
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1990 Proceedings International Conference on Information Systems
(ICIS)

1990

ON THE ECONOMICS OF THE-SOFTWARE
REPLACEMENT PROBLEM
Dhananjay K. Gode
Carnegie Mellon University

Anitesh Barua
Carnegie Mellon University

Tridas Mukhopadhyay
Carnegie Mellon University

Follow this and additional works at: http://aisel.aisnet.org/icis1990

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1990 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Gode, Dhananjay K.; Barua, Anitesh; and Mukhopadhyay, Tridas, "ON THE ECONOMICS OF THE-SOFTWARE
REPLACEMENT PROBLEM" (1990). ICIS 1990 Proceedings. 26.
http://aisel.aisnet.org/icis1990/26

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301364074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1990?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1990?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1990/26?utm_source=aisel.aisnet.org%2Ficis1990%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ON THE ECONOMICS OF THE-SOFTWARE
REPLACEMENT PROBLEM

Dhananjay K. Gode
Anitesh Barua

Tridas Mukhopadhyay
Graduate School of Industrial Administration

Carnegie Mellon University

ABSTRACT

Software maintenance constitutes a significant fraction of the software budget. The cost of
maintaining old applications has been escalating and this trend is likely to continue in the foreseeable
future. The study of software maintenance strategies has become important to both researchers and
practitioners in Information Systems. While there is a rich literature on the technical aspects of
software maintenance, research on the economics of maintenance is in its infancy. In particular, the
tradeoffs between maintaining and rewriting old software have not been investigated from a theoretical
standpoint. In this paper, we present an economic model of the software replacement problem.
Based on available empirical evidence, we hypothesize that, with frequent modifications and
enhancements, the complexity of software increases rapidly. This deterioration of the code leads to a
sharp increase in the maintenance cost. Thus, there may exist a time when it is optimal (in an
economic sense) to rewrite the system, which reduces the system complexity and the subsequent
maintenance cost. The proposed model allows us to compare the economics of various rewriting
strategies and to determine the optimal rewriting point(s). Some interesting results with implications
for the systems manager are obtained from the analysis. These include the impacts of system size,
structuredness of the underlying technology, and the availability of superior technologies upon the
rewriting point(s) and life cycle costs. A numerical example is provided to demonstrate the
applicability of the model.

1. INTRODUCTION devoted to adaptive and perfective maintenance (Lientz,
Swanson and Tompkins 1978). Several factors contribute

The study of software maintenance and replacement to the magnitude of this maintenance problem. Rapidly
strategies is an important topic for both researchers and changing business environments and user needs neces-
practitioners in Information Systems. The cost of main- sitate continuous modifications and enhancements of the
taining software has been escalating rapidly (Kemerer application software. With modification/enhancements,
1987; Banker, Datar and Zweig 1989) and the trend is the number of control flows and inter-module interac-
likely to continue in the foreseeable future. Empirical tions in the system increase over time, leading to higher
evidence (Lientz, Swanson and Tompkins 1978; Swanson system complexity. Often, the changes made to the
and Beath 1989) indicates that a major fraction (between system are not integrated well in the overall design
50 and 80 percent) of the software budget is allocated to leading to a loss of clarity. Sometimes the changes made
the maintenance of existing software. With an estimated are not adequately documented and naming conventions
annual expenditure of about $100 billion on software in are not strictly followed. Additionally, small changes in
the United States alone (Boehm 1987), it is imperative the task environment may require significant modifica-
that additional effort is directed to study the underlying tions in the system structure. As a result, the initial
economics of software maintenance and to analyze ways correspondence between the system environment and
of reducing this staggering cost. structure is adversely affected due to maintenance.

System modifications may also have ripple effects which
According to the classification scheme proposed by make it difficult to determine all possible impacts on the
Swanson (1976), maintenance activities are termed as existing code. Since the system testing after a "small"
adaptive, perfective and corrective. It has been estimated change may not be as rigorous as it is at the time of
that as much as 75 percent of maintenance work is initial development, the maintenance performed on a

159

system may introduce errors in the system. In summary, known constant arrival rate of maintenance requests.
there is a degradation in the system structure because of Additionally, the impact of system size upon the rewriting
continuous modification/enhancements. The maintain- time(s) was not considered in the model. Another
ability of software decreases rapidly due to this deteriora- limitation is the assumption of homogeneous maintenance
tion of system structure (Curtis et al. 1979; Kafura and requirements. In this paper, we generalize and extend
Reddy 198D, leading to a sharp increase in maintenance the basic model proposed by Barua and Mukhopadhyay.
cost. Starting with a convex maintenance cost function2 and any

arrival pattern, we derive the optimal rewriting schedule
Based on the notion that structured code is cheaper to over the planning horizon. The effect of initial system
modify and enhance, structured programming is often size on rewriting is addressed; we find that the opera-
suggested as a means of reducing software maintenance tional life of the original system decreases with an in-
cost. While there is some evidence that structured crease in the initial system size. We also investigate the
programs are easier to maintain, it is estimated that impact of the structuredness of the technology upon the
approximately 75 percent of the existing software base is optimal rewriting time(s). For multiple rewrites of the
not structured (Schneidewind 198D. Moreover, as a software, we show that each rewriting point occurs earlier
result of frequent modifications and enhancements, it is for more structured technologies. Next we study the
very difficult and excessively costly to maintain the initial problem of switching to new ("superior") technologies,
structure. As a result, regardless of the initial structure, and compare the rewriting times for old and new techno-
programs are expected to become more and more com- logies.
2.plex due to changes in user needs and business environ-
ments (Barua and Mukhopadhyay 1989). The paper is organized as follows: The characteristics of

