
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1989 Proceedings International Conference on Information Systems
(ICIS)

1989

SOFrWARE COMPLEXITY AND
MAINTAINABILITY
Rajiv D. Banker
University of Minnesota

Srikant M. Datar
Carnegie Mellon University

Follow this and additional works at: http://aisel.aisnet.org/icis1989

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1989 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Banker, Rajiv D. and Datar, Srikant M., "SOFrWARE COMPLEXITY AND MAINTAINABILITY" (1989). ICIS 1989 Proceedings. 8.
http://aisel.aisnet.org/icis1989/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989/8?utm_source=aisel.aisnet.org%2Ficis1989%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

SOFrWARE COMPLEXITY AND MAINTAINABILITY

Rajiv D. Banker
Carlson School of Management

University of Minnesota

Srikant M. Datar
Dani Zweig

Graduate School of Industrial Administration
Carnegie Mellon University

ABSTRACT

This paper examines the relationships between software complexity and software maintainability in
commercial software environments. Models are proposed for estimating the economic impacts of
software complexity and for identifying the factors which affect a system's complexity. Empirical work
currently under way has shown these models to be implementable.

1. INTRODUCTION Software complexity is widely regarded as an important
determinant of software maintenance costs (Boehm 1981).

With over $200 billion dollars being spent every year on Increased software complexitymeans that maintenance and
software (Boehm 1987), considerable attention has been enhancement projects will take longer, will cost more, and
devoted to controlling software costs. Much of this will result in more errors. What is more, the software
attention has been focused on tools and techniques complexity of a given system is one of the main long-term
designed to make software development as rapid and legacies of whatever tools and techniques were employed
inexpensive as possible. To an increasing extent, however, in its initial development. If, for example, the use of new
the focus of this attention is shifting from the development CASE tools leads to the development of poorly structured
phase of the software life cycle to the maintenance phase: software, the effects of that poor structure will be felt when
For every dollar spent on development, two or three the time comes to modify the system.
dollars are routinely spent on subsequent maintenance and
enhancement (Gallant 1986) -- and software which is The framework developed in this paper requires two sets
inexpensive to develop but difficult to maintain is no of models: one to estimate the economic impacts of
bargain at all. software complexity upon long-term costs and one to assess

the current factors which affect and determine the degree
of software complexity. An effort to implement this

The major benefits, or penalties, of new software develop- framework is currently underway at a commercial software
ment tools and techniques will be realized over the lifetime organization. At the time of this writing, this effort has
of the software, a lifetime that is often measured in progressed far enough to verify the implementability of all
decades. This means that it can take five, ten, or more the models presented in this paper.
years to assess theiractual impacts upon life-cycle software
costs. As it is rarely practical to delay a decision so long
the adoption of new CASE (computer assisted software 2. CONCEPTUAL FRAMEWORK
engineering) tools, new programming methodologies and
other products or methods must often be an act of faith. Along with the growing awareness of the need to control

life-cycle software costs, rather than just software develop-
ment costs, there is a growing list of CASE tools and other

This paper presents a framework for evaluating such methodologies which claim to help do just that (Olle, Sol
technologies within a practical time frame. A two-stage and Verrijn-Stuart 1982). Managers who do not wish to
analysis, using software complexity as an intermediate take these claims on faith have the option of waiting a few
variable mediating between current decisions such as the years for new tools and products to acquire a performance
adoption of new software tools and the downstream history.
economic impacts of these decisions is presented. (Soft-
ware complexity refers to the extent to which a system is We propose a framework to enable researchers (and
difficult to comprehend, modify and test, not to the managers) to assess such products and techniques more
complexity of the task which the system is meant to quickly by introducing software complexity as a factor
perform; two systems equivalent in functionality can differ linking software development tools and techniques and
greatly in their software complexity.) software maintenance costs. This allows us to break the

