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ABSTRACT

Commands are an important part of large scale industrial software specifications, especially where the
specification is separated from its implementation as in open software standards. Commands can be
complex because of large numbers of parameters, dependencies among parameters, subtle side effects,
and lack of abstraction. We present a formal approach for command modeling and apply it to IBM's
Distributed Data Management Architecture (DDM), a complex, large scale specification of data access
on remote and heterogeneous IBM systems.

Our approach consists of three parts: a declarative, executable command specification language, an
incremental specification technique, and automated reasoning tools. The command specification
language provides a formal interpretation of the structural (input-output) and behavioral properties
(state constraints/change) of commands. To manage the details of complex commands with numerous
inter-dependent arguments, a novel incremental specification technique and several tools for
incremental definition and browsing are presented. Two forms of automated reasoning are also
demonstrated: type checking to ensure "well-typed" expressions and target system tracing to simulate
command execution. Lessons learned from our experience with the DDM are also discussed.

"It is our position that a solid product consists of a triple: a program, a functional specification, and a
proof," Edsger Dijkstra, Austin TX, 09/04/89

1. INTRODUCTION specification and many independent implementations, is
increasingly common as the computing market becomes

Formal methods are assuming an increasing role in multi-vendor and highly competitive. Formal methods
software specifications especially where there must be a are increasingly being used in major software projects
clear boundary between specification and implementation. such as IBM's CICS (Nix and Collins 1988), the CASE
In general terms, formal methods are mathematically project of Praxis Systems (Hall 1990), and the Portable
based techniques for describing properties of software Common Tools Environment (Middleburg 1989).
systems as well as supporting the verification and testing
of software (Wing 1990). They help in revealing ambi- IBM's Distributed Data Management Architecture
guities, exposing errors, and communicating complex (DDM) (Demers 1988) is an internal open systems
ideas as well as in proving the correctness of system standard for data access on remote and heterogeneous
properties. In many uses of formal methods, there is a IBM systems. The DDM is a low level component of the
strict separation between specification and implementa- Systems Application Architecture, a large and complex
tion. Such situations include independent quality as- standard that spans protocols for communications,user
surance, software contracting, and open systems stan- interfaces, programming languages, and data access.
dards. Open systems standards, characterized by one Functionally, the DDM is a layered communication
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architecture that controls transparent interactions be- to conclusions), inductive (from examples to conclusions),
tween source and target systems. An application pro- and simulative (imitative representation of one function
gram that is DDM compliant can access remote data with by another). Automated reasoning transforms the role of
access, security, concurrency, and other services being specification tools from that of merely representation to
provided transparently. Structurally, the DDM is a that of aiding problem solving. We focus on two auto-
layered collection of resources that exist in servers (i.e., mated reasoning tools we have designed and developed
subsystems).1 Important resources include files, direc- for the CSL: the type checker (TC) that ensures expres-
tories, agents, and data dictionaries. Some servers sup- sions are "well-typed" and the target system tracer (TST)
port all kinds of resources while others support only a that simulates a specification by checking whether pre-
subset of resources. Independent groups within IBM conditions are satisfied and subsequently asserting post-
choose the subset of the DDM to implement on particu- conditions.
lar servers.

Section 2 reviews related research on formal methods in
Commands are an important and complex part of large software development. Section 3 discusses the nature of
scale systems such as the DDM but are often poorly commands in large scale specifications using the DDM as
specified. The importance of commands is due to their a representative example. Section 4 presents our tools
use as external interfaces to an information system. All for command modeling including the CSL, incremental
three groups - users, implementors and architects - definition and browsing tools, and the TC and the TST.
must share a common understanding of commands. Examples from the DDM are used to depict the use of
Commands are complex because they can have many our approach to a large and complex specification.
interdependent parameters and produce subtle side Section 5 discusses our experience with applying our tools
effects. Despite their importance and complexity, com- to the DDM and future research directions.
manIs are often specified imprecisely. Informal text is
typically the only description of a command's behavior 2. RELATED WORK
and dependencies among parameters. The text can be
long and complex without any abstractions to manage the In this section, we review research on formal methods in
details. (An examination of the text found in another software development. We begin with a discussion of
large scale system - the help system in UNIX - also formal specification languages and associated software
reveals all of these problems.) Since specifications are tools. We then summarize research on type inference
typically informal there are no forms of automated and polymorphism which has influenced our development
reasoning to analyze the consistency and completeness of of the TC and command lattice.
specifications.

In selecting a technique for modeling commands, one
We describe the general purpose command specification should seek the following properties (Jacob 1983):
tools we have developed and applied to the DDM. Our
approach consists of three parts: a declarative, execu- 1. The specification of the command should be easy to
table command specification language, an incremental understand. In particular, it must be easier to under-
specification mechanism, and automated reasoning tools. stand and take less effort to produce that the soft-
The command specification language (CSL) describes the ware that implements it.
structural (input and output) and behavioral (state con-
straints and changes) aspects of commands. The CSL is 2. The specification should be precise. It should leave
based on strongly-typed, object-oriented languages whose no doubt as to the behavior of the system for each
semantics are axiomatically defined. Closely associated possible combination of parameters.
with the CSL is the command lattice, a novel abstraction
technique that supports incremental specification of 3. It should be easy to check for consistency.
commands. Command lattices are an extension of code
sharing techniques used in object-oriented programming 4. The technique should be powerful enough to express
(Choi, Mannino and Tseng 1991). non-trivial system behavior with a minimum of com-

plexity.
Software tools based on automated reasoning contribute
to increased quality, productivity, and understandability of 5. It should separate what the system does (function)
a specification. The goal of automated reasoning is to from how it does it (implementation). The technique
derive inferences about a specification. These inferences should make it possible to describe the behavior of
often involve long and subtle chains of reasoning. Rea- the command, without constraining the way in which
soning methods can be deductive (from facts and adoms it will be implemented.
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6. The specification should directly yield a reasonable Associated software tools include the usual syntactic
table of contents for a user manual, but not neces- analysis as well as simulation and proof checking tools.
sarily the material in the manual. Simulation tools make a specification executable. Users

can get immediate feedback about the meaning of a
specification by executing and tracing its effects. Proof