the problem setting to be analyzed are described in
We present an economic model for analyzing the trade- Section 2. In Section 3, we develop the analytical model
offs between maintaining and rewriting old software. The of software replacement, and derive rewriting strategies
thesis of our paper is that there may exist a time when it under various conditions. An application of the model is
is optimal (in an economic sense) to rewrite the system, illustrated through a numerical example in 3.4. We
which may result in a reduction of complexity and subse- summarize our plans for future research in Section 4.
quent maintenance cost. The questions addressed by our Section 5 contains concluding comments.
research include the following: Can maintenance cost be
reduced by rewriting the software? Is it optimal to 2. CHARACTERISTICS OF THE PROBLEM
rewrite more than once within a specified planning SETTING
horizon? Under what conditions is it better to switch to
a "superior" technology for the system rewrite?i In this section, we describe the elements of our software

replacement model.
There is a rich body of literature (for a summary, see
Kemerer 1987; Banker, Datar and Zweig 1989) on the 2.1 Technology Characterization
technical aspects of software maintenance (such as soft-
ware metrics or determinants of complexity). However, In our model, the term technology is used to denote the
relatively few studies have focused on the economics of programming languages and environment used to develop
software maintenance. While cost estimation for software and maintain software. According to Bergland (1981),
maintenance has received some attention (for example, although the technology affects the program structure,
see Boehm 1981), the economic ramifications of various development process and development support tools, its
maintenance and replacement strategies have not been impact on program structure is the most important
investigated. A recent survey by Swanson and Beath determinant of the life-cycle costs. Thus, in our model,
(1989) indicates that replacement of old systems is a technology is primarily characterized by its "structured-
significant activity, thereby emphasizing the need to study ness."
policies that can guide the replacement process. This
paper is an attempt toward the development of a formal To analyze the role of structuredness in maintenance
theory of software replacement with a view to generating effort, it is important to understand the maintenance
empirically testable propositions. process itself. According to Yao and Collofello (1980),

maintenance activities may be divided into four phases:
Barua and Mukhopadhyay (1989) developed a simple
deterministic model of software maintenance. Their 1. Understanding the existing code: The effort required
model is restrictive due to the assumption of specific is dependent on complexity of the code, documenta-
functional forms for various cost components and a tion and self-descriptiveness.

160

2. Implementing the desired change: The extensibility tional partitioning, then the system has lower connectivity
of the program is the critical attribute in this phase. and hence the ripple effects are expected to be less.

3. Analyzing the impact of the change on other parts of Thus, structuredness covers various important aspects of
the program: The stability of the system, i.e., resis- technology and has a significant impact on software costs.
tance to the amplification of changes through ripple For two technologies A and B, we consider A as supen-or
effects, is important in this phase. Programs with to B if a system developed with A is more structured
low coupling have higher stability. than the one developed with B: A superior technology

results in more structured systems and is expected to
4. Testing the system for reliability. reduce the maintenance cost. However, no a priori

assumptions are made regarding the initial acquisition
Thus, there is substantial support in favor of the argu- and learning costs associated with switching to superior
ment that structured code is easier to maintain. How- technologies. Such costs may make it infeasible to
ever, the degree to which code can be structured depends rewrite the system with a new technology.
critically on the inherent structuredness of the technology.
The impact of the structuredness of the technology can
be studied at the code, module and system levels (Berg- 2.2 Software Costs
land 1981).

The total software cost incurred during a given time
Code-level concepts involve abstraction, communication, period has two components:
clarity and control-flow. Abstraction refers to the ability
of a technology to make the low-level hardware and (i) Cost of maintaining the software.
system software details transparent to the users. Thus,
Fortran has a higher level of abstraction than an assem- (ii) Rewriting cost (if the system is rewritten during
bly language. Programs written using a higher level the period of interest).
language require fewer changes for functional modifica-
tions. Moreover, the changes are easier to implement. If As discussed earlier, the system structure decreases due
a technology permits easier documentation, and if pro- to frequent modifications/enhancements over time (Gur-
grams developed using the technology are self-descriptive baxani and Mendelson 1987; Lehman 1982). The system
(possibly because of syntax and naming conventions), structure depends on the structuredness of the technology
then it is said to have higher communication abilities. used in developing the system; for a given number of
Clarity and control flow aspects of structuredness involve enhancements, the system structure is expected to deter-
various program control structures available and the ease iorate less for a system written with a more structured
with which they can be used and understood. For exam- technology (Bergland 1981).
ple, programs developed in Pascal do not need to use the
"GoTo" statements as compared to several other lan- The deterioration of the code makes it progressively
guages and are thus easier to understand. difficult and costly to maintain the system (Curtis et al.