247

problem down into two manageable and estimable ones: justify the expenditure of thousands or millions of dollars
determining whether given techniques reduce software by managers wishing to control that complexity. Both
complexity and estimating the degree to which software of direct and indirect effects must be considered. The direct
low complexity is less expensive to maintain. Each of these effects are the added maintenance programming costs
questions can be answered by analyzing data collected over attributable to high levels of complexity. The indirect
a relatively short period of time. effects are the higher error rates associated with high levels

of software complexity (Bowen 1978). If a maintenance
The conceptual framework and the various issues per- project results in the propagation of new software errors,
taining to software complexity are depicted in Figure 1. those errors will result in additional disruption and must
The right hand side of the figure focuses upon the relation- be repaired at an additional programming cost.
ship between software complexity and software costs. High
levels of software complexity make software more difficult, Finally, if the study of software complexity is to be of
and hence more costly, to maintain. Software complexity practical value, we must understand the factors which cause
also makes such maintenance more error-prone. The left some systems to be more complex than others so that we
hand side of the figure models the impact of various can take steps to control that complexity. The use of
software engineering tools and techniques on reducing and appropriate software development tools may affect a
controlling software complexity and, by extension, mainte- system's complexity, but we cannot assess the impact of
nance costs. In order to model either set of relationships such tools without controlling for environmental variables
correctly, it is necessary to control for confounding factors such as the volatility of the environment within which the
such as the nature of the tasks which the software was system is operating, which also influences software com-
designed to carry out, the skill and experience of the plexity.
programmers, and the nature of the organizational environ-
ment. The models presented in the following sections are

described within the context of a field site at which they
are currently being implemented. This enables us to
ground our discussion in a real-world environment and to

4.-A be certain that we are not developing models which call for
\C=/ tr 7-- data which is impractical to collect.
lu.2.....r.

60't Sf.

- 6 We have begun to implement the models described in thispaper at the information systems division of a major bank.
/ 51*H. \ r : 6 M"....... - 1
 Al/hodoloo, -9 ;P'01 TE#* | This site was identified as being a highly typical commer-
- i I cial software environment. Its software consists of over

twenty million lines of COBOL code, mostly transaction
systems, running in an IBM mainframe environment.
Much of this software dates back to the mid-1970s and

Figure 1. Framework for Evaluating Economic earlier. Most of the programming expenditures at this site,
Impacts of Software Complexity over $25 million per year, go to maintaining these applica-

tion systems.

Our model raises many research questions that need to be At the time of this writing, this project has proceeded far
addressed. We turn now to these issues. enough to confirm the implementability of the proposed

models: It has proven practical to collect all the data
A basic issue pertains to the measurement of software which these models require. Table 1 presents some
complexity. In searching for appropriate measures, we are descriptive statistics for the systems we have analyzed to
not hampered by a shortage of candidates, On the date, including base error rates, system age, annual
contrary, we must select among over a hundred candidate programming expenditures, and system size.
metrics. There are several factors contributing to software
complexity, including the size of a program and the Table 1. A Profile of Application
complexity of its control structure, but the presence of over Systems being Analyzed
a hundred metrics does not imply the existence of over a
hundred such dimensions of complexity. There is consider- Variable Mean SD Min Max
able duplication among the metrics (Munson and Khosh-
goftaar 1989) and we must select a subset of metrics which Errors per year 348 561 14 2995
measures the dimensions of greatest interest. Age 11.3 5.6 3 21

Programming costs
Havingidentifiedmethodsofmeasuringvariousdimensions ($000/year) 693 661 83 3532
of software complexity, we must also establish that they do Appn size: Programs 217 266 18 1500
in fact have a large enough effect on software costs to 000 lines 215 185 54 702

248

The software at this site is divided into over a hundred complexity which we have identified, are not badly con-
application systems, each responsible for a different task. founded with each other.
Examples of application systems are a payroll system, an
inventory control system, and an accounts receivable An examination of major complexity metrics reveals that
system. Each system, in turn, is composed of a large most of them confound the complexity of a program with
number (typically dozens or hundreds) of programs. The its size. One program will be that much more difficult to
accounts receivable system, for example, might have one work with than a second if, for example, it is twice the size,
program for aging the receivables and another program has twice as many control paths leading through it, or
which reads the aged-receivables file and prints a report contains twice as many logical decisions. Unfortunately,

listing all receivables over three months old. Alternatively, these various ways in which a program may increase in
depending upon the decisions of the programmers, there complexity tend to move in unison, making it difficult to
might be a single program combining those two functions. identify the multiple dimensions of complexity.

