
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Complexity-Based Taxonomy of Systems
Development Methodologies
Peter Meso
Kent State University, pmeso@ggc.edu

Gregory Madex
University of Notre Dame, gmadex@nd.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Meso, Peter and Madex, Gregory, "A Complexity-Based Taxonomy of Systems Development Methodologies" (2000). AMCIS 2000
Proceedings. 40.
http://aisel.aisnet.org/amcis2000/40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301364603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/40?utm_source=aisel.aisnet.org%2Famcis2000%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Complexity-Based Taxonomy of Systems Development Methodologies

Peter Meso, pmeso@bsa3.kent.edu
410A Department of Management and Information Systems

Graduate School of management,
Kent state university, Kent, OH, 44242

Gregory Madey, gmadey@nd.edu

Computer Sciences and Engineering, University of Notre Dame,
Notre Dame, IN 46556

INTRODUCTION
For the last two decades systems developers and
researchers have largely assumed that the process of
developing business information systems is a well-
structured, project-oriented, once in a lifetime
undertaking. However, present business models that are
intensively reliant on information technology are
rendering this perception obsolete. There has been a
growing propensity toward increasingly iterative, fast-
paced, user-driven systems development methodologies
such as Rapid Application Development, Unified
Modeling Language, Joint Application Development and
the Relationship Management methodology (Hans-
Werner1997; Isakowitz, 1995; Shapiro, 1997; Vessey,
1994). At the same time the discipline of information
systems has witnessed an increasing awareness of the
importance of systems maintenance - with the general
proposition that systems development is an ever-
proceeding activity (rather than a project-based activity) -
becoming the norm (Howard 1990).

The majority of empirical research on systems
development, to date, has tested the contributions of
different types of knowledge to effective systems
development. Much research has also been done on how
different methodologies for systems development impact
the quality, effectiveness, and efficiency of resultant
business information infrastructure. The studies suffer
from one or more of the following limitations: (1) They
largely perceive information systems evolution via
systems development as generally being a slow, linear,
structured and continuous process. Current events in the
information systems and electronic commerce sectors
indicate that systems development is highly dynamic,
discontinuous and adaptive in nature – the defining traits
of a complex system. (2) Though most of the past studies
recognize that systems development is a knowledge
intensive activity, rarely is it seen as a primary
mechanism by which a firm embeds knowledge into its
business information infrastructure’s technologies,
databases and automated operating procedures. Because
almost all business functions and transactions within an
electronic commerce enterprise is achieved via the firm’s

business information infrastructure, enhancement of
business knowledge and information within such a firm is
expected to be heavily dependent on the enhancements
made to that infrastructure via specific systems
development approaches. In rapidly evolving
environments as characterized by present day electronic
commerce, methodologies become a primary means by
which the firm continuously updates its knowledge
resources hence sustaining or leveraging its competitive
advantages. The theory of complexity may contribute to
the perception and re-classification of systems
development methodologies in such a manner as to
provide a clearer understanding of which methodologies
are best suited for directing the development and
enhancement of business information systems in today's
electronic commerce economy. By viewing business
information systems as emergent complex adaptive
systems, the methodologies employed to derive these
systems can be seen as being synonymous to the natural
rules that govern the behavior of all natural phenomenon.
Thus it enables us to explain what methodologies best
match a specific systems development or enhancement
tasks allowing for the development of better quality
business information systems, especially for electronic
commerce applications.

BRIEF SUMMARY OF TAXONOMIES OF
SYSTEMS DEVELOPMENT METHODOLOGIES

a) The Software Engineering School
Blum (1994) develops a taxonomy of common methods
for designing computer information systems (Figure 1).
He perceives design methodologies as being 1) either
conceptual or formal and 2) problem oriented or product
oriented. While conceptual methods are descriptive in
nature, establishing the response to the application-
domain need, formal methods are prescriptive and thus set
out the behavior of the software to be realized. Methods
used also impact the level of validation and verification of
the generated solution to varying degrees. While problem
oriented methods are excellent at validating the quality of
the model derived in the design effort, product oriented
methods excel at verification – ascertaining whether or
not a formally defined requirement has been met.