1979; Kafura and Reddy 1987). Thus, the cumulative cost
Module-level constructs deal with issues of cohesion, of maintaining the software may be considered as a
coupling, complexity, correspondence with the task function of the number of modifications/enhancements
environment and correctness. More structured techno- and the structuredness of the technology. This cost is
logies permit earlier modularization by allowing indepen- represented by C(nis), where m is the number of units of
dent procedures, local variables for the procedures and maintenance performed on the system,4 and s represents
parameterization. In some programming environments, it the structuredness of the technology.
is possible to test each module for correctness separately.
This makes the task of testing large programs much The marginal maintenance cost is positive and increasing
simpler with structured technologies. because the system complexity gets compounded rapidly

due to patchup maintenance; i. e.,
The system-level concepts include consistency, connec- 81((m , 0tivity, optimization and packaging. If the programs

5 1 » 4 2'"2

developed using a particular technology have a consistent
structure even if they have been developed by different (the maintenance cost is convex in m)
programmers, then it is easier to coordinate the efforts of
the team and maintain the program structure in spite of As mentioned above, increased structuredness of the
personnel turnover. If the technology encourages func- technology used should lead to less deterioration in

161

system structure and hence reduce the marginal mainte- On the other hand, rewriting takes place in a relatively
nance cost and convexity. These effects are stated as unconstrained environment, where the designer can

consider the overall functional requirements and integrate8 C BC(m,s)) < 0 (decreasing marginal maintenance cost) ali the features in a structured code.5 The rewritinga,l an
effort is primarily determined by task requirements. The

0 (*Cm,s) < 0 (decrezing canvexity) rewritten system must incorporate all the features thata,l *2
have been added as a result of enhancements since the
beginning of the planning horizon. Since rewriting does
not involve modifications of the existing code, the in-

In Figure 1, the cumulative maintenance cost is shown as crease in rewriting cost is dependent on the net increase
a function of the amount of modifications/enhancements in requirements, and not the total number of mainte-
and the structuredness of the technology in Figure 1. nance jobs performed on the system. Thus the rewriting

_ cost does not increase as sharply with maintenance m as
Cul'.[alive compared to the maintenance cost. This is shown inMainlinance
Cost Figure 2 and stated as

C(m,El}

BC(m.s)) aR(mrs,¢)
4, 9„1) am am

Gs C(m.s}
R(m.5.0)

MaintenanceunilS (m)

Figurp 1. Cumulative Maintenance Cost C as a
Function of Maintenance Units (m) and

Structuredness of Technology (s)

The rewriting cost depends on the current system size
Maintcnnceunits (m)

and the technology used to rewrite the system. It is
Figure 1 Differential Impacts of Maintenance

expected to decrease with structuredness of the rewriting Units Upon Maintenance Cost C(m,s) and
technology (Bergland 1981) and increase with the current Rewriting Cost R(mis#)
size of the system. However, the current size is itself a
function of the initial size, 0, and the number of the 2.3 Planning Horizon
modifications/enhancements, m. Therefore, the rewriting
cost is denoted by R(m,s, 0), with The uncertainty and the rapid changes in the techno-

logical and business environments make it infeasible to
aR(mi.*) < 0, aR(m,5.0) , 0, aR(mA®) , 0 develop a technological plan for an infinite time horizon.8 20 mn With each new generation of information technology,

there have been dramatic improvements in the cost-
performance ratio. These improvements have changed

We note that maintenance, m, affects Con,s) and the basic design of information systems in many in-
R(m,s, 0) quite differently. The increase in maintenance stances. Thus, it becomes impossible for a system man-
cost with m is much greater than the corresponding ager to plan for an indefinite period.
increase in rewriting cost. This is explained as follows:
Since modification/enhancements are performed within A second motivation for a finite horizon is related to the
the constraints of the existing code, the effort required is dynamic nature of the required system functionality.
critically dependent on the system structure at the time of Intense competition in business environments places
change. As discussed earlier, there is a deterioration in rapidly changing demands on information systems, there-

structure with each modification/enhancement. Thus the by making it difficult to formulate very long term system
cumulative effect leads to a sharp increase in mainte- plans. Yet another potential reason for a finite planning
nance cost over time. horizon is the expected duration of the system manager's

162

involvement in the decision making process. In short,
there is ample justification for doing the cost analysis for
a finite period of time, say, [0,71. First Second

Period Period

While the system manager is likely to plan for a finite Cost

time horizon, the software cost is a function of the Maintenmcc

amount of maintenance performed on the system. This COM'
Rewritten,

necessitates a mapping between time and cumulative Syst c,11
Systemmaintenance. The mapping is dependent on whether the Rewriting Cost-

arrival of modification/enhancement requests is deter-
ministic or random. If the arrival is deterministic, say, 1 Maintanancc-_-

Cost: //per unit time, then the time horizon T can be mapped Original .* M
into a maintenance horizon M = AL where M is mea- System

Maincenance (rn)
sured in maintenance units such as function points.
When the requests arrive randomly, say, according to a Figure 3. Cost Functions for Original and

Rewritten Systemsdistribution with mean, 1, we use the same mapping
with the new interpretation that M is the expected num-
ber of arrivals in time T. In this paper, we derive the
optimal rewriting point, m*, in terms of M, with the
understanding that the optimal rewriting time, r * can be
obtained from the inverse mapping (as demonstrated in

To[al Cost wid, Rewriting m M 1the numerical example in 3.4). 1.W Cosi

HM I ..·[·87@'©I;Ii'WiTi 'RERWa)".l
3. A MODEL OF SOFIWARE REPLACEMENT

In this section, we develop an economic model for ana- \IR;21.Cgs! wi[),p}!tL .R ,yriling.

lyzing the tradeoff between maintaining and rewriting .-/
existing software. In particular, we consider two rewriting
strategies involving new (superior) and old (existing)
technologies, and study their economic consequences.
We start with an analysis of rewriting the software using .' M

M Jinlenancc (,I)the same technology with which it was originally deve-
loped.