The next four sections describe the specific models actually This gives rise to practical problems. First, the effects of
needed to implement this framework. Section three some of the dimensions of software complexity may be
examines the concept of software complexity in greater swamped by the effect of program size, making them more
detail, in order to propose appropriate measures for this difficult to detect and estimate. Second, the use of several
variable. In section four, a model is developed for as- highly correlated metrics in a single analysis is econometri-
sessing the impact of software complexity upon software cally undesirable. These problems may be mitigated by
error rates. In section five, a model is developed for computing metrics which are normalized for size.
estimating the other major impact of software complexity:
its effect upon long-term programming costs. These We can compute software complexity metrics at levels of
models allow us to assess the long-term economic impacts analysis other than the aggregate program level. Table 2
of software complexity. In section six, a model is deve- shows examples of three major kinds of complexity metrics
loped to explain this complexity, and to assess the degree at four different levels of analysis. This classification can
to which it can be controUed. yield four independent metrics: the average size of the

programs which constitute that system, the average size of
the subprograms within each program, and two measures

3. MEASUREMENT OF COMPLEXITY of control-structure complexity which have been norma-
lized for size (the density of decision points and the density

If we wish to use software complexity as a central variable of branch points). (A fifth possible metric suggested by
in our analysis, we must first determine an appropriate way this table, the total size of the system, will be dealt with
to measure it. An examination of the literature on the separately.)
measurement of software complexity provides us with an
embarrassment of riches: We have over a hundred Table 2. Complexity Metrics al Different Ikvels
candidate metrics to choose from.

Software complexity is assumed to be a multidimensional Statement Subprogram Program System

construct (Wake and Henry 1988). The complexity of a
Effort Linesprogram depends upon its magnitude, the complexity of its Size Lines Statements Modules

control structure, and the complexity of its data flows
(Basili and Hutchens 1983). Other researchers add other '

Decision Density of Cydomatic Number offactors to this list, such as the degree of modularity Structure Decisions Complexity Binary Decisions
(Bowen 1978). Mason and Khoshgoftaar (1989) conclude
that four or five such complexity factors suffice to describe

Control Density 01 Essential Number ofthe multi-dimensional complexity of a program. Structure Branching Complexity Branches

On the other hand, correlations among the various kinds
of metrics have generally proven to be extremely high (Li
and Cheung 1987). For example, the most commonly used In commercial environments, program size is largely a
measure of program magnitude -- Halstead's Effort metric programming decision. A commercial application system
(Halstead 1977), a function of the number of operators and will typically consist of anywhere from hundreds of
operands in the program -- and the most commonly used thousands to millions of lines of code, divided into a large
measure of control complexity -- McCabe's Cyclomatic number of programs, and a maintenance or enhancement
Complexity (McCabe 1976), a function of the number of project will typically affect many of these programs at the
independent control paths through a program -- typically same time. The difficulty of such a project will depend to
have correlations on the order of 90 percent. Our analysis an extent on the size of these programs. If a system is
will be greatly facilitated if we can select metrics which, divided into too many small programs, even a minor
while measuring the various dimensions of software modification may force maintenance programmers to work

