
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1989 Proceedings International Conference on Information Systems
(ICIS)

1989

CONSTRAINT BASED ANALYSIS OF
DATABASE UPDATE PROPAGATION
Joan Peckham
University of Connecticut

Fred Maryanski
University of Connecticut

Fred Maryanski
University of Connecticut

Heidi Chapman
University of Connecticut

Steven A. Demurjian
University of Connecticut

Follow this and additional works at: http://aisel.aisnet.org/icis1989

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1989 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Peckham, Joan; Maryanski, Fred; Maryanski, Fred; Chapman, Heidi; and Demurjian, Steven A., "CONSTRAINT BASED ANALYSIS
OF DATABASE UPDATE PROPAGATION" (1989). ICIS 1989 Proceedings. 42.
http://aisel.aisnet.org/icis1989/42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301364151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989/42?utm_source=aisel.aisnet.org%2Ficis1989%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


CONSTRAINT BASED ANALYSIS OF
DATABASE UPDATE PROPAGATION

Joan Peckham
Fred Maryanski
George Beshers
Heidi Chapman

Steven A. Demurjian
University of Connecticut

ABSTRACT

Semantic and object-oriented data models provide convenient constructs for the specification of objects,
relationships, and operations. The vehicle of representation is a collection of abstractions which
parallel the means by which humans prefer to organize complex enterprises. These constructs
inherently permit focus on one object, relationship, or operation at a time. Propagation, as a semantic
construct, provides the extension of existing modeling capabilities by providing a mechanism for the
specification of the update semantics between database objects. Through the analysis of constraints
and the propagated actions necessary to maintain them, we attempt to do the following: 1) incorporate
additional semantics into the database schema in the form of database propagation rules, 2) in the
context of constraints and propagation rules, provide a model independent paradigm for determining
if schemata are correct, and 3) provide a vehicle fur the explicit specification of update actions during
database schema design.

1. INTRODUCTION tion also serves as a descriptor of the classes of conflicts
which can be detected at design time.

Considerable attention has been given in the past decade
to semantic and object-oriented databases. Semantic The term "semantics" is assumed to represent the condi-
databases (Hull and King 1987; Peckham and Maryanski tions that the designer, when using a particular model,
1988) grew out of a desire to permit the database designer places upon database constructs in order to maintain data
to rise above record-level modeling, to model objects and correctness and consistency. This includes the design time
their relationships as they are perceived by the end user. specification of valid database states and rules by which the
Active or dynamic databases, an extension of static active database must execute. These specifications may
semantic databases, were investigated (King and McLeod take many forms, including attribute-range constraints and
1984; Mylopoulos, Bernstein, and Wong 1980; Brodie and relationships between database objects.
Ridjanovic 1984) as a means of specifying the operations
of the database. Object-oriented databases (Dittrich 1986) For each semantic specification, there must be associated
use a programming-language paradigm to provide an actions known aspropagated actions. For example, stating
integral technique for the design of schema objects and that an atfribute value must be within a specified range
associated operations. implies that a compensating action must be taken should

this condition arise. Similarly, an insertion/deletion rule
Also during this period, database applications with increas- specified for a relationship between two database objects
ingly complex semantics have appeared. For example, has associated with it a group of compensating actions
CAD/CAM, software-engineering, and management which uphold that rule. These actions may propagate
information systems require databases which are more further actions, whose results must be guaranteed to
complex than traditional applications such as automatic uphold the semantics of the database. A database design
banking systems. For the next decade, attention to the aid must assist the designer in the correct specification of
enrichment of database design tools will be necessary for these semantics and help the designer to identify and
the correct development of more complicated schemata. eliminate any potential inconsistencies.

In this paper, we focus our attention on the analysis of the This research represents an attempt to uniformly capture
objects, constraints, and update actions that are specified a wide range of database semantics. Incorporating more
during the design of semantic databases. An attempt is semantic knowledge into the schema analysis process will
made to describe these database semantics so that conflicts encourage better specification of the application environ-
and implicit and/or redundant semantics can easily be ment by the designer. This will limit opportunities for
detected and presented to the designer. This representa- coding errors. This approach may have the potential to

9



improve the management and coordination of large current semantic models. Formal descriptions of theseprojects and to reduce software maintenance costs. relationship types and the means by which they may be
combined to form valid IFO database schemata are given
by Abiteboul and Hull. They investigated the effect of2. RELATED RESEARCH updates upon IFO schemata and provided definitions of
"permissible' updates. Our work differs from that ofThe distinguishing characteristics of this research from Abiteboul and Hull in the following ways.