Figure 4. Total Maintenance Cost F(m) as a
Function of Rewriting Point (m*)

3.1 Optimal Rewriting Point

Note that in this model, the initial system size, 0, the
To derive the optimal rewriting point (if any), we write technology, s, and the planning horizon, M, are assumed
the total cost as a function of the rewriting point. If the to be exogenously given. Endogenous choice of M and s
system is rewritten at m, then the total cost, denoted by are considered as an extension of the current model. In
F(m), consists of three components: the maintenance Figure 4 above, if the system is rewritten at m =0, then
cost from 0 to m, the rewriting cost at m, and the main- F(0) is given by Rms, 0) + C(M,s). The total cost for a
tenance cost from m to M. The cost components and the rewrite at M is F(M) = C(M,s) + R(M,s,$). Clearly
total cost function are shown in Figures 3 and 4 respec- m = 0 or M are not candidates for a rewriting point, since
tively. Note that the choice of a rewriting point involves the total cost with6ut rewriting (C(M;s)) is less than the
a tradeoff between the costs before and after the rewrite. cost in either of the two cases. The cost difference at
Rbwriting the system earlier decreases the rewriting and m = 0 and M is small (since R is relatively insensitive to
the maintenance costs in the first period. However, since m), and is equal to R(M,s,0) - R(O,s,0). We also note
in that case the system must be maintained for a longer that there may not exist an optimal time to rewrite the
duration in the second period, the corresponding mainte- software for a given horizon [O,M]. This is explained as
nance cost is higher. follows: Let m * be the value of m for which FOn*) is a

minimum. This can be obtained from the first order
The total cost is given by condition. However, this marginal analysis does not

consider the "fixed" component of the rewriting cost,
F(m) = C(m,s) + R(m,s,$) + C(M-m,s) R(O,s, 0). It is possible (for relatively short horizons) that

163

with this fixed component, the total cost with a rewrite at ference of the marginal costs of maintaining the rewritten
m * will exceed the cost without rewriting. If F(m *) < and the original systems. The difference must therefore
C(Ms), then an optimal rewriting point exists. Next we be positive, which requires m * to be less than M/2. A
derive a proposition relating the optimal rewriting point straightforward corollary to this proposition is that when
(when it exists) and the planning horizon M. the marginal rewriting cost is zero, the system is rewritten

at M/2.
Proposition 1: If it is optimal to rewrite the system after
m* modifications/enhancements, then m* is less than The direct dependence of m * upon M may seem restric-
M/2. tive. As stated above, there may not exist an optimal

rewriting point for short horizons. However, this sensi-
Proof: Let m * be the optimal rewriting point. Differen- tivity to the length of the pl:inning period highlights an
tiating F(m) with respect to m we get the following first important real-world aspect of software maintenance. As
order condition: noted earlier, maintenance accounts for a very high

percentage of the software budget. This is indicative of
systems being maintained for too long without being
rewritten. A possible explanation for this phenomenon is

Let X(mrs,$) = BCOn,s) * BROn,s,43 _ 8CCM-m,s) the short-term planning on the part of the software
am am am manager, whereby a system rewrite becomes economically(la) infeasible.

Next we study the impact of software technologies on
At m=m*, X(m*,s,0) = 0 system rewrite. We address the following question: How

do differences in the structuredness of the technology
affect the rewriting point? A related proposition is stated

or aCCM-mrs) _ aC(mrs) 1 below.
am .I.. am '*=m'

BR(m,s,0) 1 (lb)= Proposition 2: 77:e number of maintenance jobs per-
am 4... formed on the system before it is w,itten decreases with an

increase in the structuredness of the technology.
A solution to the above equation exists because the
marginal maintenance and rewriting costs (with respect to Proof: From equation (la), X(m :s, 0) = 0.
m) are positive, and the former is greater than the latter.

From the implicit function theorem,
To show that m * is a minimum, we take the second
derivative:

am* = _ ax(m*,s,$)/as (2a)

< - = 82 '3)'S'.m. as ax(m*,s,$,am*

FROn#,01 1 + @CCM-m,s) 3
Im...• from Equation (lc) aX(m *,s, $)arn * > 0 (2b)8»:2

4.... aml (lc)
Since the marginal maintenance cost is much greater than
the marginal rewrite cost, and since (M-m *)>m* (from

The convexity of the software costs in m implies that m * Proposition 1), we have,
is a minimum, and M-m * > m* .

ar(mts,$)&11* >0 (20

Therefore, m* <M• This is obtained from (la), where
2 2(Xm*,s) _ PCCM-m*09) , 0, and aR(m*40)asam asem asamThis proposition indicates whether it is too early or late

for rewriting a given system. The intuition behind the
result is obtained from Equation (lb): At the optimal
point, the marginal rewriting cost is equal to the dif- is small.