238

 Problem oriented Product oriented
Conceptual Structured analysis, Entity relationship modeling

Logical construction of systems, Modern
structured analysis, and Object oriented analysis

Structured design and Object oriented design

Formal PSL/PSA, JSD, and VDM

Levels of abstraction, Stepwise refinement,
Proof of correctness, Data abstraction, JSP,
and Object oriented programming

Figure 1: A classification of design methods (reproduced from Blum, 1994)

Shapiro (1997) outlines the historical development of the
discipline of information systems development from the
perspective of the software engineering school (Table 1).
He enumerates three key systems development paradigms
that have governed the development of computer
information systems since the 1960s – the process
orientation, the data orientation and the object orientation,
and outlines key contributors to each of these paradigms.
Table 1 provides a summary of the researchers that have
contributed to these three information systems
development paradigms as reported by Shapiro (1997).
Hence Shapiro aptly summarizes development in the
software engineering school of information systems
development. Barry, Slaughter and Kemerer (1999) study
software evolution. They define software evolution to be
the dynamic behavior, growth and change of software
systems during the course of their productive lives (1999).
In particular they identify how software evolution profiles
impact important maintenance outcomes such as cost and
software errors. Extending Swanson’s typology of
maintenance types that comprised of corrective, adaptive,
and perfective classes into a six class typology made up of
data handling, control flow, initialization, user interface,
computation and module interface, they found that
lifecycle profiles did indeed affect software profiles. Thus
the nature of software evolution is influenced by its
software maintenance profiles.

Vessey and Conger (1994) apply the same categorization
of systems development approaches when they
experimentally compare the effectiveness of the process,
data and object-oriented approaches in specifying systems
requirements. Ahmed and Lochovsky (1998) conduct a
comparative case study of three software development
environments for database application development.
With the aim of identifying if indeed object oriented
software development environments reduce development
time and improve maintainability, they observe and assess
the development of three functionally similar database
applications, one developed in an object oriented
environment, and the other two in a relational software
development environment. Their results indicate that the
use of the object oriented environment results in higher
quality database applications as measured by number of

lines of code, volume, complexity of programs, time used
to develop the application, and maintainability.

 The Hypermedia Design School
A newer school of information systems development
approaches emerged with the advent of the World Wide
Web in the early 1990s (Isakowitz, 1995). This school has
attracted a significant amount of research with respect to
establishing methodologies for web-applications
development, comparatively assessing these
methodologies to themselves and to those in the
conventional software engineering school of systems
development, and generation of authoring tools to support
these methodologies.

Isakowitz, Stohr and Balasubramanian (1995) propose the
Relationship Management Methodology (RMM) for the
design and construction of hypermedia applications. They
perceive hypermedia design as centered around the
management of relationships among objects and
acknowledge that by their very nature, hypermedia
applications require frequent updating hence necessitating
some means of routinizing and automating the initial
development and subsequent update processes. The
researchers point out those applications that may have
irregular structures, those that have dynamic structures,
and those that are highly volatile may gain little from the
use of the RMM approach. Surprisingly, the majority of
present day electronic commerce-applications fall in this
category. The volatility of such applications is even the
more magnified when viewed from a knowledge
management perspective. Hence there is need for
improving existing methods to developing and
maintaining web-based systems aimed at electronic
commerce within the electronic commerce environment.
Balasubramanian, Ma, and Yoo, (1995) extend the RMM
methodology to reflect the concepts of a cross-entity slice
and that of a minimum slice. A cross-entity slice is a
combination of elements from different entities into a
single window of user-interface display while the
minimum slice is the minimal set of an entity’s attributes
to be included in slices from other entities. They apply the
extended RMM to the design of a hypermedia application.

