
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1989 Proceedings International Conference on Information Systems
(ICIS)

1989

TOWARDS MORE POWERFUL
CONCEPTUAL SCHEMA LANGUAGES
Peter Creasy
University of Queensland

Follow this and additional works at: http://aisel.aisnet.org/icis1989

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1989 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Creasy, Peter, "TOWARDS MORE POWERFUL CONCEPTUAL SCHEMA LANGUAGES" (1989). ICIS 1989 Proceedings. 2.
http://aisel.aisnet.org/icis1989/2

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1989/2?utm_source=aisel.aisnet.org%2Ficis1989%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


TOWARDS MORE POWERFUL CONCEPTUAL SCHEMA LANGUAGES

Peter Creasy
Key Centre for Software Technology

Department of Computer Science
University of Queensland

ABSTRACT

One of the phases of information systems design methodologies is that of conceptual schema design.
This phase involves identifying relevant objects, their properties and propositions involving these
objects. These are described in a conceptual schema using a conceptual schema language.

Conceptual schema languages which permit a graphical form are becoming more widely accepted under
the motivation of being able to see the data structures that exist. However the semantics are somewhat
limited with, for example, few integrity constraints being represented. In this paper we show how
conceptual schema languages with a graphical form can be extended to permit a wider class of
semantics to be represented.

1. INTRODUCTION structural component of the model" (p. 526). This paper
proposes not a new language but a method of extending

The conceptual schema design phase of information existing languages to include the "integrity-specification
systems design is one of the more important phases. A component." The method could be applied to any fact-
number of methodologies and languages have been based language. We demonstrate the method using a fact-
proposed for this phase. In addition, languages which have based language which already can represent a reasonably
a graphical form have become increasingly significant in wide class of constraints.
information systems (e.g., Harel 1988). These graphical
forms have enabled the user to see the data structures. NIAM (Verheijn and van Bekkum 1982; Nijssen and

Halpin 1989) is a methodology with an associated fact-
Information systems have three perspectives (Olle et al. based language with a graphical representation. It is
1988): informally described using a few examples. The methodo-

logy involves taking a significant set of sentences from the
• the data perspective which is concerned with the UoD and from these abstracting to obtain the fact types

data to be recorded within an information system. (the information bearing construct).

• the process perspective which is concerned only However there are a number of problems with the lan-
with processes which operate on this data. guage. It uses only a few validation constructs (e.g.,

mandatory role, uniqueness). While we can represent what
• thebehavior (or event-oriented) perspectivewhich we regard as some of the more important constraints,

is concerned with events which cause the processes there is still a large class which cannot be represented. In
to be performed. addition, subtype definitions and derivation rules have no

formal representation.
It is the first perspective which is of concern in this paper.

The entity-relationship (E-R) model (Chen 1976) is a
An essential part of any knowledge representation system similar model, although without the methodology of
is the representation of facts. As syntactic rules permit NIAM. It has even fewer validation constructs than
facts which are syntactically valid but semantically invalid NIAM, fthough many proposals have been made in thiswithin the universe of discourse, we additionally need area.
constraint specifications. Correspondingly we distinguish
two classes of data types -- the fact encoding construct (a Most of the presentations in the integrity constraint area
data structure type which is associated with a population (e.g., Reiter 1988) use first order predicate logic (FOPL),
of instances) and validation rules. It is the latter structures a language unfamiliar to most analysts. Existential graphs
which are of interest in this paper. (Peirce 1960; Roberts 1973) have been developed in a

number of forms which correspond to propositional, first
A number of other models/languages have been proposed, order and higher order logics. The graphs provide a very
in most of which, e.g., IFO (Abiteboul and Hull 1987), the readable logic representation in graphical form which can
"primary focus in the development..has been on the be readily integrated with graphical knowledge representa-

1



tion languages. We discuss the first order form which is   However, this is not structured enough. We are relying on
representedgraphicallyusingnegation, conjunctionand the the listener to interpret that Jack is a person and Australia
existential quantifier. is a country. As it is the user with the expert knowledge

of the UoD, this domain information must come from the
We use the existential graphs to extensively extend the user. If we persuade our user to be a little more explicit,
power of these languages to include a graphical first order we should receive the message:
logic language which permits the subtype definitions,
derivation rules and constraints to be formally graphically The person with person name Jack will visit the
represented. We show this for NIAM and E-R. country with country name Australia.

Finally, we discuss an extension to the NIAM methodology Senteilces such as this reveal the deep structure of the
which guides analysts/users in the expression of constraints sentence. We are listening for verbs, entity categories or
in the extended language. types, label categories or types and label instances.