164

possibly reluctant to undertake the risk of replacing largeant*Therefore. - <0• and critical systems, from the perspective of the rewriting
' as cost, such systems should be replaced earlier than smaller

Accordmg to this proposition, a more structured techno- systems. However, we note that this analysis applies to
logy results in a shorter operational life of a system. This situations where optimal rewriting points exist. For a
result seems counter-intuitive because a system written large system, there may be a high fixed cost associated
with a more structured technology is expected to be less with the rewrite, which may make replacement infeasible.
complex for a given number of modifications/enhance-
ments, and warrant rewriting later. However, with an 33 Rewriting with a Superior Technology
increase in structuredness, the reduction in the marginal
maintenance cost of the rewritten system is more than To this point we have considered the strategy of using the
the corresponding increase in the marginal cost of the original technology for rewriting the system. However,
original system. Therefore, the manager can take the with the availability of new software technologies, it is
advantage of an overall cost reduction with an earlier important to consider the option of switching to such a
rewrite of the system. It should be noted that the impact technology during tile rewrite. Studies (Martin 1985,
of structuredness on the marginal rewriting cost is small, Rudolph 1984) indicate that advanced technologies like
relative to the marginal maintenance cost. 4GLs reduce software development cost significantly. In

fact, because of their inherent structuredness, 4GLs have
3.2 Impact of Initial System Size been suggested as appropriate rewriting tools for easier

system maintenance (Sprague and McNurlin 1986).
The rewrite cost is significantly dependent on the initial However, as indicated by Swanson and Beath (1989),
size of the system, since the rewritten system must incor- assessing the impacts of these new technologies on the
porate a number of functions equal to or higher than that maintenance function requires a detailed investigation. .
of the original system at m = 0.6 We study the effect of
initial system size on the rewriting point with the fol- From the manager's perspective, it is important to know
lowing proposition. the direction and magnitude of the shift in the rewriting

point when the software is rewritten with a superior
Proposition 3: The operational life of tlte system decreas- technology. A comparison of the rewriting points with
es with an increase in the initial size of the system. different technologies is examined below.

Proof: From Equation (la), X(m *,s, 0) = 0. Proposition 4: Let a system be originally written with a
technology of structuredness 52(52> si) be available for

From the implicit function theorem. rewriting. Let m*, > m*2 be the optimal rewriting points
when the system is rewritten using the same technology

am* ax(m * 4.0)/at and the superior technology respectively. m*1>m*p-

80 ax(m*,5,0)/am*
Proof: From the first order conditions for the two
rewriting strategies, we get

From (lc), aX(m*,s,0) /Bm- > 0
aC(mt,st) 1 . aR(ml,sl,¢)

Since rewrite cost increases with system size, we have ami *'-i": ami Imt-< (4a)
ax(m*,s,$)/80> 0. 8CCM-ml,51)

amt

ant*Therefore, - < 0. • (2084'
BC(m2,51) aR(m2,52,0)With an increase in initial system size, the marginal af |.2-< + &5 4-4rewriting cost increases. This causes the costs in the first (4b)

period to increase. Therefore, the rewrite must occur _ aCCM-mY,52)
earlier to reduce this cost. amz |5=4 = 0

This proposition questions the commonly observed
phenomenon of larger systems being maintained for a
longer period of time. While the software manager is Suppose mt < m3

165

Subtracting equation (4a) from equation (4b) we get original technology unchanged. Next we compare two
initial technologies which are to be replaced by a given

accmpS#I _ ac(mih)1 superior technology.
am f-»:i ami 41.2

aR(me#2+) 1 1
aR(mt#10) Proposition 5: We compare two systems onginat& written

amu =2.,4 - am ",=I& with technologies 1 and 2, with structuredness s, and 52
respectively (52> st). Both the systems are rewritten using
a third technology of structuredness s3, which is superior to
both 1 and 2, i.e.,sl> 32< $3• The infe,ior system is

= aCCM-in24,0,1 aCCM-mi31) replaced earliet; i.e., m *1 < m *2•
am ...2 am =='

Proof: From the first order conditions for technologies 1
The convexity of the maintenance cost and mt < mt and 2, we get
imply that

BC(ml 41) aR(mi' 3,0,
acc":2'f) ac(mi,st) a.1 '=1-< + ant '"'i<1 .- (4c)ami /(M-*14) 1 =O (5a)

Since the maintenance performed on the existing system
does not affect the rewrite cost significantly,