prior work in the areas of update propagation, constraint
analysis, and dynamic (active) databases appear below. (1) Instead of examining a representative selection of

relationship types, we wish to consider the fundamen-
Research on the dynamic aspects of object-oriented and tal constructors of the types used in current models.semantic databases (King and McI«eod 1984; Mylopoulos, We feel this approach is capable of providing a moreBernstein and Wong 1980; Brodic and Ridjanovic 1984) meaningful analysis and comparison of existing typeshas emphasized the design of operations and transactions. and will permit easy extension to newly definedStrategies for the design of operations are important to this database constructs.
research only in the sense that they generate valid and 4
correct schemata for the proper update behavior of the (2) We wish to more explicitly define the update semanticsdatabase. associated with database schemata constructors.

Wilson (1980) and Carlson and Adarsh (1985) have (3) 1FO utilizes a set of types and design rules which
investigated the use of triggers or filters which are initiated result in cycle free schemata. This approach assures
at run time to decide if an update can be performed valid schemata and prevents possible update conflicts,
without violating the integrity of the database. In our but may needlessly hamper the designer when attempt-
investigation we attempt to maximize the amount of ing to create a true model of the enterprise in ques-
checking to be performed at database design time. This tion. For example, an application needing cyclic, non-
does not mean that the techniques developed here replace hierarchical representation would not be specifiable
run time checking; rather we intend to complement it. using IFO. In this work, we wish to relax the IFO

design rules to consider the possibility of cyclic object
The work of this paper is most similar to that which has definitions.
been done by Urban and Delcambre (Urban 1987; Urban
and Delcambre 1989). In their work, semantics in the We acknowledge that there are always tradeoffs betweenform of constraints are captured at design time using first- offering designers total freedom to create overly complexorder logic. This representation is then employed to aid and incomprehensible models and forcing certain modeling
the designer in the correct definition of perspectives or constructs and methodologies upon them. Here we eschew
views. These perspectives are then used for the specifica- the practice of selecting specific modeling constructs and
tion of operations and exceptions on the database. The philosophies to accomplish the following:
differences between their work and the work proposed
here are: (1) Investigate the problem of update propagation in

databases, independent of modeling philosophy.(1) Urban and Delcambre have characterized database
constructs through a synthesis of the predominant (2) Provide an analysis technique which is applicable to a
features of recent semantic data models. We hope to wide spectrum of modeling environments.
identify the underlying structures which are used as
constructors of the relationships and constraints (3) Provide a careful characterization of constraint types
offered by current models. It is felt that this will and the propagated actions which follow from them.
provide a tool capable of integration with a broader
class of semantic data models. (4) Prepare the groundwork for later investigation into the

possibility of including semantically consistent relation-
(2) While Urban and Delcambre assume that the static ships between objects.

modeling design process produces no conflicts in
definition, we assume conflicts might occur. We Thus, we investigate constraint types and their interrela-
attempt to characterize the types of conflicts and tionships with database actions. The next section describes
redundancies in definition which might lead to inco- the paradigm used to classify and represent these con-herent design before active semantics are specified. straints and compensating actions. Section 4 shows how

this information about a schema can be used to make
Abiteboul and Hull (1987) have examined database update conclusions about the design. Some illustrations are alsopropagation in the context of their formal semantic model, provided. We conclude with an analysis of the strengths
IFO. Three fundamentally different relationship types are and weaknesses of this approach and the plans for future
utilized to represent the constructors commonly found in work.

10



3. THE PARADIGM (1) The insertion of a PRODUCTION_STATS object.
In the spirit of Steel (1986),we first define the language of (2) The deletion of a PRODUCTION object.
discourse of this paper. It is assumed that databases are
being "semantically" defined. That is, there are object (3) The modification of one of the objects in a manner
types, objects (instances of object types), relationship types, that impacts the relationship.relationships (instances of relationships) between objects,
and constraints. Relationships can be realized through the (4) The manipulation of an object establishing the rela-use of a variety of constructs (Peckham and Maryanski tionship between the PRODUCTION and PRO-
1988). In the tradition of semantic database modeling, DUCTION_STATS objects.
these types, relationships, and constraints are specifiable
at database design time. Should the insertion of an PRODUCTION_STATS object

violate this constraint, the denial of the operation or theThe most general definition of the word "constraint" is simultaneous insertion of the associated PRODUCTION
taken since many types of constraints can cause compensat- object are compensating actions which will insure theing actions which are then propagated throughout the maintenance of the constraint. Similarly, we can establishdatabase. Associatedwith each constraint is apropagation the only possible compensating actions or propagationrule. The propagation rule specifies the compensating rules for the remaining three operations. Later, we showactions that must be taken on the database in order to that once each constraint type is carefully specified we aremaintain the constraint, and in a larger sense database able to carry out a similar analysis to enumerate possibleconsistency and correctness. The semantics of a database propagation rules.
can then be interpreted as the constraints and the compen-
sating actions needed to maintain them. Thus, for the purposes of this investigation, we define