Floyd, Hoare and Dijkstra made the initial breakthrough checking tools ensure that certain axioms hold in a
in formalizing specifications declaratively by developing specification and provide useful inferential information.
the concepts of Hoare triples and axiomatic semantics Statemate (Harel 1988) is an example of a simulation
(Dijkstra 1976). In the Floyd-Hoare-Dijkstra model tool for state transition diagrams, while the Larch prover
(which we adapt for our study), the behavioral properties (Garland and Guttag 1989) and the verifier for the
of commands can be formally described in terms of a Adaptable Database Programming Language (Sheard and
Hoare triplet <P {S} Q> . This states that if the pre- Stemple 1989) are examples of proof checking tools. The
condition P holds in the current state of the system then TC is a proof checking tool and the TST a simulation
the post-condition Q is guaranteed to hold provided the tool.

command {S} successfully terminates: Hence, pre- and
post-conditions can be described as well formed formulac Our work on command specification has also been
and commands as predicate transformers on pre- and heavily influenced by research on type inference and
post-conditions. Jacob (1983) describes the chief value of polymorphism in object-oriented systems (Cardelli and
this formal specification methodology as "[permitting] a Wegner 1985). A type inference system ensures that
designer of large and complex systems to describe the expressions are "well-typed" before they are executed.
external behavior of the system without having to specify "Well-typed" means that the sets of values (or types) used
its internal implementation." in expressions are guaranteed to be compatible. In other

words, a type inference system will not permit illegal
operations such as the addition of an integer and a string.

In practical terms, post-conditions declaratively describe Further, a type inference system can deduce the type of
general assertions about the values that the relevant an expression, thus alleviating the user from specifying
variables will take after execution of the command. the type information. The use of type variables and
These assertions will not ascribe particular· values to each subset conditions among type variables makes the type
variable, but will rather specify certain general properties inference system flexible because only the most general
of the values and the relationships holding between them type is determined at compile-time. The actual type at
(Hoare 1969). Hence, formati,ing command specifical execution is guaranteed to be a substitution instance of
tions emphasizes the expression and manipulation of the the most general type. We have applied the results on
results of computational processes and the objects on type inference, described in Choi, Mannino and Tseng
which they are performed, rather than instructions for (1990), in the design of the CSL and the TC.
carrying them out (Winograd 1979). This allows an
automated reasoning tool to infer properties about these Polymorphism permits an operator to accept different
command descriptions (Hoare et at. 1987). kinds of arguments and respond based on the kinds of

arguments received. Commands are polymorphic as they
In practice, the use of a formal method (like axiomatic can accept different combinations of parameters. Ob-
semantics or Hoare logic) requires the use a specification jected-oriented programming is characterized by universal
language and a collection of software tools based on polymorphism where there is one implementation of an
automated reasoning to define and analyze specifications. operator for all objects and ad hoc polymorphism where
Wing (1990) classifies specification languages as model- there are multiple implementations of an operator (Car-
oriented versus property-oriented. Model-oriented delli and Wegner 1985). Command lattices extend a
languages feature a small set of mathematical structures form of ad hoc polymorphism known as incremental
such as tuples, relations, and sets to directly describe a overloading (Choi, Mannino and Tseng 1991) that per-
system's behavior. Property-oriented languages feature mits related implementations of an operator to be shared.
axioms to indirectly describe properties that a system However, in command specifications, behavioral descrip-
must satisfy. Axioms can be used to describe both state tions rather than implementations can be shared.
dependent and state independent properties of a system.
VDM Uones 1986) and Z (Spivey 1988) are prominent 3. COMMAND SPECIFICATION IN THE DDM
model-oriented languages, while Larch (Guttag, Horning
and Wing 1985) is an important property-oriented lan- In this section, we provide background on the DDM. We
guage. The CSL has characteristics of both model- begin with a general discussion of the nature of the DDM
oriented and property-oriented languages. and then proceed to details of command specification.
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We finish with a brief discussion of the limitations of the kind of results it returns. Figure 2 contains a partial
current DDM command specification. structural specification of the DDM command CRTDIRF

(IBM 1989). Note that the arguments of the command
The DDM has two specifications, an external one for are specified as instance variables (insvar), while the
users of IBM languages and an internal one for architects output is specified as command replies (cmdrpy). Each
and implementors of the DDM. Externally (to users of argument has a name, type, and usage status. For exam-
the DDM), the DDM is a collection of commands that ple, the first argument is named crtnam, its type is an
can be called from languages such as PASCAL, C, and enumerated class (ENUCLS) of either a declare name
COBOL. For example, a user may issue commands to (DCLNAM) or file name (FILNAM), and its status is
declare a file as a remote file, open the file, insert re- required. In contrast, the type of the third parameter
cords into the file, and close the file. Internally, these (dupfilop) is primitive, and its status is optional. The
commands are interpreted by a DDM source translator command replies define possible error messages when a
and sent in an internal form to a DDM target translator problem occurs in processing a command. The reply
on a remote machine. A command can cause state CMDCMPRM is returned when the command completes
change on a target machine as well as send results to the successfully.
source machine. The internal specification of the DDM
relates to the design of the semantics (in terms of struc- There are four limitations of current DDM command
tural and behavioral properties) for DDM commands. specifications, as depicted in the examples just presented.
Architects provide the structural characteristics and
behavioral properties (specification) of the DDM com- 1. The structural characteristics and behavioral proper-
mands, while implementors interpret the specification and ties of commands are informally (and therefore
code it on particular servers. Architects then test a given imprecisely) specified in detailed text. For example,
implementation for compliance with the specification by the DDM command OPEN has more than four
executing a series of test cases. Here, we are concerned pages of help text explaining such complex constructs
with the internal description because it is complex and as side effects related to open file lists, cursors,
vital to implementors. In addition, the external descrip- shadow files, and lock tables.
tion can be derived from it.