BC(n:25)
 aR(m243,0) 1 8'2.<

aR(m2320) 1
aR(mt,si,0) amz |#-1„2 87,12

L.miam m.m: am _ aCCm-m26) -0 (5b)is relatively small. amu 4.4
By hypothesis, st < 4 and m*1 < m*2• Moreover the
marginal maintenance cost is decreasing in structuredness Suppose m *t < m *2• Subtracting Equation (5a) from

equation (5b) we getand increasing in m. Combining these we get,

8CCM-m,rs'), aCCM-mt,sl) BC(m2'10 aC(ml•'1) 1
I .-

4 4 am1 15.,i < 0 (4d) 8m IN'1.< - 2mt '=1-=;
aR(me.53,0) : aR(m133,0,+

amu 44- ami 49'
Thus, the R.H.S. is negative and L.H.S. is positive. This
is a contradiction. Therefore, m*12 m *2· We arrive at a
similar contradiction by supposing that m *t is equal to BC(M-m130 _ OCCM-me#,

amu =2= 8ml
This proposition indicates the sensitivity of the optimal
rewriting point to the rewriting technology. It suggests
that rewriting should occur earlier as the rewriting tech- accm.5) ac(mt'st)
nology becomes more structured. Equation (4b) provides

81n2 |"5= - 8ml '=1=4 < U (similar to (4d)the intuitive justification for this result. With an increase
in the structuredness of the rewriting technology, the with mt > mi)
marginal maintenance cost of the rewritten system de-
creases considerably. However, the maintenance cost in Convexity of R in m and m *1 > m*2 implies that
the first period remains unchanged. Therefore, the
optimal rewriting point must occur earlier to take an
advantage of the decrease in the marginal maintenance

aR(m24,0) i _ aR(mt'Sp¢) 1 . <o
cost of the rewritten system. am "I=m; ami "1= 1

In the above proposition, we studied the differential
impacts of two rewriting technologies while keeping the

166

case, and analyze the impact of structuredness on the
8(XM-ml.90 1

1 .- aCCM-mi## = ; > 0
rewriting points.

alnl
Proposition 6: The number of maintenance jobs per-
formed on the system before it gets rewritten increases

(similar to (4c) with mt > m) progressively with the number of rewrites. If
mi ,"12 /n3 ,···m,'.1 F„ are the optimal rewriting points,

Thus, the R.H.S. is negative, while the L.H.S. is positive. then this proposition implies that mT < mi-mt < ...

This is a contradiction. Hence mT < mi.• mR*-m*.1 < M-mA*.

Intuitively, systems developed with less structured (in- Proof: From the first order conditions we get:
ferior) technologies are expected to be rewritten earlier;

ac(mlrs) aR(mt· ,0) 1however, Proposition 2 presented the opposite view,
suggesting that such systems should be maintained longer, 0.4 |#.4. + ami 1.1.=i

when they are to be rewritten with the same technology. aC(mi-m:,s) (6a)
This proposition considers the option of using a superior - |14•m; = 0

technology for the rewrite, and shows that inferior initial amt
technologies are indeed replaced earlier with the avail-
ability of better technologies.

Combining Propositions 4 and 5 we note that the optimal BCO:2-m;,s) aR(m24) 1
rewriting point is a function of the structuredness of both an'2 1"6."6 + 8,14 1.2..4
the original and rewriting technologies. An interesting
corollary emerges from these propositions. As the _ 8COn; -»12'9) 1 . .0

(6b)

difference between the structuredness of the original and an:2 5.5
rewriting technologies increases, it is better to rewrite the
system earlier (see Figure 5) because of an increasing
relative cost advantage in the second period. •

ac(m.-m: 14) aR(m,s,¢) I
*mal

1 .
Rcwriiing

poiM<.1 ama I...m: + am, m.-»'.
8((M-m,3) (6n)I ..0

am„ =·*m.

Consider Equation (6a). By comparing with Equation
(la) we can conclude that a solution exists and m;-mH >
m ?. Similarly from equation (6b), m -mi > m .

From Equation (6n), M-m2 > m -m; 1.
Chingc in Stmauridne„ (A .)

Thus the operational life is increasing progressively. -
Figure i Impaci of the Difference Between the Structuredness of

Original and Rewriting Technologies (as) Upon the Optimal This result is a generalization of Proposition 1 (m * <Rewriting Point (mi)
M/2) where a single rewrite was considered. An impor-
tant observation is that if the rewriting cost is indepen-
dent of m, then the rewrites are equally spaced. Each3.4 Multiple Rewritings of Code
system is then operational for M(n + 1) maintenance jobs,

For long time horizons and frequent maintenance re- where n is the number of rewrites. This situation may be
guests, multiple rewrites may be more economical than a encountered in an environment where maintenance pri-

single rewrite of the system. In this section, we deter- marily consists of modifications rather than enhance-
mine the optimal rewriting points for the multiple rewrite ments. In such a situation, the size of the system remains

167

approximately equal to its initial value, making the re- number of lines modified/added during n years, then the
writing cost independent of the cumulative maintenance size of the resulting system can be shown to be equal to
activities. r[m(r-1)/.25 + Zo].