239

Table 1. Summary of contributors to software engineering school of systems development
Class Contributions

Peter Naur (1968):Introduced the term software engineering
Hoare (1969): Stated that programming was an exact science and as such all its steps could be
formalized. Hence fostering the formal methods approach to systems development.
Niklaus Wirth (1971): Described the process of step-wise refinement
David Parnas (1972): Articulated the concept of information hiding hence founding the principles
of cohesion and coupling.
Ed Yourdon (Early 1970s): articulated the Yourdon Notation for modeling processes in the
analysis and design phases of the systems development life cycle.
 Steven, Myers, Yourdon and Constantin (1973): Combined several basic principles of software
development under the label of structured design, formalizing the structured design paradigm of
software development.
Glenford Myers (1973): Described the concept of decomposition which was eventually refined into
the concepts of hierarchical and functional decomposition as captured by structure charts,
decomposition diagrams, and Warnier -Orr diagrams.
Dijkstra and Mills (1975): Articulated the three basic control structures sufficient for quality
program development as being sequence, selection, and repetition.
William McKeeman (1975): Described structured programming as being a linear problem-solving
process, reinforcing the SDLC and formal methods approach.
Peter Denning (1975): elaborated the contributions of formal methods in establishing ordered and
disciplined thinking leading to clearly structured programs.

Process
oriented
information
systems
development

Frank DeRemer and Hans Knor (1975): expanded the meanings of, and distinctions between,
intermodule and intramodule complexity hence providing the foundation for the recognition of
systems analysis as being distinctly different, and requiring different skill sets, from programming
proper (eventually dubbed systems design).
Barbara Liskov and Stephen Zilles (1975): Explored techniques for specifying data abstractions -
spearheading the DATA ORIENTATION approach under the formal methods or structured design
paradigm.
Michael Jackson (mid 1970s): Developed the Jackson method, an approach that centered on the
data elements rather than the processes in a software system. Hence spinning off data oriented
techniques such as the entity-relationship diagramming, normalization, entity life history diagrams,
state transition diagrams.

Data
oriented
information
systems
development

Jean Warnier (mid 1970s) developed the Warnier-diagramming notation, later improved into the
Warnier-Orr technique by Kenn Orr.
Brad Cox (1984) and Victor Basili (1985): proposed adding object oriented concepts on top of
conventional programming languages.
Paul Ward (1989): described how to integrate object orientation with structured development
methods.
Russell Abbott (1987: emphasized the crucial role of domain knowledge in effective software
development and the potential for object orientation as a technique for articulating such knowledge
for future re-uses.
James Rumbaugh (1991): articulated the Object Modeling technique (OMT)
Grady Booch (1994): articulated the Booch Object oriented Software engineering (Booch OOSE)
Notation.

Object
oriented
information
systems
development

Grady Booch, James Rumbaugh and Ivar Jacobson (1995) articulated the Uniform Modeling
Language (UML) by building upon and unifying the OMT and Booch OOSE notations. UML is
now accepted as the standard for systems specification in object oriented development notation
standard.

Hans-Werner, Wicke and Gaedke (1997) propose the term
“web-engineering” to refer to the formal approaches for
the development and maintenance of web applications.
Web applications are characterized as being large scale
and distributed in orientation, and as comprising of an
increasing number of highly interactive and dynamic

components. Therefore, as suggested by the researchers,
ad-hoc methods for systems development and
maintenance may not be well suited for web engineering.
They discuss the modeling of web applications as
foundation for web engineering tasks, arguing that the
decomposition of web applications into file-based

240

resources, as evidenced in the RMM and similar
methodologies, does not provide the fine granularity
required for engineering tasks such as reuse and
maintenance. Hans-Werner, Wicke and Gaedke (1997)
propose an approach to web engineering, termed
WebComposition, which applies an object-oriented
philosophy to the development and maintenance of web
applications. The approach is embedded in a tool that has
the same name.

 Three types of web engineering tools exist: tools that
support static publication-oriented hypertext, those that
support database-centric information systems, and those
designed to support highly dynamic and interactive
applications. Based on their categorization, full-fledged
electronic commerce systems fall into the third category –
dynamic interactive applications. While both static links
and static pages characterize static hypertext systems, and
dynamic page creation but static link structure
characterizes database-centric information systems,
dynamic interactive applications are characterized both by
dynamic page creation and dynamic link structures.
Existing methodologies for hypermedia design,
specifically the RMM methodology and its techniques are
well suited for the first two categories – static hypertext
applications, and database-centric information systems.
However, they are limited in their ability to address the
development and maintenance of dynamic-interactive
applications (Hans-Werner, 1997).