2. There are no abstraction techniques such as inheri-
The DDM is specified in several upwardly compatible tance to aid the understanding of the structural
levels, comprising more than 1000 pages each. Each level characteristics and behavioral properties of com-
defines a large collection of classes and commands (IBM mands. Commands must be specified and browsed
1989). A class is defined by a collection of variables. in entirety. Abstraction techniques should permit
For example, the class F[LE includes variables for the file incremental specification and browsing, beginning
name, file size, etc. To manage the large number of with the most essential details and gradually adding
classes, more specialized classes inherit or share the nonessential details as desired.
variables of more general classes. For example, the more
specialized class DIRFIL (direct file) inherits from the 3. The DDM specification is weakly typed and does not
more general class FILE. support inference of type information. Strong typing

and type inference are foundations of our approach
A command accepts arguments, causes state changes, and to formal specification because they promote suc-
returns output. A command specification contains both cinct, precise, and flexible specifications.
behavioral and structural descriptions. The behavioral
description expresses constraints on the state of the 4. The DDM lacks a declarative, executable specifica-
command's target system as well as changes to the state tion. A declarative specification for the structural
of the command's target system. The behavioral descrip- and behavioral properties of commands expresses the
tion of commands is typically given by bubble sheet text relationships between the inputs (i.e., initial state),
as shown in Figure 1 for the command CRTDIRF (IBM internal variables, and outputs (i.e., resulting state) of
1989). This text (as can be seen from Figure 1) often the command in a process independent manner
describes some complex conditions such as the relation- (Winograd 1979). Execution of a specification re-
ship with the command DCLFIL (declare file) and the lates the state of a target system to the details of
action to take when the DUPF[LOP (duplicate file command specification.
option) parameter is used.

The structural description of a command expresses what These limitations are addressed by our modeling and
kind of argument values a command can take and what software tools, described in the following section.
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CRTDIRF create direct file
This command creates a direct file on the target system. If tile target agent has received a DCLF[L command
for the name specified by DCLNAM (equals DCLNAM on DCLFIL), the FILNAM parameter specified on
the DCLFIL is used by the target agent as the name for the created file.

LOCKING:

When the recreate option of DUPFILOP is executed, any previously acquired locks on the file are lost.

EXCEPTIONS:
If a file exists on the target system with the same name, the DUPFILOP parameter specifies the action to take
for this condition. If the DUPFILOP specified requires locks to be obtained on the file and the file is locked
by another user, F[LIUSRM is returned.

Figure 1. Partial Description of the Behavioral Properties or CRTDIRF

insvar INSTANCE VARIABLES
crtnam ENUCLS DCLNAM

ENUCLS FILNAM
REQUIRED

reclen CLASS RECLEN record length
REQUIRED
NOTE For both fixed and varying length records,

this is the maximum record length.
dupfilop CLASS DUPFILOP - duplicate file option

OPTIONAL

cmdrpy COMMAND REPLIES
agnprmrm CLASS AGNPRMRM - permanent agent error
cmdcmprm CLASS CMDCMPRM - command processing completed

NOTE Required if no other reply object or reply
message is returned.

Figure 2. Partial Description or the Structural Properties of CRTDIRF

4. COMMAND MODELING TOOLS lattice. Finally, we present the TC and TST, two auto-
mated reasoning tools for the CSL

In this section, we demonstrate salient aspects of our
approach to command modeling using representative
examples from the DDM.3 For the CSL, we describe 4.1 The Command Specification Language
type expressions to model the structural aspects of com-
mands and pre/post-conditions to model the behavioral Sentences in the CSL are divided into two categories:
aspects. After discussing the CSL, we describe the type expressions for the structural aspects of commands
principles of the command lattice and the incremental and pre/post-conditions for the behavioral aspects. Type
definition and browsing tools based on the command expressions are formed from basic types, structured types,
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type variables, and Boolean conditions on type variables. The CSL can also be used to model classes as labeled
The structured types are comprised of labeled records record types with a label for each instance variable of a
denoted by "*" to represent classes, labeled unions de- class. Figure 5 lists some of the most important DDM
noted by " + " to represent mutually exclusive types, classes including AGENT, SERVER, ACCMTH (access
function types denoted by"->" to represent commands, manager), FM (file manager), and CURSOR. An agent
and lists denoted by '0- to represent collections. Type acts on behalf of a user to submit commands to a target
variables and Boolean conditions on type variables specify server. Agents contain the declare name list (dclnamls)
relationships among required and optional command and open file list (opnfills) of their users. A server
parameters. DDM commands are polymorphic because contains the list of supported managers such as access
they can accept different combinations of parameters. managers and file managers. Access managers contain

cursors for each user of a file where a cursor contains the
Figure 3 displays the CSL type expression of CRTDIRF. position of the current record, an access intent list, and
The type expression in Figure 3 indicates that CRTDIRF locks. File managers maintain attributes of files such as
is a polymorphic function with type variables tl and t2. names, end of file numbers, and file expiration dates as
The subtype condition (s)' on type vanable tl indicates well as the actual content of files in object lists (objlst).
that the command input must contain the arguments
crtnam and reclen. Note that the type of crtnam is a Behavioral aspects of commands are modeled by pre- and
labeled union indicating that either a declare name post-conditions. A condition is a named Boolean formula
(dclnam) or file name (filnam) can be used. The super- with identifiers, comparison predicates, and simple func-
type condition on tl (k) indicates that the input can tions to manipulate lists, labeled records, and labeled
optionally contain other arguments such as filinisz (file unions. For example, list functions include construction
initial size) and reclend (record length class). Note that denoted by ":", tail denoted by "TL", and head denoted by
identifiers in capital letters denote type constants, e.g, "HD". Comparison predicates include equality denoted
INT for the integer type and DATE for the labeled by " =", and inequality denoted by "*: Identifiers are
record type month::INT * day::INT * year::INT. The either local or global. The main difference between these
output of CRTDIRF is a labeled union with label type of identifiers is their scope. Changes to global
cmdcmprm indicating a successful execution or label identifiers, denoted by NEW, persist to the execution of
errorcmdrpy indicating an unsuccessful execution. The other commands. Changes to local identifiers, denoted
type of an error reply is represented as a labeled record by ": =" do not persist after command execution.
type that must be supertype of labeled record type
(agnprmrm::AGNPRMRM *...* dupfilrm::DUPFILRM Figure 6 lists some of the pre- and post-conditions of the
*...) since it can contain several error codes with each CRTDIRF command. The global and local identifier
error code appearing only once. definitions precede the pre- and post-conditions. There

are two global identifiers: "a" denoting an instance of
In the specification of some commands, there are more AGENT and "s" denoting an instance of SERVER.
dependencies among parameters than merely whether a Condition names are separated from their associated
parameter is required or optional. For example, in the expressions by a colon (:). The pre-condition FILE-
DDM command OPEN, the parameter fllshr (file DECLARED-OR-NOTCREATED is rather complex. It
sharing) must be specified if prpshd (prepare shadow) is states that if a declared name is given, the file must have
specified. In INSRECEF (insert record at end of file), been previously declared: the declared name list
the parameters keyvalfb and recnbrfb must be specified (dclnamls) of the agent must contain the crtnam para-
together. These dependencies can be indicated with meter. Otherwise, if the file name is given, it must not
conditions on type variables as shown in Figure 4. exist: there must not exist a member of the server's

crtdirf :: tl -> (cmdcmprm::CMDCMPRM + errorcmdrpy::t2)
RESTRICTED BY tl S (crtnam ::(dclnam:: STR + filnam:: str)* reclen:: INT)
AND tl 2 (atnam :: STR * reclen :: INT * filinisz :: INT * reclencl :: STR