Proposition 7: All rewriting points occur eartier with an We take the planning horizon (T) to be 15 years, as many
increase in the stnicturedness of the technology. systems are maintained for this duration. Let M be the

total number of lines modified/added during this period.
Proof: From Equation (6a), X(mT,s,$) = 0 We get M=210 KSLOC using the expression below:

T-1-1M=.25 Z.rami aX(mirs,¢)/as . ,-1

Also, - = -
as ax(m;,s,$)/amt The cost of maintenance (C) is assumed to be of the

form kim'l, where #1>1, and m is the number of lines
By comparing with Equation (2b), we have added or modified. Bl decreases as the structuredness of
ar((mis,*)/am; > O the underlying technology increases. The rewriting cost

(R) is taken to be k,Z,2, B2 > 1. For a given technology,
By comparing with Equation (2c) and using Proposition we expect kl and Bl to be higher than ka and #2 respec-
6, we have aron.55,0)25 > 0 tively, since maintenance activities for old systems should

require more effort per line of code than development.
Note that the functional forms are taken from theam: COCOMO (basic) model (Boehm 1981), and have theThis implies that --1 < 0.
characteristics of the maintenance and rewriting costs
proposed earlier in this paper.Similarly it can be shown that

ami amr The optimal m must satisfy the condition

as as kiBlm -1 + k:zB22"5- [m(r-1)/.25 + Zol':-1
Since the optimal rewriting points occur earlier with an - 40,(M-m)4-1 - 0
increase in structuredness, there is a possibility of an
increase in the number of rewrites.

From the above equation, we get the optimal rewriting
point for given values of kijcDB' and A. For example,3.5 Application of the Model: A Numerical Example withkt = 3.4 ki = 2.4, Bt = 1.2, and A = 1.05, we
obtain m * as 73 KSLOC, and the corresponding replace-To this point, we have developed a theoretical analysis of
ment time as approximately 7 years. Note that the valuesthe software replacement problem. In this section, we of k's and B's are taken from the COCOMO parametersuse some parameter values suggested by earlier empirical
(Boehm 1981).

studies to illustrate the applicability of the model.

Within this simple framework, our example suggests thatLet Zn denote the size of the system (initial size Zo) after the rewriting should occur earlier than what would be
it has been maintained for n years. We take the typical typically observed for a similar system. However, we areinitial system size to be 30 KSLOC, the median size aware of other factors (such as managerial risk aversion
reported by Swanson and Beath (1989) in a study of

and myopic planning) that can delay the replacement.
more than 500 systems across twelve organizations. They
also state that systems tend to grow at an average rate of These issues are discussed in the following section.

10 percent per year, i,e„ ZI Za.1 (denoted by r) is equal 4. FUTURE RESEARCH
to 1.1. This increase in size is due to enhancements
performed on the system; such enhancements constitute

An economic model for analyzing the tradeoffs betweenaround 40 percent of the overall maintenance activity software maintenance and rewriting costs has been
(Swanson and Beath). For this illustration, we may then presented. While this paper generalizes and extends antake the number of lines added/modified per year to be earlier model by Barua and Mukhopadhyay (1989),
approximately equal to 25 percent of the system size.
Therefore, for a system of initial size Zo, if m is the

incorporating certain features would significantly enhance

168

the current model. A plan for our future research is 5. CONCLUSION
summarized below.

Software maintenance constitutes a significant part of the
A relatively straightforward but useful extension exa- software budget and is expected to remain so in the
mined in this research concerns the partial rewriting of foreseeable future. Thus the study of various software
software, when a complete rewrite proves to be too maintenance strategies and their economic consequences
costly. This feature can be incorporated in the model by is of prime importance to researchers in Information
hypothesizing a relationship between the fraction of the Systems. There exists a considerable body of well-re-
system rewritten and the corresponding reduction in the searched literature on the technical aspects of mainte-
subsequent maintenance cost. nance (such as determinants of software complexity).

However, it is only recently that researchers (e.g.,
An important aspect not considered in this research is the Banker, Datar and Kemerer 1988; Banker, Datar and
maintenance backlog and associated delay (opportunity) Zweig 1989) have begun to address the economics of
cost incurred by the system users. With fixed software software maintenance. In particular, the tradeoffs be-
maintenance resources, the backlog of user requests and tween maintaining and rewriting old software have not
the delay cost are expected to increase rapidly due to a been investigated earlier. Our aim is to bridge this gap
continuous deterioration of the software over time. How through the development of a theory-based model of
can the backlog be controlled over the planning horizon? software replacement. We have utilized concepts from
We hypothesize that the backlog can be reduced with the economics and software engineering to develop such a
deployment of additional maintenance resources such as model.
manpower. Our ongoing research is focusing on the
derivation of the optimal schedule for resource addition The model allows us to compare the economics of alter-
to minimize the total (backlog plus resource) cost. A native rewriting strategies and to determine the optimal
related issue involves the resource capacity constraints rewriting point(s) when they exist. Several interesting
and the maintenance service level to be provided. In- results (propositions) with managerial implications
cluding these features will make the model more realistic. emerged from the analysis. These include the impacts of

structuredness, initial system size and switching to new
We considered the initial system size, the technology and technologies upon the rewriting point(s).
the planning horizon to be exogenously given. Interesting
results may be obtained from a model where the techno- The limitations of the model and our plans for future
logy and the planning horizon are chosen endogenously in research have been summarized above. Currently we are
a sequential mode. in the theoretical phase of our research, deducing the