"propagated behavior" in a database as the compensatingFor example, suppose that in a management information actions which are specified, during database desigil for tllesystem we have PRODUCTION objects representing putpose of maintaining the constraints of the databaseproducts to be manufactured by a firm and PRODUC- sc/tania. It is the purpose of this research to define aTION STATS objects recording pertinent manufacturing methodology to capture constraints and the resultingstatistis about associated products. The following is an propagated behavior of a given semantic model which canexample of a constraint. then be used as an aid in describing databases which will
remain consistent and valid once they are instantiated.A PRODUCTION STATS object may not exist

without an associated PRODUCTION object. What we describe is a means by which the propagation
semantics of a database could be captured for analysis byOne example of a propagation rule which might be defined the designer. Constructs were chosen to provide the

to maintain the constraint follows. representation of a broad range of database semantics.
Only those constructs necessary for the specification of theUpon deletion of a PRODUCTION object, the associated information needed to perform the desired analysis will bePRODUCTION_STATS object must also be deleted. presented. This is different from a model used to specify
a complete semantic database.

Leveson, Wasserman, and Berry (1983) have pointed out
that it is important for the propagation rules to be consis- The constructs needed for this analysis areprimitive Opes,tent with the constraints with which they are associated. attributes, primitive operations, constraints, andpropaga-If propagation rules are specified at design time, then a tion mles. In order to achieve our goal of model indepen-
check can be done to insure these are consistent with the dence, we refrain from using more complex constructs. Inconstraints of the system. This is the approach taken with order to utilize these ideas for a particular model, wetheir system, BASIS. However, we note that this process envision the decomposition of the constructs of the modelcan be time consuming and complex. to these primitive constructs. One of the goals of future

research is to examine predominate constructs from wellFor the purposes of this investigation, we categorize known semantic and object oriented models and toconstraints and for each constraint type give a list of illustrate their representation using our paradigm.possible propagation rules which may be enforced to
maintain the constraint. We assume that the designer PRIMITIVE TYPE: Primitive object types are the types
chooses one of these compensating actions for each upon which range constraints may be defined. The rangesconstraint when designing the database. of the primitive types are subsets of the primitive types of

the system upon which the model is defined. In a tradi-
For example, consider the constraint presented above. It tional system, the primitive types might be string, integer,is clear that it is possible to violate this constraint in the and boolean. In other systems they might be file, syntax-following ways. tree, etc.

11



OBJECT TYPE: An object type, OT, is a 2-tuple system containing primitive operations or constraint types
OT = <A, R> which differ from the primitive operations given here, a

where similar analysis would be required to determine the
A is an aggregation of attributes associated classes of propagation rules for each constraint
R is a set of rules, each of the type.

form <C,P>,
where C is a constraint
and P is a propagation rule.

3.1 Range Constraints
ATTRIBUTE: An attribute is a descriptor of a property
of an object. It may take the form of either a primitive A range constraint is the definition of the allowable range
type or a set of types. An attribute, A, of an object 0, is of an attribute. A range constraint may be the definition
denoted OA. Key attributes of an object uniquely identify of the range as a primitive type, a set of primitive types, an
the object. object type, or a set of object types. This may include the

specification of the size of the set. Attribute constraints
For the remainder of the paper, when the word attribute are also range constraints.
is used it is assumed to mean "non-key attribute" unless
otherwise specified. Without loss of generality, we assume An attribute constraint (Dogac, Chen, and Erol 1985) is
database systems will not support modification of key the specification of the range of an attribute based upon
attributes. states of other attributes and/or objects in the database.

An example is the specification in a management informa-
PRIMITIVE OPERATION: The following are the primi- tion system that the Expected_weekly_production attribute
tive operations of interest: insert an object, delete an divided by the Av daily production attribute may not be
object, modify a non-key attribute, and read an attribute. greater than five Tor a given ASSEMBLY_LINE ONect,
Unless a constraint specifies otherwise, it is assumed that i.e., an assembly line may not be expected to put out more
these operations may be applied to all instances of the of a given product than past experience indicates could be
constructs for which they are defined. produced.