* recdelcp :: BOOL * dupfilop:: STR *... )
AND t2 2 (agnprmrm:: AGNPRMRM * mdathrm :: CMDATHRM * cmdnsprm :: CMDNSPRM

* drinfnrm :: DCLNFNRM * dupfilrm:: DUPFILRM * ... )

Figure 3. CSL T*e Expression for CRTDIRF
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open :: tl -> (cmdcmprm::CMDCMPRM + errorcmdrpy :: t2)
REESTRISTED BY tl S (dclnam::STR * accmthcl::ACCMTHCL * accintls::ACCINTLS)
AND tl 2 (ddnam::STR * accmthcl::ACCMTHCL * accintls:ACCINTLS *

filattrl::INT * filshr::INT * prpshd::BOOL)
AND IF tl s (dclnam::STR * accmthcl:ACCMT}ICL *

accintls:ACCINTLS * prpshd::BOOL)
THEN tl S (ddnam::STR * accmthcl::ACCMTHCL *

accintls:ACCINTLS * filshr::INT * prpshd::BOOL)
AND...

Figure 4. CSL Type Expression for OPEN

AGENT :: (title :: STR * help :: STR * dclnamls :: [DCLFIL] * opnfills
::[STR] * path:: STR)

DCLFIL:: (filnam:: STR * dclnam:: STR * filexnsz:: INT *
filmaxex :: STR * agnnam :: STR)

SERVER :: (title :: STR * help :: STR * agents :: [STR] * accessManagers
:: [ACCMTH] * fileManagers:: [FM] *... )

CURSOR:: (position :: INT * accintls:: [STR] * mitupders :: INT *
locks :: [STR])

FM:: (filnam:: STR * fileunion :: (seqfil:: SEQFIL +
dirfil:: DIRF[L +... ))

DIRF[L :: (title :: STR * help :: STR * eofnbr:: INT * filexpdt:: DATE
* filinisz:: INT * filsiz :: INT * reclen :: INT *
objlst:: [STR]...)

Figure 5. T*e Expressions for Some DDM Classes

fileManagers list with a file name matching the crtnam whose initial depends on whether the command was
parameter. In the pre-condition F[LE-DECLARED-OR- specified with the parameter dclnam or the parameter
NOTCREATED, the function PROJECT denoted by "." filnam. The AS function constructs a labeled union with
returns the result of the extraction of a value from a value pol representing a DIRFIL and label dirfil. The
component of a labeled record, the function IN tests final post-condition (NEW-DIRF[L) asserts a new value
whether a labeled union contains a particular label, and for the fileManagers component of the global identifier
the function IS extracts a value from a labeled union. .S..

The first four post-conditions (RECLEN-UPDATE, An important aspect of our approach is that depen-
EOFNBR-UPDATE, FILEXNSZ-UPDATE, and dencies among commands are stated declaratively
MAXARNB-UPDATE) assert values for components of through pre- and post-conditions. A dependency exists
a DIRFIL object.5 The LRCREATE function builds a when a pre-condition can be satisfied by post-conditions
labeled record with a label reclen and a value equal to of another command. For example, it is possible to
that of the command parameter reclen. The express the constraint that a file can be opened only if it
LRAPPEND function extends a labeled record with has been declared, or the constraint that a credit can be
another label/value pair. In conditions EOFNBR- issued only if a cheque has cleared. In the case of the
UPDATE through MAXARNB-UPDATE, the result of DDM, the declare file command (DCLFIL) must precede
LRAPPEND is assigned to the local identifier pol. The a CRTDIRF command if the CRTDIRF uses a declare
next two post-conditions (FILNAM-UPDATE and name. The dependency can be inferred by comparing the
FILEUNION-UPDATE) assert new values for an FM post-conditions of DCLFIL with the pre-conditions of
object. The function IF returns a new labelled record CRTDIRF.
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global identifiers
a :: AGENT; s :: SERVER
local variables
prl :: DCLF[L; pr2 :: FM; pol :: DIRE[L; ...; po14 :: FM
pre-conditions
-- conjunction of conditions
F[LE-DECLARED-OR-NOTCREATED:

((a.dclnamls CONTAINS prl) AND (prl.dclnam = (IS crtnam dclnam)))
OR (NOT ((s.fileM;inagers CONTAINS pr2) AND

(pr2.filnam = (IS crtnam filnam))))
post-conditions
-- conjunction of conditions
RECLEN-UPDATE: pol = LRCREATE (reclen: = reclen)
EOFNBR-UPDATE: pol: = (LRAPPEND pol eofnbr 1)
FILEXNSZ-UPDATE: pol:= (LRAPPEND pol filexnsz NIL)
MAXARNB-UPDATE: pol: = (LRAPPEND pol maxarnb 0)
... -- post-conditions to set default values for other DIRFIL variables
F[LNAM-UPDATE: IF (IN crtnam dclnam)

THEN p02= LRCREATE (filnam := prl.filnam)
ELSE p02= LRCREATE (filnam := (IS crtnam filnam)

FILEUN[ON-UPDATE : p02 := LRAPPEND p02 file (AS pol dirfil))
-- Add a new FM to the server variable fileManagers.
-- The ':' is the list constructor function.
NEW-DIRF[L: s:= LRREPLACE s fileManagers (p02: s.fileManagers)