implications of our mathematical model. The next step
Yet another issue to be addressed is the risk attitude of will involve empirical testing of some of the results
the software manager. A widely observed fact is that obtained in this phase. Our findings from the theoretical
software tends to be maintained for too long without model will help specify the exact data requirements for
being rewritten. While it may be very costly to maintain such empirical work.
the system beyond a certain time, we argue that the
decision to continue with the system need not constitute 6. REFERENCES
an irrational behavior on part of the software manager.
We have assumed a risk neutral manager taking the Banker, R. D.; Datar, S. M.; and Kemerer, C. F. "A
rewriting decision. More realistically, the manager may Model to Evaluate Factors Impacting the Productivity of
be risk averse when it comes to replacing the system. Software Maintenance Projects." Working paper #2093-
We are currently investigating the effect of risk aversion 88, Massachusetts Institute of Technology Sloan School of
on the delay in rewriting the system. A related issue is Management, 1988.
the adoption of a myopic decision rule by the manager,
whereby he/she periodically considers a short time Banker, R. D.; Datar. S. M.; and Zweig, D. "Software
horizon in determining whether or not to replace the Complexity and Maintainability: In J. I. DeGross, J. C.
system. We conjecture that the joint effect of risk aver- Henderson, and B. R. Konsynski (eds.), Proceedings of
sion and the myopic rule may be such that the manager the Tenth International Conference on Information Sys-
never replaces the system. tems, Boston, December 1989, pp. 247-255.

169

Barua, A., and Mukhopadhyay, T. "A Cost Analysis of Schneidewind, N. 'The State of Software Maintenance."
the Software Dilemma: To Maintain or to Replace." IEEE Transactions on So#ware Engineeting, Volume SE-
Proceedings of the Twenty-Second Hawaii International 13, Number 3, March 1987, pp. 303-310.
Conference on Systems Sciences, January 1989.

Sprague, R. H., and McNurlin, B. C. (Editors) Infonna-
Bergland, G. D. "A Guided Tour of Program Design tion Systems Management in Practice. Eng*Nood Cldfs,
Methodologies." IEEE Computer, October 1981, pp. New Jersey: Prentice Hall, 1986.
13-37.

Swanson, E. B. "The Dimensions of Maintenance.' Pro-
Boehm, B. Sojlware Engineering Economics. Englewood ceedings of the Second International Conference on Soft-
Cliffs, New Jersey: Prentice Hall, 1981. ware Engineering, 1976, pp. 492-497.

Boehm, B. "Improving Software Productivity." IEEE Swanson, E. B., and Beath, C. M. Maintaining Infer-
Computer, September 1987, pp. 43-57. mation Systems in O,ganizations. New York: John Wiley

and Sons, 1979.
Curtis, B.; Sheppard, S. B.; Milliman, P.; Borst, M. A.;
and Love, T. "Measuring the Psychological Complexity of Yao, S. S., and Collofello, J. 'Some Stability Measures
Software Maintenance Tasks with the Halstead and Mc. for Software Maintainers: IEEE Transactions on Soft-
Cabe Metrics: IEEE Transactions on Software Engineer- wak Engineeting, Volume SE-6, Number 6, November
ing, Volume SE-5, Number 2, March 1979, pp. 96-104. 1980.

Gurbaxani, V., and Mendelson, H. "Software and Hard-
ware in Data Processing Budgets: IEEE Transactions on 7. ENDNOTES
Software Engineering, Volume SE-13, Number 3, March
1987, pp. 1010-1017. 1. Advanced technologies such as 4GLs have been

found to make programming less time consuming
Kafura, D.,and Reddy, G. "The Use of Software Com- (Martin 1985; Rudolph 1984), although the economic
pleidty Metrics in Software Maintenance." IEEE Trans- issues such as initial acquisition and learning costs
actions on Soj?ware Engineering, Volume SE-13, Number have not been investigated.
3, March 1987, pp. 335-343.

2. Without assuming a restrictive functional form, we
Kemerer, C. F. Measurement of Software Development only utilize the signs of the first and second deriva-
Productivity. Unpublished Ph.D. Dissertation, Graduate tives.
School of Industrial Administration, Carnegie Mellon
University, Pittsburgh, Pennsylvania, April 1987. 3. It is assumed that both of the systems are developed

in a structured manner within the limits of techno-
Lehman, M. "Programs, Life Cycles, and Laws of Soft- Iogies A and B.
ware Evolution." In G. Parikh and N. Zvegintzov (eds.),
luton'al on So#ware Maintenance, Los Angeles: IEEE 4. For example, the number of function points or
Computer Society, 1982, pp. 199-215. source lines of code modified or added.

Lientz, B. P.; Swanson, E. B.; and Tompkins, G. E. 5. In this paper, we consider a complete rewrite of the
"Characteristics of Application Software Maintenance." software. On the other hand, a partial rewrite will
Communications of ACM, Volume 21, Number 6, June be affected more directly by the state of the system.
1978, pp. 466-471. An analysis of partial rewriting is suggested as an

extension in Section 4.
Martin, J. Founh Genemtion Languages Volume I,
Princ*les. Englewood Cliffs, New Jersey: Prentice Hall 6. It will be equal if maintenance involves only modifi-
Inc., 1985. cations. Enhancements to the system increase the

functionality.
Rudolph, E. E. "Productivity in Computer Application
Development." University of Auckland, New Zealand,
1984.

170

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1990

	ON THE ECONOMICS OF THE-SOFTWARE REPLACEMENT PROBLEM
	Dhananjay K. Gode
	Anitesh Barua
	Tridas Mukhopadhyay
	Recommended Citation

	tmp.1422406382.pdf.DpMIN