Howard (1990) describes the evolutionary approach to
systems development which he terms “evolutionary
system creation” and distinguishes this from conventional
systems development. He states that software evolution is
dictated by four rules namely: software evolution:
software is not static but always evolving, the process of
evolution is slow but continuous, similar systems are
related in concept and descend from a common origin,
and that systems evolution is the result of a long series of
compromises rather than the result of shrewd design.
Thus he proposes that firms can capitalize on selective
software evolution to leverage their strategic position.
This can be achieved via the chunking methodology.
Chunking incorporates all of the principles of successful
evolution, listed as being: chunks are easier to modify,
learning is gradual, users see the results of the
requirements, improvements are encouraged, and high
return functions are isolated. These principles may apply
to the development of software from the complex
adaptive systems perspective.

Scharl, and Bauer (1999) use neural networks, to develop
and empirically analyze a framework and methodology
for analyzing and evaluating commercial business-to-
customer electronic commerce systems. The methodology
they develop is able to provide for a snapshot,
longitudinal, or comparative analysis of electronic

commerce systems. Isakowitz, Kamis, A., and Koufaris,
(1998) provide an extension to the Relationship
Management Methodology (RMM) by introducing the
application diagram and demonstrate how it can be used
iteratively to refine an application's design. In so doing
they provide RMM with capabilities to model a
hypermedia system from a Top-down approach while
maintaining its Bottom-up approach capabilities. The
authors perceive RMM as being employed in a one-time
systems development effort (project perspective) where
the development of the hypermedia system is done over
an established project lifetime beyond which the
methodology is no longer required.

The nature of present day electronic commerce is such that
the systems development effort lasts for as long as the
electronic commerce system remains functional. Hence
systems development ceases to be project-oriented in
nature and becomes a perpetual or ongoing function of the
firm. In such a situation, the methodology used to develop
the system needs to allow for the continued re-evaluation,
modification, expansion, and even re-engineering of the
electronic commerce system in a real-time, zero-down
time, environment. Hence the need to reassess systems
development methodologies with a view to identifying
those best suited for the present day business environment.

OVERVIEW OF COMPLEXITY THEORY
Waldorp, (1992) defines complexity as the “study of
spontaneous self-organization and adaptation evident in
most multi-agent, multi-reaction natural phenomenon”.
Holland (1998) sees it as the ability to increase the
intricacy or entanglement evident in systems from
permutations and combinations of simple rule-governed
models. Complexity theory holds that complex adaptive
systems exhibit some common criteria. They consist of
multiple agents. They exhibit distributed intelligence and
a lack of centralized control. Each agent plays a very
specific role or occupies a particular niche within the
system and has to be interconnected in some way to the
other agents, has to maintain some specific relationships
with, or has to interact with other agents in order to
satisfactorily perform its role. These systems exhibit a
lack of pre-meditated or pre-designed plans of action or
maps of direction towards achieving their core objectives.
Decision-making in these systems tends to be largely
collective. They tend to be perpetually in a state of never
ending transformation caused by perpetual dynamic shifts
in the state-of-being. In these types of systems,
optimization of returns or rents normally lies at some
delicate transition point or threshold termed the "edge-of
chaos". Extensive collaboration is evidenced in the
routine transactions and reactions within the system and
the overall behavior of the system EMERGES from the
collective collaborative behavior of the multiple agents
(Kelly, 1994; Waldrop, 1992; Santosus, 1998; Lissack,
1999).

241

Complexity
Theory Rules

classes

CLASS I
Doomsday

Rules

CLASS II
Static Life Rules

CLASS IV
Edge of Chaos

Rules

CLASS III
Extremely Lively Rules

Figure 2: The Four Types of Natural Rules as Defined By Complexity Theory

The theory of complexity classifies all the rules that
govern the behavior of complex adaptive systems into one
of four classes (Figure 2):
- Class I: Doomsday Rules – those that that propel the

complex adaptive system towards maximum order,
regardless of the initial state of the system, resulting
in the death of the system.

- Class II: Static Life Rules – those that propel the
system towards perpetual stagnation, regardless of its
initial state, making it static.

- Class III: Extremely Lively Rules – those that propel
the system towards maximum anarchy, regardless of
its initial state, resulting in maximum chaos within
the system.