Figure 6. Pre- and Post-Conditions of CRTDIRF

As illustrated, the CSL provides a declarative way to object-oriented programming. We then present the
precisely describe structural and behavioral aspects of incremental definition mechanism and browsing tools
commands (in our example, the DDM command building on the example from the previous subsection.
CRTDIRF). The CSL specifications should convey much
more information to architects and implementors than The problem addressed here is the complexity of com-
command help text alone. Pre- and post-conditions for mand usage. This complexity is due to a large number of
large-scale specifications such as the DDM will be com- inter-dependent parameters, each having subtle side
plex. This contrasts with most examples where formal effects. For example, CRTDIRF has a dozen para-
specifications are rather simple such as for push and pop meters. Other commands such as OPEN have subtle
for stacks or insert and delete for queues. A source of dependencies among parameters. Similar complexity can
complexity in commands not depicted so far in this be found in the commands of other large specifications
section is the number and dependencies among para- such as the UNIX operating system. It was our convic-
meters. Subsection 4.2 presents some modeling and tion that complexity can be managed with proper abstrac-
software tools to manage this complexity. An important tion. Our incremental specification technique initially
advantage of the CSL is that it is amendable to auto- focuses on the smallest part of a command, i.e., the
mated reasoning. Subsection 4.3 presents two automated behavior of the command with only the required para-
reasoning tools for the CSL. meters. Complexity in behavior is introduced through the

addition of optional parameters. However, behavior
4.2 Incremental Definition and changes from optional parameters are not always mono-

Browsing Tools tonic as the presence of an optional parameter call alter
the default effect.

We now describe two tools that help to manage the
complexity of command specifications. We discuss the In general, a command can be viewed as a collection of
nature of the complexity of commands and the relation- behaviors, one for each valid combination of parameters,
ship of command lattices to incremental overloading in controlled by a case statement to select the appropriate
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behavior based on the actual combination of parameter ties of commands do not constitute a lattice.
values. In the CSI, a behavior corresponds to a collec-
tion of pre- and post-conditions for a combination of Command lattices extend incremental overloading of
parameters. An obvious problem with this interpretation object oriented programming in two aspects. First, the
is the number of individual behaviors that must be de- code sharing in incremental overloading is between a
fined. In the worst case, the number of behaviors is the subclass and the ancestor classes on one path while code
size of the powerset (set of all subsets) of a command's sharing in command lattices involves multiple parents.
parameters. However, the worst case or anything near Second, code sharing for incremental overloading is total
the worst case is unacceptable because the command and procedural. If there is any undesirable effect from
specifications would be too long to write and understand. an ancestor's code, the code in the subclass must override
To be manageable, a command must be completely it. Overriding is difficult because the code is ptocedural
described by combinations of a small set of behaviors and the programming environment does not usually show
from which all possible cases can be derived. The burden the shared code. In contrast, sharing in command lattices
of command specification can then be reduced because is explicit through named pre/post-conditions.
behaviors can often be shared among the set of minimal
behaviors. We have implemented two tools that support the defini-

tion of minimal command trees, inheritance and over-
We formalize these notions by introducing the concepts riding of pre/post-conditions: syntax directed editors for
of a command lattice and a minimal command tree.6 A pre/post-conditions and the browsers for command
command lattice is a set of parameter subsets partially lattices. Figure 7 displays the command definition pane
ordered by set inclusion with a least upper bound and for CRTDIRF. The left subpane lists the command
greatest lower bound: Each node of a command lattice components that can be defined. Generally, a user
is a parameter subset associated with a collection of proceeds by defining the minimal command tree in two
pre/post-conditions that describes its behavior. The root steps. First, the parameter names and types are specified
of the lattice is the required parameters, and the terminal and divided into required parameters (root of the com-
node is the set of all parameters. mand tree) and optional parameters. Second, the user

completes the minimal tree by defining rules among
A minimal command tree is a sub-graph of the command optional parameters using an AND/OR notation. The
lattice that contains the same root node and satisfies two resulting minimal command tree is checked for disjoint-
properties: disjoint, and complete. It is defined as ness and completeness.
follows:

Pre/post-conditions are specified for nodes of the mini-
Complete: U (unique(D) = TERM mal command tree. The user selects parameters from

1... N the middle panes and then pulls down a menu to define,
delete, or browse pre/post-conditions for the given

Disjoint: n (unique(i), unique(i)) 0 combination of parameters. Only valid combinations of
V i j i n TREE,i+j parameters as defined by the minimal command tree can

be selected. Pre/post-conditions from ancestor nodes are
where inherited. The user needs only to define new and over-

TERM is the terminal node in the command lattice, ridden pre/post-conditions. Overriding is indicated by
TREE is the set of N nodes in the minimal com- defining a condition with an identical name as an in-

mand tree, herited condition.
unique(i) is the unique parameters in node i

= (PARAM(i) - PARAM(j)), j = PARENT(i), Pre/post-conditions are defined with a syntax directed
PARAM(i) is the set of parameters of node i, and editor. Figure 8 displays the completed pre-condition
PARENT(i) is the parent of node i. FILE-DECLARED-OR-NOTCREATED for CRTDIRF.

To avoid precedence rules and parentheses, the editor
The behavior of a node in the minimal tree is defined as supports prefix construction of expressions. The user
the union of the behaviors of the node's parent, the new selects tokens from a menu of term types. In Figure 8,
pre/post-conditions of the node, and the overridden note NOT with one argument required and AND with
pre/post-conditions of the parent. Since the behavior of two arguments required. Depending on the term type
the parent node can be inherited, only the new and chosen, the editor may prompt for another input or
overridden behavior need be specified. It must be noted display another menu of options. For example, if
that the command lattice is a lattice of the structural PROJECT is chosen and the user selects a variable, the
properties of commands and that the behavioral proper- editor prompts for the component in the labeled record
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env irn crtnam : : CRINAM )he rules are:
help reclen :: INT OR aritg -> 11
localvars filinisz :: INT
post reclencl :: RECLENCL
pre recdalcp :: RECDELCP
rules stgcls :: STGCLS
tgpe dupfilop :: DUPFILOP

f i lexn=:: FILEXHSZ
fitmaxex :: INT
alcintex : : ALCINIEX
filexpdt :: DATE
filcls :: FILCLS
title :: STRING

