

lute and relative values. Due the different class schedules of students during the week, 

the number of students being on campus around lunchtime varies over the different 

weekdays. With a longer deployment period of our setup, the seasonality index (cur-

rently based on a daily basis), could be calculated week-based. This change would 

indirectly consider the varying number of students on campus during the different 

weekdays and thus further ameliorate the accuracy of our predictions. 

In our current study, we limited our study to one staircase only. Extension to all en-

try points of the cafeteria will allow us to analyze correlations and non-parametric 

analyses between movement population densities of different entry points. 

In summary, we found evidences that the proposed sensor system approach with 

non-re-identification and decentralized data locality requirements provide an effective 

means for connecting real-world situations with business processes. Further research 

will target measuring the impact of this approach on, for instance, queue management, 

reduction of waiting times, decision making in retail stores, hotels or similar domains. 
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