- Class IV: Edge of Chaos Rules – those that do not
maximize chaos or order within the system but
instead cause the emergence of coherent structures
that propagate, grow, split and recombine in
wonderfully complex ways. As the environmental
conditions change, these rules perpetually change the
structure of the complex adaptive system so that the
adaptation of the system to its environment is
optimized. Hence the system always remains in
synch with its evolving environment (Waldorp,
1992).

 A COMPLEXITY PERSPECTIVE OF SYSTEMS

DEVELOPMENT METHODS
Perceiving business information systems as being
complex adaptive systems leads to the inference of
systems development and enhancement approaches as
being the rules that govern the systems’ adaptation to
their environment - the business organization for which
they are developed and the larger external environment
serviced by this business organization. As such these
approaches can be classified as being class I, class II,
class III or class IV complexity theory rules based on how
they influence the evolution of the business information
system, as it adapts to its environment.

Employing the theory of complexity, common systems
development approaches can be classified into one of four
classes (as depicted earlier in Figure 2). This perception
of systems development approaches posits that those
methodologies best suited for the perpetual adaptation of
a web-based virtual organization and for continued
enhancement of knowledge management functions within
such an organization, are those with properties closest to
the “edge-of-chaos” class of rules. Using the schools of
systems development paradigm, all systems development
approaches can be classified into two generic classes -
software engineering and hypermedia design. By and
large, software engineering approaches exhibit higher
levels of structure that hypermedia design approaches,
and may thus be seen as displaying higher levels of order.
Taking the conventional classification of systems
development approaches as reported by Shapiro (1997),
Vessey and Conger (1994) and Vessey and Glass (1998),
the software engineering approaches can be further
classified into process oriented, data oriented and object
oriented approaches. While most conventional process
oriented approaches are highly formalized and linear in
orientation, data-oriented approaches and object-oriented
approaches are less rigid though still exhibiting relatively
high degrees of order (Figure 2).

Past researchers have applied the three orientations –
process, data and object – to hypermedia design
approaches too. The Relational Management
Methodology is an offshoot of the Data Oriented
perspective of information systems development
(Balasubramanian, 1995; Isakowitz, 1995).
WebComposition is an offshoot of the Object Oriented
approach (Hans-Werner, 1997). Development languages
such as JavaScript and VBScript are mutations of the
process and object orientations (December, 1996). Thus
we can apply the categorization of systems development
approaches into process, data and object orientations to
the hypermedia design approaches too. Combining the
two provides a complexity-based classification of systems
development approaches.

Maximum order Maximum chaos

242

Systems development
approaches

Software engineering approaches Hypermedia design approaches

Process

Data

Orientation

Object

Complexity Theory
Rules classes

CLASS I
Doomsday

Rules

CLASS II
Static Life Rules

CLASS IV
Edge of Chaos

Rules

CLASS III
Extremely Lively Rules

 Most of the software engineering approaches are linear,
continuous and highly structured in their disposition to the
systems development process. Thus they generally seem
to fit the characteristics demonstrated by the Class II:
Static Life rules, when perceived from the perspective of
Complexity theory. The more rudimentary
methodologies such as the Waterfall Model or the
Structured Systems Analysis and Design methodology are
highly linear and rigidly inflexible. As such they may be
closer, in resemblance, to class I rules that they are to
Class II rules. Recent software engineering methodologies
such as prototyping, the rapid application development
methodology and the unified modeling language allow for
greater flexibility in the systems development process,
and support iterative operations. In this respect they tend
towards the class IV rules.

Older hypermedia design methods were highly
discontinuous in nature, having very little structure, and
embracing the open systems concept. In this respect this
group of methodologies - Hypermedia design
methodology and enhanced hypermedia design
methodology, can be seen as exhibiting the characteristics

reminiscent of class III rules. Later hypermedia design
methodologies have imposed increasing structure to the
development of hypermedia systems while maintaining
the flexibility and iterative properties evident in the older
methodologies. As such they tend towards class IV rules
in their characteristics. These methodologies include The
Relationship management methodology and the extended
relationship management methodology.