List of Reg Parameters
alciniex :: ALCIMIEX
dupfi lop : : DUPFILOP
filcls :: FILCLS
f i lexnsz : : FILEXMSZ
filexpdt :: DATE
filinisz : ' lift
fi lmaxex :: INT
recdelcp :: RECDELCP
reclenc l : : RECLENCL
stgcls :: SIGCLS
title :: STRING

List of Opt Parameters

Figure 7. Modify Browser for CRTDIRF

Definition Co&,]plate
The Current depth of the defn is 1
The Current sibling level of the defn is  
FILE-DECLARED-OR-NOTCREATED :
OR arity -> 2
AND arity -> 2
CONTAINS arity -> 2

PROJECT arity -> 1
a. dclnauls :: IDCLFIL]

pr2 :: DCLFIL
EQUAL = aritu -> 2

PROJECT aritg -> 1
pr2..dclnam : : STRING

IS arity -> 1
crtnats.dclnam : : STRING

NOT arltv -> 1
AND arity -> 2

CONTAINS aritg -> 2
PROJECT ar ltv -> 1

s. f ilettanagers : : [FM]
pri :. Fri

EQUAL = arity -> 2
PROJECT arity -> 1

pri.filnam :: STRING
IS aritg -> 1

crtnam. fi lnals : : STRING

Figure 8. Structure Editor for FILE-DECLARED-OR-NONCREATED
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envirn Root

localvars
parameters

filinisz reclencl recdelcp stgcls dupfilop fitpost
pre
rules
tupe Current Location

Decrement 11==Imr...il.....
 he Following is derived from the root ...
This command creates a direct file on the target
system. Space for the new file can be optionally allocated
bv the target eystei. A new member of type DIRFIL
is added to the server's variable fileManagers.
The reclen variable is updated from
the command' s parameters. The other parameters
are set to MIL or default values.
The Following is derived from stgcls ...
The storage class (stgcls) Is updated in the
DI RFIL member of the fileManagers list of
the SERVER.
The Following is derived from filinisz ...
If filinisz = 0, then the eofnbr variable of DIRFIL
is set to 1. Otherwise, eofnbr is set to filinisz
+ 1.

Figure 9. Browser for CRTDIRF

type of the variable. When the user selects PROJECT and the TST are derived from denotational semantics
from the term type menu and the variable prl from (Scott and Strachey 1971) and A-calculus (Church 1941),
which to project, the user is presented with a menu of the axiomatic semantics (Hoare 1969), and strongly typed
components of DCLFIL: the type of prl. object oriented languages (Mannino, Choi and Batory

1990).
A user may view the pre/post-conditions for any node of
a command lattice using the Command Browser tool. 43.1 The Type Checker
Figure 9 displays a command browser for CRTDIRF.
The right pane contains a graphic representation of the The TC is a deductive reasoning tool using facts and
command lattice. Initially the lattice is set to the root axioms about set membership and inclusion (subset).
parameters. A user may add/remove optional para- Recall that types are sets constructed from basic sets such
meters by selecting the increment/decrement buttons. as integers and structured sets such as the set of all lists
Only valid combinations of parameters may be selected. of integers. Facts about set membership and inclusion
For each parameter selected, an arc is added to the are represented by two constraint sets:
graph. After selecting a combination of parameters, the
corresponding collection of pre/post-conditions can be • The assignment set containing associations of an
viewed by selecting a command attribute from the left identifier with a type expression denoting that
pane. bindings of the identifier are members of the set

denoted by the type expression
43 Automated Reasoning Tools

• The restriction set containing inclusion relationships
We have developed two tools, the type checker (TC) and among type expressions.
the target system tracer (TST) to demonstrate the value
of automated reasoning for formal specification lan- The latter set contains the constraints that define depen-
guages. The theoretical basis for the design of the TC dencies among the parameters of a command. Given a
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collection of type constraints, a type inference system can 431 The Target System Simulator
answer two kinds of questions using rules of inference.
First, a type inference system can determine whether an The TST complements the TC. The TC ensures that
expression is "well-typed." Second, a type inference expressions have meaningful values, but it does not make
system can deduce unknown type information such as inferences about pre/post-conditions. The TST simulates
identifiers with unspecified types and sub-expressions. the effects of pre/post-conditions and describes the state
Furthermore, type inference systems are usually designed of the target system. Because commands cannot be
to deduce the principal or most general type. executed, the TST operationalizes the execution of com-

mands by checking whether pre-conditions are satisfied
The TC can be used in two contexts for expressions in and subsequently asserting post-conditions. The ability to
the CSL. First, when a user type checks an instantiated simulate pre/post-conditions can benefit both implemen-
command, the type inference system tells whether the tors and architects of any large scale specification.
command is well-typed. For example, the type inference Implementors can compare the execution trace of their
system gives the replies shown in Figure 10 for instantia- system against the abstract target system. Architects can
tions of CRTDIRF. increase their understanding of pre/post-conditions and

discover subtle dependencies among commands.
Since the first example in Figure 10 is well-typed, the TC
responds with the known range type of CRTDIRF. The Figure 12 illustrates tracing of CRTDIRF and OPEN
type identifiers in the type expression can be expanded on command instances. The CRTDIRF command succeeds
demand. The second example is not well-typed because as shown in Figure 12. The pre/post-conditions are listed
the reclen parameter is required. The TC ascertained first followed by a trace of state changes in the abstract
that the absence of this parameter did not satisfy the target system. In this case, the value of s.fileManagers
inclusion constraints given for CRTDIRF (Figure 3). has changed where "s" represents an instance of

SERVER. The old value was an empty list and the new
The second context for the TC is for pre/post-conditions. value is a list with a single labeled union value denoted
Here, a user wants to check whether a condition is well- by [AS dirfil ...]. The OPEN command fails because the
typed and the types of the identifiers used in the condi- pre-condition FILE-DECLARED was not satisfied.
tion. For the pre-condition, FILE-DECLARED-OR-
NOTCREATED (repeated below in Figure 11), the TC To investigate the failure of the OPEN command, one
infers the type of the entire condition and the types of can display the pre-condition and examine the state of the
the identifiers, prl and pr2. It is not necessary for the target system as shown in Figure 13. FILE-DECLARED
user to explicitly define the types of identifiers. failed because the dclnamls component of the AGENT

instance "a" is empty.
The details of the TC are beyond the scope of this paper.
For a detailed treatment of type inference including the Internally, the TST relies on the inference engine of the
rules of inference, complexity analysis, and formal seman- Smalltalk/V286 (Digitalk 1988) Prolog class. Pre/post-
tics consult Choi, Mannino and Tseng (1990). conditions specified by an architect are automatically

crtdirf(crtnam:= 'filel' * reclen:= 100 * filexpdt:= (month:= 2 *
day : = 20 * year : = 91)) :: (cmdcmprm::CMDCMPRM + errorcmdrpy:12)
RESTR_BY t2 2 (agnprmrm :: AGNPRMRM * cmdathrm :: CMDATHRM *
cmdnsprm :: CMDNSPRM * dclnfnrm:: DCLNFNRM * dupfilrm:: DUPF[LRM *

is well typed
crtdirf(crtnam : = 'filel' *

filexpdt:= (month : = 2 * day : = 20 * year : = 91))
is ill-typed.