In order to manipulate a database, higher order operations Specification that an attribute is of object type OT means
must be defined. For example, procedures may be defined that an association is established between the object
to manipulate data, methods may be defined as operations carrying the attribute and one instance of an object of type
associated with particular database object types, or transac- OT in the database. This has characteristics somewhat like
tions may be defined as atomic units of manipulation over an existence constraint, since the existence of the associ-
the database. All higher order operations must be con- ated reference object is required. However, because it also
structed from primitive operations, which represent the strongly resembles the other range constraints in that it
only means by which database instances may be manipu- determines permissible attribute values, we have chosen to
lated. Here we view these primitive operations as the classify this as a range constraint.
initiators of the propagated actions of interest in this
research. Recall that compensating actions associated with a given

constraint are not unique. Thus, for each constraint type
CONSTRAINT: Constraints specify the required condi- we must also list the possible propagation rules. Consider
tions of the database. an object 0 of type OT containing an attribute A. The

following operations must be considered.
PROPAGATION RULE: A propagation rule specifies the
compensating actions the database must perform in order (1) Consider the insertion of an object 0 of type OT
to maintain the conditions specified by a constraint. containing the attribute A or the modification of A.

If the insertion of 0 or the modification of A violates
In the following sections, we classify constraints as range the range constraint, then one of the following propa-
constraints, derivation constraints, and existence con- gation rules may be given.
straints. Since propagation rules have a natural association
with constraints, for each constraint type we examine the a) Deny the insertion (modification).
propagation rules which might be associated with it. The
propagation rules for a given constraint are generated by b) Automatically insert another related object so that
observing how primitive operations might violate the the insertion or modification of this object does
constraints when applied to objects addressed by the not violate the constraint. (This refers to the case
constraint. Possible compensating actions are then in which the range of the attribute has been
enumerated. It is assumed that all database operations, defined as an object type and thus the attribute
procedures, methods and/or transactions use only these references other objects in the database. Further
primitive operations to manipulate the database. In a explanation will be given below.)

12



c) Insert 0, but automatically change attribute A to attributes Al,-..,An, in the objects 01'...,On of types'null." 0T1,...,0Tn, respectively, by the function F:Al x...x An
4 A. The propagation rules which may be associated with(2) Upon deletion of an object 01 of type OTl which is derivation constraints are enumerated as follows.

associated with attribute A of object 0, the following
propagation rules may be applied. (In this case, (1) Upon insertion of object 0, compute the derivation.
assume the range of A is declared to be of type OTI,
or think of A as referencing objects of type OTl.) (2) Deny modification of attribute A if it violates the

derivation rule.
a) Deny deletion.

(3) In the case of deletion of one of the objects 01,...,On,b) Delete and also delete 0. related by the derivation constraint to an object 0.

c) Delete and change OA to "null." a) Deny the deletion.

Inserting an object of type 0 (or modifying the attribute, b) Compute the derivation function. (With this
A) and marking the value "dirty" will not be considered as choice of propagation rule, it is assumed that the
violating a range constraint. Instead, in terms of the derivation function has been defined in such a way
response of the system, it is considered as an attribute with that it can gracefully handle incomplete informa-a wider range (clean and dirty values) and another attri- tion.)
bute derived from it (clean or dirty).

(4) Upon modification of one of the attributes Al,..An
The issuance of a denial to the user is considered a termi- or the insertion of one of the objects containing thesenation of possible propagation. Thus it is not included as attributes, the following propagation rule must bea meaningful result. The user's later attempt to insert the given.
object or modify the attribute is considered the initiation
of a new action, not propagated by the old one. a) Modify OA by the derivation function.

An example may help to explain rule lb above. Using our In the second above we are stating that the user of a
example of PRODUCTION STATS and PRODUCTION system should not be permitted to modify a derivedobjects, assume that a constrlint specifies that the Product attribute A. Since A is derived from other attribute values
attribute of a PRODUCTION STATS object may not in the system, its values cannot be user defined.reference a non-existent PRODUCTION object. The
associated propagation rule may specify that upon insertion
of a PRODUCTION STATS object, an associated "empty'
PRODUCTION objEct must also be inserted. Since the 33 Existence Constraints
attributes of the PRODUCTION object may not have
been specified yet, they must be set to "null." Since the An existence constraint is a rule which specifies under
PRODUCTION STATS object is referencing a PRO- what conditions an instance of an object may or may not
DUCTION objeEt, enough information is present to insert exist. An example of an existence constraint follows. An
the otherwise null object. object 01 of type 0T1 may not exist without the existence

of an object of type OT2 with attribute A referencing 01.