249

with a large number of programs, adding a considerable that a modification to such a program will not introduce
overhead cost for each program that must be compre- new errors (Lyle and Gallagher 1988). A more poorly
hended and modified. If it is divided into too few pro- structured program will impose a heavy cognitive load
grams, each program will be large and difficult to compre- upon a programmer, which may in turn incur a heavy
hend. penalty in added programming time. The decomposibility

of a program depends primarily upon the degree of
It is clear that program size is an important complexity branching within its control structure. Thus we may
factor to measure. We will also want to measure other compute a second size-independent complexity metric by
complexity factors, but if we measure them at the program measuring the density of branching within a program.
level, as is most commonly done in the literature, we will
find ourselves with measures which are highly correlated In summary, we propose the use of four metrics: program
with program size. We must look to other levels of size, measured at theprogram level by the average number
analysis to overcome this. of statements per program; modularity, measured at the

subprograni level by the average number of statements per
A single program will be easier to work with if it, in turn, subprogram; decision structure complexity, measured at
is broken down into reasonably sized subprograms. Many the statement level by the proportion of IF statements
of the same metrics which may be used to compute within a program; and program decomposibility, measured
program size may be used to compute subprogram size, at the statement level by the proportion of GOTO state-
the simplest of these being direct measures such as the ments within a program. Table 3, presents statistics
average number of statements per subprogram. describing the software complexity of the application

systems analyzed at the research site. An examination of
Metrics computed at the subprogram level will be ortho- these variables confirms that, as intended, they are reason-
gonal to program level metrics. Rather than measuring ably unconfounded, their correlations varying from a ten
program size, they are measuring program modularity, the percent correlation between program size and subprogram
degree to which a program is subdivided into components size to a 38 percent correlation between branching density
of manageable length. We may compute other metrics at and decision density.
the subprogram level too, but just as the metrics computed
at the program level are correlated with program size,
other metrics computed at the subprogram level will be Table 3. Summary Statistics for Four
correlated with subprogram size. Software Complexity Metrics

Many of the metrics proposed by researchers are based on Complexity Metrics Mean SD Min Max
the complexity of a program's decision structure. The Program Size (Stmts) 564 190 302 1119
more alternative paths there are through a program (as a Subprogram Size (Stmts) 50 31 13 136
result of there being many decision points within a pro- Branch Density (per stmt) .078 .03 .016 .150
gram), the more 'contingencies a programmer must Decision Density (per stmt) .150 .03 .076 .196

consider and, therefore, the more difficult the program-
ming task will be. In addition, the larger number of
contingencies to be considered often translates into more Our metrics measure four important dimensions of
contingencies than it is practical to test, so errors are more complexity, computing four distinct measures at three
likely to go undetected. different levels of analysis. A fifth metric, the total size of

the application system, will be useful in some contexts, but
Proposed measures of decision complexity tend to be based not in others: System size depends primarily upon the
upon a graph theoretic analysis of a program's control functionality of the system and is a policy decision, rather
structure (McCabe 1976). Such measures are meaningful than a programming decision, so there is some doubt as to
at the program or subprogram level, but metrics computed whether it should be considered a measure of software
at those levels will be badly confounded with program or complexity. In the next two sections, we will present
subprogram size. However, the values of these metrics models for analyzing the downstream impacts of these
depend primarily upon the number of decision points metrics.

within a program. This suggests that we can compute a
size-independent measure of decision complexity by
measuring the density of decision making within a pro- 4. COMPLEXITY IMPACTS ON ERROR RATES
gram.

The more difficult a system is to comprehend, the more
Another kind of control structure complexity which may be likely it is that programming errors will go unnoticed. The
measured is the structuredness of a program, as measured more difficult it is to test, the less likely it is that those
by the degree to which is may be logically decomposed errors will be caught before the software goes into opera-
(McCabe 1982). A highly decomposible program is easier tion. Such errors represent both current disruption costs,
to analyze and maintain, and it is easier to assure oneself as they manifest, and future programming costs, as they

are corrected.