Figure 10. Type Inference for Instantiations of CRTDIRF
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FILE-DECLARED-OR-NOTCREATED:
((a.ddnamls CONTAINS prl) AND (prl.dclnam = (IS crtnam dclnam)))
OR (NOT ((s.fileManagers CONTAINS pr2) AND

(pr2.filnam = (IS crtnam filnam))))

The result is:
FILE-DECLARED-OR-NOTCREATED:: BOOL
prl:: DCLFIL; pr2:: FM

Figum 11. The Pre-Condition FILE-DECLARED-OR-NOTCREATED

Input to the Target System Tracer is:
crtdirf(crtnam: = 'file2' * reclen : = 50)

The outcome is...
Testing Pre-Conditions: FILE-DECLARED-OR-NOTCREATED
Asserting Post-Conditions: RECLEN-UPDATE; MAXARNB-UPDATE; EOFNBR-UPDATE; ...;
F[LEUNION-UPDATE; NEW-DIRFIL

All post-conditions asserted
Pre-conditions satisfied -- Post-conditions asserted.

State Tracing for Command: CRTDIRF
new value of s.fileManagers:
file := [ AS dirfil (filsiz:=0 * objlst:=0 * stgcls:=NIL * reclencl:=NIL * recdelcp:=NIL * filmaxex:-0 *
filexnsz: =0 * title: = NIL * eofnbr: =1
* maxarnb:=0 * reclen:=50) * filnam:='file2')]

old value of s.fileManagers: 0

Input to the TST is :
open(dclnam: = 'alias2' * accintls: = 'R' * accmthcl : = 'DIR')

The outcome is...
Testing Pre-Conditions: FILE-NOTOPENED; FILE-DECLARED

Pre-condition F[LE-DECLARED failed,

Figure 12. Command Tracing for CRTDIRF and OPEN

F[LE-DECLARED: (a.dclnamls CONTAINS prl) AND (prl.dcinam = dclnam)
The agent is: title:=NIL * dclnamls:=0 * opnfills:=[] * path:=N[L

Figure 13. Trace Back of Cause or Failure for OPEN
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translated into Prolog clauses and Prolog's inference fitting the current five levels of specification. More likely,
engine checks pre-conditions, binds variables, and asserts IBM will identify a future level of the specification and
post-conditions. A detailed description of the augmented apply our approach in a pilot study. A second problem is
Smalltalk/V286 Prolog structures and predicate defini- the cost to apply our approach. There will be additional
tions that correspond to the basic data types and opera- software development costs to make our software tools
tors of the CSL, translation and code generation algo- production quality. Architects and implementors will
rithms is given in Mannino, Choi and Rathnam (1991). require significant training in formal methods. In addi-

tioni the formal methods will probably require more time,
even after training is completed.It is more difficult to be

5. EXPERIENCES, CONCLUSIONS, AND precise with our approach than imprecise with a text
DIRECTIONS FOR FUTURE RESEARCH specification. Overcoming resistance to change and

additional costs poses a significant challenge, but we hope
The software tools described in Section 4 have been that the long term benefits will outweigh these costs.
implemented in a mixture of Smalltalk/V286 and
Smalltalk/V286 Prolog. The TC was implemented in This work is part of our long term interest in formal
Smalltalk/V286 Prologi the other tools including the TST methods and object-oriented modeling and their applica-
code generator, syntax directed editors, command brow- tion to large scale specifications such as the DDM. We
ser, and direct manipulation graphical user interface were are continuing to refine and extend the prototype. Some
implemented in Smalltalk/V286. Extensive context important extensions of the CSL and prototype include
sensitive help is provided for most functions in the proto- class constraints, proof checking tools for pre/post-condi-
type. The prototype is in its third version and the Small- tions, test case generation, and versions. We feel that the
talk/V286 code is approximately 15,000 lines, 250,000 refinement and extension of our approach can contribute
bytes, 35 classes, and 700 methods. to the improved productivity of architects and implemen-

tors of software systems with complex command struc-
Our experience with the prototype, though limited to a tures.
subset of DDM commands, has been positive. We have
defined six commands comprising more than 70 condi- 6. ACKNOWLEDGMENTS
tions. Many of these conditions, such as those for
CRTDIRF, were complex and required careful analysis. This research was supported in part by a grant from IBM
In the process of modeling the commands, we discovered Corporation.
that a specification language has to be very expressive to
be useful. Limiting the expressive power by removing
disjunction, negation, or selected functions makes rea- 7. REFERENCES
soning more efficient but renders many interesting condi-
tions practically impossible to express. Cardelli, L.,and Wegner, P. "On Understanding Types,

Data Abstraction, and Polymorphism." ACM Computing
Since our focus is on u<ing the CSL to specify a large and Surveys, Volume 17, Number 4, 1985, pp. 471-522.
complex information system, we extended the syntax and
expressive power of the CSL in a number of ways. For Choi, I.; Mannino, M.; and Tseng, V. "Type Restrictions
example, we incrementally extended the CSL with some and Method Interfaces in Object-Oriented Database
(non-primitive) functions including LRAPPEND (labeled Programn*ng." IFIP TC2 Working Conference on Data-
record append), LRREPLACE (labeled record replace) base Semantics: Object Oriented Databases, July 1990,
and IF-THEN-ELSE. We are .now convinced, as elo- Windermere, United Kingdom.
quently argued by Doyle and Patil (1989), that "expressive
power is the key for large-scale specifications." Efficient Choi, I.; Mannino, M.; and Tseng, V. "Graph Interpreta-
forms of automated reasoning should be developed to fit tion of Methods: A Unifying Framework for Polymor-
the desired level of expressive power rather than res- phism in Object-Oriented Programming." OOPS Messen-
tricting the expressive power to available forms of auto- ger, ACM SIGPLAN, Spring 1991.
mated reasoning.