Existence constraints represent relationships between3.2 Derivation Constraints object types established through attributes. The following
operations are pertinent to existence constraints.A derivation constraint is the specification of a function

F:OTl: x. x OTn -+ OTA, where 0T1,...,0Tn are object (1) In the case of the insertion of an object of type OTl,types, and OTA is an attribute of object type OT. one of the following propagation rules may be chosen.

Thus, a derivation constraint is the specification of the a) Deny the insertion unless the related object is
means by which one attribute in the database is computed present.
from other attributes in the database. An example is the
specification that PRODUCT.Total cost is the sum of cost b) Automatically insert the related object of OT2
attributes from associated PLANNIRG, ENGINEERING, with attribute A referencing 02.
MANUFACTURING, SALES, and SERVICE objects.

(2) In the case of the deletion of an object of type OT2,Let us assume a derivation constraint in which an attribute or the modification of attribute A, the following rules
A in an object 0 is being functionally derived from the are possible choices.

13



a) Automatic deletion of any related objects of type be a more appropriate vehicle for capturing the semantics
0T1. of the database from the user.

b) Denial of the deletion or modification. In the next section, we examine the representation of
constraints and propagation rules used to make helpful

Again, rule lb assumes sufficient information is available conclusions about the information specified about the
to make the appropriate automatic insertions. database.

In this paper, a complete set of formal proofs of the 4. USING THE PARADIGM
consistency of the constraints with their associated propa-
gation rules is not given. Since the proofs will all be of The paradigm given in Section 3 shows how the structure,
the same general type, one example is given to illustrate constraints, and propagation rules of a particular database
the proof technique which will be used in later work. For can be captured. The next step is to illustrate how this
our example, we choose the following derivation constraint information can be used to reason about the database. We
and one of its associated propagation rules. now turn our attention to some examples from a hypotheti-

cal management information system. A first-order logic
Derivation constraint: F:OTl x... x OTn -+ OTA, where representation for the constraints and propagation rules
0T1,...,0Tn are object types, and OTA is an attribute of will be used for convenience of representation and compu-
object type OT. tation.

Propagation Rule: In the case of deletion of one of objects Note that, as expressed below, propagation rules do not
01,...,On, related by the derivation constraint to an object specify the details of the manipulations of operations upon
0· objects. This is a detail that would be captured by the

model used for design. For example, suppose a PRO-
(1) Deny the deletion. DUCT.Cost_to date attribute is functionally derived from

other information in the database. The right-hand side of
(2) Compute the derivation function. (With this choice of an associated propagation rule might read Modify (Cost

propagation rule, it is assumed that the derivation to_date). The details of this Modify might be captured in
function has been defined in such a way that it can a method, Compute_new_cost, at the design-model level.
gracefully handle incomplete information.) However, the only pertinent information for this design-

time analysis of propagated actions is that the Cost_to_date
attribute is being modified.

Theorem: The derivation constraint and the corresponding
deletion propagation rules given above are consistent. Let 0, 01,...,On, be objects of types OT, 0T1,...,0Tn,
That is, the propagation rules will correctly maintain the respectively, and let A, Al,-..An be attributes of the
consistency of objects related thorough the derivation respective objects. Let OP represent a primitive operation
function under the deletion of objects in the domain of the and OP(0) represent the application of operation OP on
derivation function. object 0. Also let OiA R Oj represent an association, R,

between an object Oi of type OTi and an object, Oj, of
Proof of consistency: We wish to show that the propaga- type OTj, through attribute A in Oi.
tion rule will uphold the constraint under the deletion of
one of the objects Oj, where j is 1,2,..., or n. We assume In order to logically represent propagation types, we notice
that the database maintains the constraint previous to the that they are generally of two types. One represents the
proposed deletion. We wish to show that each of the two case in which we are denying a proposed action, OP, unless
actions will maintain the constraint. In the case of denial constraint C is maintained. This can be represented as
of the deletion, the state of the database will not be follows.
changed, and thus the database remains consistent. In the
case of derivation of OA using the function F, the deriva- NOT C -+ NOT OP(0)
tion constraint will clearly be maintained.

The second type of rule is used to capture the situation
With this section, we complete the description of the where an action on one object propagates another action
paradigm used for representation of the modeling concepts on the same object or another object or attribute.
pertinent to propagation of compensating actions in a
database. Notice that the concept of "relationship" is OP1(01) -+ OP2(02),
absent in an explicit sense, since the same concept can be where 01A R 02, or 02.A R 01.
presented through the definition of constraints and
propagation rules. Although this uniform definition of Among the conclusions which we are able to draw from
database semantics is convenient for propagation analysis, the extracted modeling constructs, there are two types in
the inclusion of relationships, IS-A hierarchies, etc., may which we are interested.