Therefore we are able to map methodologies into one of
three orientations - process, data, and object- as
elaborated in the systems analysis and design literature.
Simultaneously these very methodologies can be mapped
into four classes of natural rules as elaborated in the
literature on complexity theory. This provides us with a
complexity-based taxonomy of systems development
methodologies (Figure 3). Given the emergence of
electronic commerce, web-based, and virtual organization
business models where competition is largely dependent
on knowledge resources, and the business environment is
increasingly volatile, the taxonomy provides us with a
basis for selecting methodologies best suited for the
sustenance of corporate information systems with a view

Figure 3: A Complexity-based Taxonomy of Systems Development Methodologies

Systems development
life cycle

Rapid Application
Development

Hypermedia
design
Methodology

Hypermedia
design
methodology
II

Information
Engineering

Jackson’s
Systems
Design

Relationship
Management
Methodology

Unified Modeling
Language (OOM)

Extended
Relationship
Management
Methodology

Maximum chaosMaximum order

243

to leveraging the firm's sustainable competitive
advantages.

CONCLUSION
This paper had demonstrated the use of Complexity
Theory to classify systems development methodologies
for electronic commerce. This theory classifies all the
rules that govern the behavior of complex adaptive
systems into one of four categories: doomsday rules,
static life rules, edge of chaos rules and extremely lively
rules. It further asserts that the edge-of-chaos rules are
responsible for optimizing emergent behavior in a
complex adaptive system. Based on the precepts of
complexity theory, Hypermedia design approaches,
particularly those that take on an object oriented approach
to specifying and articulating the problem-solution space
may be ideal for systems development in today's
electronic commerce economy.

REFERENCES
Balasubramanian, V., Ma, B., and Yoo, J., (1995). A

Systematic Approach to Designing a WWW
Application. Communications of the ACM, 38(8),
47-48

Barry, E. Slaughter, S., and Kemerer, C., (1999). An
Empirical Analysis of Software Evolution
Profiles and Outcomes. Proceedings of the 20th
International Conference on Information
Systems, 453-458

Blum, B., (1994). A Taxonomy of Software Development
Methods. Communications of the ACM, 37(11),
82-94

December, J. and Ginsburg, M., (1996). HTML 3.2 and
CGI. Indianapolis, IN: Sams.net Publishing

Hans-Werner, G., Wicke, R., and Gaedke M., (1997).
WebComposition: An Object-Oriented Support
System for the Web Engineering Lifecycle.

Computer Networks and ISDN Systems, 29,
1429-1437.

Holland, J., (1998). Emergence: From Chaos to Order.
Reading, MA: Perseus Books

Howard W., (1990). Creating an Evolutionary Software
System: A Case Study. Journal of Systems
Management, 41(8), 11-18

Isakowitz, T., Kamis, A., and Koufaris, M., (1998).
Reconciling Top-Down and Bottom-Up Design
Approaches in RMM. The Data Base for
Advances in Information Systems, 29(4), 59-65

Isakowitz, T., Stohr, E., and Balasubramanian, P., (1995).
RMM: A Methodology for Structured
Hypermedia Design. Communications of the
ACM, 38(8), 34-44

Kelly, K., (1994). Out of Control. Reading, MA: Perseus
Books

Lissack, M., (1999). Complexity: The Science, Its
Vocabulary, and Its Relation to Organizations.
Emergence, 1(1), 110-127

Santosus, M., (1998). Simple, Yet Complex. CIO, APRIL
15, 63-67

Scharl, A., and Bauer C. (1999). Explorative Analysis and
Evaluation of Commercial Web Information
Systems. Proceedings of the 20th International
Conference on Information Systems, 534-539

Vessey, I., and Conger, S., (1994). Requirements
Specification: Learning Object, Process, and
Data Methodologies. Communications of the
ACM, 37(5), 102-113

Vessey, I., and Glass, R., (1998). Strong Vs. Weak
Approaches to Systems Development.
Communications of the ACM, 41(4), 99-102

Waldorp, M., (1992). Complexity: The Emerging Science
at the Edge of Order and Chaos. New York, NY:
Simon & Schuster Inc.

244

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Complexity-Based Taxonomy of Systems Development Methodologies
	Peter Meso
	Gregory Madex
	Recommended Citation