Church, A. 'The Calculi of Lambda-Conversions:
Our experience with the prototype has also revealed the Annals of Mathematical Studies, Number 6, Pfuseton,
problems of transferring our technology. One problem is New Jersey: Princeton University Press, 1941.
that IBM has been using the current specification for
several years and a number of DDM implementations Demers, R. "Distributed Files for SAA." IBM Systems
have been completed. It will be difficult to justify retro- Journal, Volume 27, Number 3, 1988, pp. 348-361.

124



Digitalk Inc. Smalltalk/I'286 Reference Manual. Los Mannino, M.; Choi, I. J.; and Rathnam S. "The Design
Angeles, California, 1988. and Implementation of Automated Reasoning Tools for

the Distributed Data Management Architecture."
Dijsktra, E. W. A Discpline Of Plog,amming. Engle- Working Paper, Department of Management Science and
wood Cliffs, New Jersey: Prentice-Hall, 1976. Information Systems, The University of Texas at Austin,

February 1991.

Doyle, J., and Patil, R. "Two Dogmas of Knowledge
Representation." Technical Report Number MIT/LCS/ Middleburg, C. "VVSL: A Language for Structured
TM-387.b, Laboratory for Computer Science, Massachu- VDM Specifications." Fonnal Aspects of Computing,
setts Institute of Technology, September 1989. January-March 1989, pp. 115-135.

Garland, S., and Guttag, J. "An Overview of LP, The Nix, C., and Collins, B. "The Use of Software Engi-
1-arch prover: In Proceedings of the Third International neering, Including the Z Notation, in the Development of
Conference on Rewming Techniques and Applications, CICS." Quality Assurance, September 1988, pp. 103-110.
Chapel Hill North Carolina, 1989, pp. 137-151.

Scott, D., and Strachey, S. "Towards a Mathematical
Guttag, J.; Horning, J.; and Wing, J. "The Larch Family Semantics for Computer Languages." P>occeedings of the
of Specification Languages.' IEEE Software, Volume 2, Symposium on Computers and Automata, 21, Microwave
Number 5, September 1985, pp. 24-36. Research Institute Symposia Series, Polytechnical Insti-

tute of Brooklyn, 1971.
Hall, A. "Seven Myths of Formal Methods." IEEE
Sof?ware, Volume 7, Number 5, September 1990, pp. Sheard, T., and Stemple, D. "Automatic Verification of
11-19. Database Safety: ACM Transactions on Database Sys-

tems, Volume 14, Number 3, September 1989, pp.
Harel, D. "On Visual Formalisms." Communications Of 322-368.
the ACM, Volume 31, Number 5, May 1988, pp. 514-530.

Spivey, J. 77:e Z Notation: A Reference Manual. Engle-
Hoare, C. A. R. 'An Axiomatic Basis for Computer wood Cliffs, New Jersey: Prentice-Hall, 1989.
Proramming." Communications of the ACM, Volume 12,
Number 10, October 1969, pp. 576-580. Wing, J. 'A Specifier's Introduction to Formal Methods."

IEEE Computer, Volume 23, Number 9, September 1990,
Hoare, C. A. R.; Hayes, I. J.; Jifeng, He; Morgan, C. C.; pp. 8-24.
Roscoe, A. W.; Sanders, J. W.; Sorensen, I. H.; Spivey,
J. M.; and Sufrin, B. A. "Laws of Programming." Com- Winograd, T. "Beyond Programming Languages." Com-
munications of the ACM, Volume 30, Number 8, August munications of the ACM, Volume 22, Number 17, July
1987, pp. 672-686. 1979, pp. 391-401.

IBM Corporation. Distributed Data Management Level 8. ENDNOTES
2.0 Architecture Reference. lanuary 1989.

1. The meaning of the word server in the context of this
Jacob, R. J. K. "Using Formal Specifications in the paper must not be confused with the more popular
Design of a Human-Computer Interface." Communica- meaning of the same word in the term file server.
tions of the ACM, Volume 26, Number 4, April 1983, pp.
259-264. 2. Similarliy, if a system or mechanism is denoted by S

and the desired post-condition by R, then we denote
Jones, C. B. Systematic Software Development Using the corresponding weakest pre.condition by wp(S,R).
I/DM. Englewood Cliffs, New Jersey: Prentice-Hall, If the initial state satisfies wp(S,R), the mechanism is
1986. certain to establish the eventual truth of R. Because

wp(S,R) is the weakest pre-condition, we also know
that if the weakest precondition does not satisfy

Mannino, M.; Choi, I. J.; and Batory, D. "The Object- wp(S,R), this guarantee cannot be given (Dijkstra
Oriented Functional Data Language: IEEE Transactions 1976). Hence, if <P {S} Q> can be proved, then
on Software Engineering, Volume 16, Number 11, Novem- the familiar logical symbol for theoremhood
ber 1990. ] - P {S } 0 can be used (Hoare 1969).

125



3. For a more detailed discussion of the CSL, consult 6. Note that the use of the qualifier minimal refers to
Mannino, Choi and Rathnam (1991) where a com- the fact that the entire command lattice can be
plete syntax is given. generated from this command tree. Hence, the

structure of the minimal command tree is not mini-
mized in the optimization sense. The usage is analo-

4. Type expression A is a subtype of B. (A s B) means gous to the usage of the word in database normali79-
that A denotes a subset of B. For labeled record tion in which a "minimal" cover is computed.
types, LR' s LR if and only if LR' contains the labels
of LR and each type in LR' associated iwth a label in 7. The least upper bound is the set of required parame-
LR is a subtype of the corresponding type in LR. ters of a command that contains the smallest set of

behaviors. The greatest lower bound is the largest
set containing all the possible required and optional

5. The operator " = ' denotes equality, the operator ": = ' parameters of a command. Consequently, it contains
denotes logical , ignment. the largest set of behaviors.
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