14



(1) Direct conflicts in definition. type OT2 and vice versa. For example, suppose that upon
insertion of a PERSON object into a database, a PER-(2) Implicit and/or redundant semantics. SONNEL object for maintaining personnel records must
also be inserted. Similarly, upon insertion of a PERSON-

Both arise from situations in which the modeler has NEL object, the associated PERSON object must also be
defined relationships between object types, focusing on present. The designer should be reminded of this situa-
one at time, and may need help to keep track of the tion. The designer will then be able to determine if this
implications of these definitions and their interrelation- will be handled by using, say, transactions to assure objects
ships. A partial enumeration of types of conflicts and of both types are (logically) inserted simultaneously or ifexplicit and/or redundant semantics is give in the following one propagation rule should be changed to prevent the
sections. conflict. This type of conflict could arise if constraints are

specified for each object at different times in the design
process (or perhaps by different designers on a large

4.1 Direct Conflicts project).

Direct conflicts represent situations in which the semantics
of one object or attribute are in conflict with the semantics 4.2 Propagated and/or Redundant Semantics
of another object or attribute. Two examples follow.

This classification represents situations in which there are(1) Conflicting attribute definitions: The specification of no direct conflicts in semantics, but in which awkward or
an attribute as both derived and having a range redundant definitions are evident or in which propagated
constraint may produce a conflict. It is especially clear semantics that should be called to the attention of the
that if the range of the derivation function does not designer are present.
intersect the domain definition of the attribute, there
is a conflict. (1) Transitive closure: This represents propagated

semantics derived from the transitive-closure of the
(2) Conflicting propagation rules involving more than one designer specified semantics. For the purpose of this

object: For example, suppose the designer specifies a analysis it is convenient to view any primitive operation
propagation rule following from a constraint on object as a manipulation, independent of whether it is an
type 0T1 which impacts on object type OT2. Also insertion, deletion, or modification. We can then
suppose that from a constraint on OT2 a propagation compute all possible sequences of actions which might
rule impacting 0T1 is defined. Then, as a result of be propagated by individual actions on the database.
these definitions, a conflict may have been produced. Simply stated, we have the following transitive pro-

perty.
For an example of the first type of direct conflict, we
consider PERSON, ENGINEER, and MANAGER object Given object types 0T1, OT2, and OT3, and primitive
types in the engineering department of a corporation. Let operations, 0P1, OP2, and OP3, the following holds.
us assume that existence constraints specify that for every
instance of a MANAGER, there must also be an asso- If OP1(01) -+ 02(02) and OP2(02)- OP3(03)
ciated instance of type ENGINEER, and that for every are propagation rules, then OP1(01) -+ OP3(03).
instance of type ENGINEER, there must be an associated
instance of type PERSON. Also assume that ENGI- (2) More than one propagation rule is defined on a pair
NEER.Salary is derived (inherited) by way of the identity of objects: Although there is no direct conflict in
function from PERSON.Salary. Similarly, MANA- definition, it is possible the designer has specified these
GER.Salary is derived (inherited) from ENGI- through different views on the objects and might wish
NEER.Salary. (These constraints represent the semantics to consolidate and/or clarify the relationship between
which might be included in the specification of an IS-A the two objects.
hierarchy of types, in which ENGINEER IS-A PERSON
and MANAGER IS-A ENGINEER.) Let us further An application of the transitive-closure property follows.assume that while modeling the Manager type, the designer Suppose there are EMPLOYEE, ACTIVITY, and MAN-
has specified the following attribute constraint. MANA- AGER objects in a management information system.
GER.Salary must be greater than ENGINEER.Salary for ACTIVITY objects record the professional activities of a
all instances of ENGINEER. This will readily produce a given EMPLOYEE within the organization and MANA-
direct conflict, since the derivation function specifies that GER objects record additional information about em-
MANAGER.Salary is equal to ENGINEER.Salary. ployees which are also managers. The attribute EM-

PLOYEE,Stipend is derived as a function of the activities
An example of the second type of direct conflict is illus- in which the employee is involved and records the addi-
trated as follows. Suppose an object of type 0T1 cannot tional monthly stipend the employee receives above and
be inserted without an associated incidence of an object of beyond the monthly paycheck. The Stipend attribute of a

15



Manager object is derived by way of an identity function Thus, propagation rules associated with these constraints
from the related EMPLOYEE object. specify that INSURANCE and PERSON objects must be

simultaneously deleted. It may be the case that the
We now suppose that the usual constraints on derived designer wishes to consolidate thesetwo rules into one rule
attributes hold and the following propagation rules have handling the deletion of both types of object. One benefit
been specified. might be the simplification of application code. Here, for

example, there needs to be only one procedure written to
Modify (ACTIVITY.Time consulting) -+ handle the deletion of both types of objects.