250

That a relationship exists between software errors and clients. The latter systems will see more careful
software complexity is well documented. In order to programming and more thorough testing.
actually estimate that relationship, we must model the
error process in a way which allows us to control for the • Software Complexity: After controlling for the factors
confounding effects of other factors which may affect error discussed above, we are in a position to examine the
rates. marginal impact of software complexity upon error

rates. We might particularly expect to see higher error
The site at which this analysis is being implemented has an rates in systems which display high decision densities
error tracking system, which we are using to monitor the (with their correspondingly large number of decision
number of errors for each application system in each paths to test for errors). New errors are most likely
month over a period of time (a two year period, in this to propagate in such systems (Gibson and Senn 1989).
case). More prosaically, we would expect larger application

systems to have higher error rates, since there are
The number of errors for a given application system will more things to go wrong.
vary from month to month as ongoing maintenance cor-
rects old errors and introduces new ones and as different These explanatory variables (except for the previously
data inputs flush out previously unsuspected errors. We computed software complexity metrics) were gathered by
model the error rates as a stochastic process, whose mean means of questionnaires administered to managers respon-
varies from application system to application system, as a sible for the maintenance of the application systems being
multiplicative function of each system's software complexi- analyzed. The proposed model was used to analyze the
ty, and several other factors. In particular, we model the error rates of 34 application systems. Preliminary analysis
error rate as a Poisson process which may be closely confirms that all of these variables affected error rates, in
approximated by an Exponential error distribution with the expected directions, at the five percent significance
mean Lambda, where levels.

Mean Error Rate (Lan,bda) = f(Software Volatility,
Developer, Application Experience, Primaiy User, Software 5. COMPLEXITY AND MAINTENANCE COSTS
complexity)

Software complexity may have a direct impact upon
maintenance costs as well as the costs incurred through thc• Software Volatility: This is a measure of the fre- presence of software errors. The more difficult a highly

quency with which changes are made to the applica- complex application system is to maintain, the more
tion software. Systems which undergo frequent billable hours it will accumulate in the course of the
modification have higher error rates, because each maintenance and enhancements which consume most of amodification represents an opportunity for new errors
to be generated. It may also be the case that when

system's life cycle costs.

systems are undergoing frequent changes, there is less Our major focus in this section is on evaluating the impactopportunity and less interest in testing those changes of software complexity on labor maintenance costs. In
thoroughly. order to do so, however, we must control for the effects of

other factors, such as task magnitude and the skill of the• Developer: Systems which were purchased, or deve- programmers, that also affect the programmer hoursloped by contract programmers, will be less familiar to required on a project. For example, a large maintenance
their maintainers than systems which were developed project dealing with an application system of low com-
internally. These systems are less likely to follow plexity may easily require more hours than another project
house standards or conventions. The lessened famil- meant to make a small modification to a system of higheriarity can make it easier for errors to go undetected. complexity. Excluding task size and complexity (and other

environmental variables) will result in a misspecification of• Application Experience: If the programmers main- the model and incorrect inferences about the impact oftaining a system haven't been maintaining it long, their software complexity on costs. In the example just given,relative inexperience will increase the chances of not controlling for task size will lead to the conclusion thatunnoticed errors slipping by them. They will also be
less likely to know the problem areas which require

higher software complexity will result in lower costs.

the most careful testing. Figure 2 presents a model of the maintenance function
• Primary User: Not surprisingly, greater efforts will be which is based upon the Cocomo model of software cost

made to avoid and to detect errors if the conse- estimation (Kemerer 1987). Software maintenance is
viewed as a production process whose inputs are labor andquences of an error are severe. In particular, errors
computing resources and whose output is modified code.that will be tolerated on systems whose main users are

other departments within an organization may not be Since labor hours are considerably greater than computer

tolerated on systems which directly affect customers or resources and there are limited substitution possibilities

251

between the two, we focus on labor hours as the major • User skill and involvement: Requests for modifica-
expense incurred in software maintenance. The produc- tions to a system typically emanate from the system's
tivity of this process depends upon a number of environ- users. An unsophisticated user can add considerably
mental variables. Among the most important of these to the cost of a project by generating confused or
(Boehm 1987) are the skill and experience of the program- incoherent requirements, by frequently changing the
mers, the skill and involvement of the users, and the requirements, and by failing to adequately communi-
software tools available to the programmers. Following cate relevant information.
Banker, Datar and Kemerer (1988), we write labor hours
required as some function of the task requirement and • Softw'are tools: Many products are commercially
environmental factors. available which have been designed to increase pro-

grammer productivity. To the extent that they do so,
Labor Hours = f(Task magnitude and complexity, Program- they will have noticeable beneficial effects upon
mer skill, Programmer experience, User skill and involve- maintenance costs.ment, Software tools, Software complexity)

• Software Complexity: We are primarily concerned
here with the impact of this factor upon maintenance
costs. Any practical cost estimation model, however,

Environmer'Ital*--\9 factors such as those discussed above.
must consider and control for the effects of other

- uo .,;0 The collection of the necessary data is practical, but
Maintlninc, -
progla„,mlo -\-12 somewhat labor intensive. Task magnitude and complexity

can be obtained by counting the number of source lines of
code added or modified in the course of the project and by
computing the number of function points added or modi-

Sonvar. fied. (Function points [Albrecht and Gaffney 1983] are a
Compt,xity language-independent measure of software functionality.)

Programmer skill and experience are obtained from
corporate personnel files (which include formal managerialFigure 2. Model of Software Maintenance Programming Code
assessments of each programmer). The other data may be
obtained by interviewing the managers of the projects

The unit of analysis for this model is the project. Each
being analyzed.

maintenance project has its own task requirements and its
own budget. For each such project, seven types of data Higher maintenance costs attributable to high levels of
must be collected. software complexity constitute an ongoing tax which a

software system may levy upon its maintainers. Once
• Task Magnitude: The output of the software main- highly complex software has been identified, and its

tenance process is modified code. This will naturally long-term cost impact has been estimated, managers can
have a major effect on the amount of work required. choose from a number of options: If the cost impacts are

relatively minor, they may opt to leave the system as it is,
• Task complexity: Other things being equal, some but to monitor future maintenance to the system to be sure

programming tasks are simply more difficult and that it results in modifications which are of lower com-

demanding than others. This may be because they plexity than the original, or at least no higher.
demand a more sophisticated level of programming.
It may be because the task specification includes more Alternatively, it may be practical to identify key compo-
stringent reliability requirements. In either case, such nents of the system which are particularly complex and
a task may require more and better programming modify just those components. (Much of the complexity

of a system tends to reside within a small proportion of itsresources.
code.) Finally, a system may be so complex that it would

• Programmer skill: Studies have found ten-to-one be cheaper to rewrite or replace it than it would be to
differences in productivity between top rated program- tinker with it.
mers and poorer ones.

Most of the cost of maintaining a program is expended in
• Programmer experience: Even a good programmer is comprehending it rather than in making the actual modifi-

at a disadvantage when faced with an unfamiliar cations (Lientz, Swanson and Tompkins 1978). We may
system as time must be expended in comprehending expect all four of the complexity factors which we have

chosen to affect maintenance costs by affecting the effortthe software and becoming familiar with it.

252

level required by a programmer to understand the code Software Complexity = f(software tools, volatility, function-

that must be modified. ality, age, operating requirements error rates)

The proposed model was used to estimate the costs of 59
maintenance projects of average size (the mean project . Software Tools: The complexity of a system is initially
size being 910 hours, billed at forty dollars per hour). The determined when the system is developed. Appro-

priate software tools and development methodologiesresults were strongly consistent with the earlier use of the
can aid programmers to write maintainable software.model in both the significance levels of the explanatory
Whether they actually do so is an empirical questionvariables and the direction of their effects. Controlling for
that our analysis can answer. In order to correctlythe effects of task size, task complexity and environmental

factors, program size and modularity were found to affect specify the model, a number of other factors must be
considered.maintenance costs at the five percent level of significance.