Modify (EMPLOYEE.Stipend)

Modify (EMPLOYEE.Stipend) -+ 5. THE CONCLUSION
Modify (MANAGER.Stipend)

Recent research has proposed several modeling constructs
If we apply the transitive property to these propagated and methodologies which can be used for the extraction of
actions, we get the following. information from the database modeler. While these

techniques provide several tools for the representation of
Modify (ACTIVITY.Time consulting) -) "real world" objects and relationships, the expression of the

Modify·(MANAGER.Stipend) actions which necessarily follow from these semantics has
often been left out. Thus, we have investigated the means

The designer is then notified that modification of the by which more semantic knowledge might be incorporated
Time consulting attribute ofACTIVITY objects will result into a database schema. This paper represents the first
in the-modification of the Stipend attribute ofMANAGER phase of our attempt to provide this design-time analysis
objects. But now suppose that although managers can of databases.
derive additional income from other activities, the organi-
zation does not permit managers to derive additional As for our future work, we plan to undertake a further
income from consulting activities. Presenting this propa- analysis of constraint types. For example, a study of the
gated activity in the database to the designer may serve as specification and representation of cardinality constraints
a reminder that the derivation of MANAGER stipends was not sufficiently explored here. Transitional constraints
must be different from that of other employees. (Dogac, Chen, and Erol 1985), whereby the next state of

an object is dependent upon the current state of that and
There are some instances in which a database design other objects, should also be explored. Finally, we must
system may not wish to present all transitively derived demonstrate that this paradigm of representation and
propagated sequences to the designer. For example, within computation is rich enough to be used with a wide range
an IS-A hierarchy, the transitivity of inheritance is properly of existing semantic models.
conveyed by the graph structures usually presented to the
designer. That is, the designer will not want to be re- A second area of interest is the detection of semantics
minded that whenever A IS-A B and B IS-A C, then A encoded in the methods and transactions of a database
IS-A C. However, when attribute values are derived from system. Since actions, transactions, or operations may be
other information in the schema through different relation- defined at design time, conditional behavior coded in these
ship structures, which were defined during different phases operations may also be construed as defining constraints
of the specification process, this derived information may and associated propagation rules. An example follows.
provide meaningful feedback.

The handling of cycles is a problem which is not fully Operationally Defined Constraint and Rule
investigated here. However, we do consider cycles of
length two in which two objects may be connected through If Average(ENGINEER.Salary) > Average(MANAGER,Salary
propagation rules. For example, suppose there are then for every X = Manager,

Modify(X, Equalize_salary, Average_engineer,PERSON and INSURANCE objects representing em- Average_manager_salary).ployees and information about their families. Further
assume that PERSON and INSURANCEobjects reference
each other through their attributes and that the fullowing The code in the example specifies that, on the average,
propagation rules have been given by the designer when engineers' salaries may not exceed managers' salaries. This
constructing each of the object types. is an attribute constraint on the ENGINEER object type.

Also included here is the propagation rule which dictates
(1) Employee attribute of an INSURANCE object must the action to be taken upon the violation of the constraint.

reference an existing PERSON object. It might be possible to perform an evaluation of transac-
tions written at run time against the constraints and

(2) Insurance attribute of a PERSON object must refe propagation rules written at design time to determine,
rence an existing INSURANCE object. before the transaction is used, if there will be conflicts.

16



Work related to this has been carried out by (Ngu 1989), The work of Steven A. Demurjian was partially supported
in which static modeling information is inferred from by grant 1171-000-22-0506-35-038 from the University of
transactions as they are being designed. Connecticut Research Foundation.

Constraints reflecting rules for instantiation of objects and
associations between them is also needed to completely 7. REFERENCES
describe the semantics of relationships such as IS-A and
classification. This characterization will be necessary for Abiteboul, S., and Hull, R. "IFO: A Formal Semantic
two reasons. First, a more meaningful analysis of possible Database Model." ACM Transactions on Database
cyclic relationships between types could be conducted if Systents, Volume 12, Number 4, December 1987, pp. 525-
some information about the instance level of the database 565.
is known. Since this research is concerned with design
time analyses, it is possible to examine only the rules Brodie, M., and Ridjanovic, D. "On the Design and
dictating the materialization of instances. Second, a better Specification of Database Transactions." In M. Brodie, J.
analysis of propagated semantics can be carried out if we Mylopoulos, and J. Schmidt, Editors, On Conceptual
do not have to examine the worst case scenario for each Modeltin& Perspectives from Artificial Intelligence, Data-
constraint. Thus, the rules for propagation could take the bases, and Prog,amming Languages, New York: Springer-
form Verlag, 1984, pp. 277-332.