• Volatility: Some systems will undergo more frequent
maintenance because they are subject to frequent

6. FACTORS AFFECTING COMPLEXITY regulatory changes, used in a highly dynamic and
competitive industry, or they must interface with a
rapidly evolving system. We expect that more volatileIn order to control software complexity, we must ascertain systems will experience more frequent and moreits causes. Three sources suggest themselves as major hurried maintenance, both of which result in a degra-contenders. First, a system may be complex because it
dation of software complexity over time.does complicated things. There is a common belief that

the magnitude of a task should not affect software com-
plexity, that any task can be programmed well or poorly

• Functionality: One may think of the size of the entire
application system as a complexity metric, but it is one(Cavano and McCall 1978), but this is a counsel of

perfection. which is not under the control of the programmers,
being largely determined by user requirements. Since
more ambitious systems may require more ambitiousA system may be complex because of poor initial design.
code, the size of an application system may make itThis may be attributed to poor programming practices,
difficult for programmers to maintain good levels ofeither because the programmers developing a system are software complexity.insensitive to considerations of maintainability or because

they are following organizational standards which are
insensitive to those considerations. This is where modern • Age: Age is not a factor which is directly controllable

by management, except in the extreme sense thatdevelopment methodologies promise the greatest impact.
management may choose to replace an ok! system. ItSince understanding of structured programming has

become more general in the past decade, and software is, however, a surrogate for a number of factors
contributing to software complexity, such as the leveldevelopment tools more widely available, there may be a
of programming sophistication which existed at thetendency for older systems to be more complex than newer
time the software was first developed.ones. Much of the currently installed software base is over

a decade old.
• Operating Requirements: Another source of system

complexity is the imposition of operating requirements
such as rapid response time or cost efficiency. WhileFinally, software may be "maintained to death" (Belady
it is not necessarily the case that technical constraintsand Lehman 1979). Enhancements to a system often
force programmers to write complex code, they doconsist of poorly planned modifications to the system.
tend to cause programmers to pay less attention toEven relatively careful maintenance may result in the such niceties.creation of new modules which the application system was

never designed to contain. Thus, the more maintenance a
system undergoes, the more complex it is likely to become.

• Error Rates: Just as we expect software complexity to
affect error rates, error rates may, in their turn feed(There is a vicious circle in place here, since a complex
back upon the software complexity of an applicationsystem will probablyaccumulate programmingerrors which
system. Thus, we will probably not wish to estimatewill necessitate more frequent maintenance.)
this model using Ordinary Least Squares. Rather, it
may be more appropriate to estimate it as a system ofWe expect older systems to exhibit higher levels of soft- simultaneous equations, with metrics and error ratesware complexity. The older the system is, the longer it both acting as endogenous variables.has had to be modified and patched and otherwise to have

its structure and integrity eroded. In addition, the older
systems were written at a time when there was a lower Preliminary analysis suggests that the importance of the
awareness of the importance of software maintainability, variousfactorsdeterminingsoftwarecomplexityvariesfrom

so they were probably more poorly designed to start with. metric to metric. Age, for example, has the strongest
significance in explaining the level of branching within a

253

system -- not surprising, given that the older systems were Banker R.; Datar S.; and Kemerer, C. "A Model to
written before such branching came to be considered Evaluate Factors Impacting the Productivity of Software
harmful. Maintenance Projects." MIT Sloan School, Working Paper

Number 2093-88,1988.

7. CONCLUSIONS Basili, V. R., and Hutchens, D. H. "An Empirical Study
of a Syntactic Complexity Family." IEEE Transactions on

Most software expenditures are devoted to maintaining Software Engineering, Volume SE-9, Number 6,November
existing software and anything we can do to make that 1983, pp. 664-672.
software easier to maintain can mean enormous monetary
savings. This is the attraction which commercially available Belady, L. A., and Lehman, M. M. "The Characteristics of
software engineering tools and methodologies have for Large Systems." Research Direction in Software Techno-
programming organizations. In this paper, we have logy: MIT Press, 1979.
presented a framework for assessing such tools.

Boehm, B. "Improving Software Productivity." Computer,
This framework allows us to perform our assessment by September 1987, pp. 43-57.
analyzing the ability of the products being examined to
affect software complexity and by contemporaneously Boehm, B. Software Enginee,ing Economics, Englewood
estimating the long-term economic impact of high (or low) Cliffs, New Jersey: Prentice-Hall, 1981.
levels of software complexity.

Bowen, J. B. "Are Current Approaches Sufficient for
We have examined the questions which must be answered Measuring Software Quality?" Proceedings of Ute ACM
before managers commit large expenditures of money and Software Quality Assurance Workshop, November 1978,
resources in this direction. We have presented a basis for pp. 148-155.
selecting appropriate metrics to use in monitoring software
complexity. We have presented a set of models for Cavano, J. P., and McCall, J. A. "A Framework for the
estimating the economic impacts of software complexity. Measurement of Software Quality." 77:e Proceedings of
Initial analysis shows these models to be practical to the ACM Software Quality Assurance Wokhop, Novem-
implement and tends to confirm our expectation that the ber 1978, pp. 133-139.
impacts which we are investigating are present and are
significant. Gallant, J. "Survey Finds Maintenance Problem Still

Escalating." Con:puterworld, Number 20, January 27,
Finally, we have presented a model for testing the effect of 1986.
the tools or techniques in question upon software com-
plexity. Gibson, V. R., and Senn, J. A. "System Structure and

Software Maintenance Performance." Communications Of
We are in the process of implementing these models at a the ACM, Volume 32, Number 3, March, 1989, pp. 347-
commercial site. Data collection undertaken to date 358.
confirms the practical implementability of our framework.
Analysis undertaken to date has yielded results supportive Halstead, M. Elements of Software Science, Elsevier
of the models presented and of our expectations: Higher North-Holland, 1977.
levels of software complexity tend to result in higher error
rates. Higher levels of software complexity tend to result Kemerer, C. F. "Measurement of Software Development
in higher maintenance costs. Software complexity may be Productivity." Doctoral Dissertation, Carnegie-Mellon
explained by a number of factors, including the age, University, 1987.
functionality and volatility of the software. Controlling for
these factors, we may assess the marginal impact of CASE Li, H. F., and Cheung, W. K. "An Empirical Study of
(Computer Aided Software Engineering) tools and other Software Metrics: IEEE Transactions on Software
products upon this complexity. These results will be Engi,ieenitg, Volume SE-13, Number 6, June 1987, pp.
presented in subsequent papers at the completion of the 697-708.
study.

Lientz, B. P.; Swanson, E. B.; and Tompkins, G. E.
8. REFERENCES "Characteristics of Application Software Maintenance."

Communications ofthe ACM, Volume 21, Number 6, June
Albrecht, A. J., and Gaffney, J., Jr. "Software Function, 1978, pp. 466-471.
Source Lines of Code, and Development Effort Prediction:
A Software Science Validation." IEEE Transactions on Lyle, J. R., and Gallagher, K. B. "Using Program Decom-
Software Engineeting, Volume SE-9, Number 6, November position to Guide Modification." Proceedings of the
1983, pp. 639-648. Conference on Software Maintenance, 1988, pp. 265-269.

254

McCabe, T. J."A Complexity Measure." IEEE Transac- Olle, T. W.; Sol, H. G.; and Verrijn-Stuart, A. A., Editors.
tions on Software Engineering, Volume SE-2, Number 4, Infomiation System Design Methodologies: A Compara-
December 1976, pp. 308-320. tive Review, Amsterdam, North-Holland, 1983.

McCabe, T. J. "Structured Testing: A Software Testing Wake, S., and Henry, S. "A Model Based on Software
Methodology using the Cyclomatic Complexity Metric." Quality Factors which Predict Maintainability. " Pro-
National Bureau of Standards Special Publication 500-99, ceedings of the Conference on Software Maintenance,
December 1982. 1988, pp. 382-387.

Munson, J. C., and Khoshgoftaar, T. M. "The Dimension-
ality of Program Complexity." Proceedings Of the Intenta-
tional Conference on Software Engineering, 1989,
pp. 245-253.

255

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1989

	SOFrWARE COMPLEXITY AND MAINTAINABILITY
	Rajiv D. Banker
	Srikant M. Datar
	Recommended Citation

	tmp.1422403218.pdf.C5DRv