OP1(01) X IR -+ OP2(02) Carlson, C., and Adarsh, K. "Toward the Next Generation
of DataModelingToots: IEEE Transactions on Software

where OPl and OP2 are primitive operations, 01 and 02 Engineen-,ig, Volume 11, Number 9, September 1985,
are objects, and IR is a rule dictating the instantiation of pp. 966-970.
objects and/or associations between them. In this way, we
can examine under what conditions the propagated action Dittrich, K "Object-Oriented Database Systems: The
will or will not take place. Notion and the Issues." In K. Dittrich and U. Dayal,

Editors, Proceedings, 1986 International Workshop on
Future work will also involve the formalization of the Object-Oriented Database Systems, pp. 1-4.
representation and analysis of database constraints and
propagation rules. This effort will focus upon the identifi- Dogac, A.; Chen, P.; and Erol, N. "The Design and
cation of a formal structure capable of faithfully repre- Implementation of an Integrity Subsystem for the Rela-
senting database enterprises and capable of simplifying the tional DBMS RAP: 77:e Fouith International Conference
analysis of the database schema. on Entity Relationship Approach, October ?3-30,1985,

Chicago, Illinois, pp. 295-302.
The approach outlined in this paper for the detection of
database inconsistencies is meant to complement current Hull, R., and King, R. "Semantic Database Modeling:
developments in semantic and object-oriented database Survey, Applications, and Research Issues." ACM Com-
design. A representation of database semantics through puti,ig Sun'eys, Volume 19, Number 3, September,
the use of specific types of constraints and their associated pp. 201-260.
propagation rules has been developed independent of
individual modeling constructs and methodologies. This
effort illustrates an attempt to represent and perform King, R., and McLeod, D. "A Unified Model and Method-
computations on the constructs and rules of a database ology for Conceptual Database Design." In M. Brodie, J.
system and to provide results which would generate useful Mylopoulos, and J. Schmidt, Editors, On Conceptual
feedback to the database designer. Modellin& Perspectives from Artificial hitelligence,

Databases and Programming Languages, New York·.
Springer-Verlag, 1984, pp. 313-327.

6. ACKNOWLEDGEMENTS
Leveson, N.; Wasserman, A.; and Berry, D. "BASIS: A

The authors would like to thank Sanjay Ramamurthy for Behavioral Approach to the Specification of Information
the helpful proofreading and comments during the develop- Systems." Ii,fonnation Systems, Volume 1, Number 3,
ment of this paper. 1983, Pergamon Press.

The work of Joan Peckham was partially supported by an
IBM teaching fellowship. Mylopoulos, J.; Bernstein, P.; and Wong, H. "A Language

Facility for Designing Database-Intensive Applications."
The work of Fred Maryanski was partially supported by ACM Transactions on Database Systems, Volume 5,
grant IRI-8704042 from the National Science Foundation. Number 2, June 1980, pp. 185-207.

17



Ngu, A. "Transaction Modelling: Proceedings, F#th Urban, S. Constraint Analysis for the Design ofSemantic
International Conference on Data Engineering, 'Los Database Update Operations. Unpublished Ph.D, Disser-
Angeles, California, February 1989, pp. 234-241. tation, The Center for Advanced Computer Studies,

University of Southwestern Louisiana, September 1987.
Peckham, J., and Maryanski, F. "Semantic Data Models."
ACMComputing Surveys, Volume 20, Number 3, Septem- Urban, S.,and Delcambre, L. "Constraint Analysis for
ber 1988, pp. 153-189. Specifying Perspectives of Class Objects." Proceedings,

Fifth International Conference on Data Engineering, 1.os
Angeles, California, February 1989, pp. 10-17.

Sted, T. A Minimal Conceptual Schema Language for
Life, the Universe, and Evelythin& Database Semantics Wilson, G. "A Conceptual Model for Semantic Integrity
(DS-1), T. Steel and R. Meersman, Editors, IFIP, 1986, Checking: Proceedings of tlie Sixth Intemationat Con-
pp. 255-284. ference on Vety Laige Data Bases, 1980, pp. 111-125.

18


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1989

	CONSTRAINT BASED ANALYSIS OF DATABASE UPDATE PROPAGATION
	Joan Peckham
	Fred Maryanski
	Fred Maryanski
	Heidi Chapman
	Steven A. Demurjian
	Recommended Citation


	tmp.1422401969.pdf.xnUvv