Examining sentences in terms of these structures we
obtain:

2. NIAM
The PERSON entity type

We informally describe NIAM using a few examples. The , with PERSON-NAME label type
methodology involves taking a significant set of sentences Jack . label instance
from the UoD and from these abstracting to obtain the Will-visit verb (role)
fact types which, together with the database, is the fact the COUNTRY entity type
encoding mechanism. The set of sentences should be with COUNTRY-NAME label type
significant in the sense that it will enable us to determine Australia label instance
all constraints that can be represented in NIAM. and connective

was-born-on verb (role)
For example, let us take a travel agency business. Suppose the DATE entity type
we have forms such as in Figure 1. The NIAM methodo- with EUROPEAN.DATE-CODE label type
logy uses what Nijssen (1986) has called the "cookbook" 2/11/72 label instance
approach. With this approach the users take familiar
examples of facts from their application, for example, Jack The user (the expert of the UoD) has been able to take us
visits Australia. We need now to take the user from the from a surface structure to a deep structure. From here
instance level to the type level. Nijssen suggests the we proceed to step 2 which involves a quality check on the
heuristic of telephoning someone and informing him/her elementary facts. We ensure that the entities are fully
of the fact and "in this way the user is forced to make a designated and that the facts cannot be split into smaller
visual to auditory transformation." With this verbalization ones without loss of information.
process, the sentences are expressed in natural language
rather than in a formal artificial language prescribed by We carry out the abstraction process at step 3. For this we
"computing experts." There are some semi-formal rules for ignore the label instances and present the remaining entity
specifying the sentences, but this helps the users to types, verbs and label types in a graphical form.
formalize the problem in their minds.

From this (and the remainder of a significant sample), we
The user may specify the statement can derive the schema of Figure 2, although strictly it is a

subschema. We have also included part of the population
Jack is going to Australia. of the significant sample, however this is usually only done

either for explanatory purposes or to check the schema.
The label types (PERSON-NAME and COUNTRY-
NAME) are represented as dotted circles. The current

The Fly-By-Night Travel Agency The Fly-By-Night Travel Agency extension of the label type PERSON-NAME is Jack and
l'ra¥cl-Sc]¤1111£ taycLS,:hcanic Jill. The entity types (PERSON and COUNTRY) are

Name: Jack Name: Jill represented as circles. The current extension of PERSON
Date-of-birth: 2/lim Date·of-birth. 12/8/77 is those people called Jack and Jill. These entities are
Councies to visit: Australia Countric$ 10 visit: Ncw Zealand non-lexical. We have represented them by arbitrary lexical

New Zealand marker. Often in the diagrams, we use the corresponding
lexical representation (e.g., Jack).

The NIAM language is fact-based. It has a graphical
representation which is the form generally used for concep-
tual schema design. The facts (fact type instances) are

Figure 1: Sample form semantically irreducible associations between entity in-

2



E
>

A
 

'i
 E

>
A

stances, with each entity instance playing a role in the fact non-lexical entities have been represented by the corre-
(sentence). The methodology abstracts from facts to give sponding lexical representation. This fact can be read as
fact types: the fact encoding construct. the person identified by person-name Jill visited the

country identified by country-name USA.

Some of the constraints we can represent in NIAM are
CALLED intrafact (and intrareference), interfact uniqueness,

* (2 w e l, (6: mandatory role, equality, exclusion and subset constraints.
hEINd ts-nune. --0 person- '. The arrows above the roles represent intrafact or intra-

. name . reference uniqueness constraints which are placed on the
Jack .... instances of the role or roles. They indicate that the role
Jul or roles uniquely identify a single fact instance, i. e., theySue specify functional dependencies. In this case constraintsFrcd

1 . .. C4 and C5 indicate the functional dependencies
person - passport while 0 indicates person, coun-VISIT0 try + 0. Constraints Cl and C indicate unique namingC3

, for the entity type PERSON.
PERSON

'Rited ='d-by -BA The constraint C7 is a mandatory role constraint which
indicates that if an entity (or label) takes part in any fact

COUNTRY (or reference) instance then it must take part in an

C8 «|< .    (counuy- name) instance of the fact (or reference) type corresponding to
the constraint. The subset constraint C8 indicates that

HOLD anyone who visits a country must have a passport.
C4 C5..,

The fact types can be mapped to relational structures using

-Ei  resulting relations are VISIT(person . country) and
what is essentially a synthesis algorithm. For Figure 2 the

T10232 HOLD(person, passport).
S32110 PASSPORT

(pp-numb)T21321 We have not mentioned all the features of the language.
One which should be mentioned is subtyping, an important
part of the language. An example is shown later. It

Figure 2: A NIAM Conceptual Schema should be noted that it is not necessary to write down the
populations, fact type names, role names or constraint
names unless they are needed for clarification. This results

Figure 2 shows a NIAM diagram which represents people in a much less cluttered diagram.
holding passports and visiting countries. The main
constructs are entity types (circles), c.g., PERSON,
COUNTRY; roles (rectangles), e.g., visited, was-visited- 3. EXISTENTIAL GRAPHS
by, which correspond to verbs of a sentence; fact types
(compound rectangles), e.g., VISIT, HOLD; label types Existential graphs were first proposed by Peirce (1960) at
(dotted circles), c.g., person-name; and constraints. the beginning of the century. As a graphical representation

of logic they were intended to be easy to learn, read and
A relationship type between entity types is a fact type. write. Many other forms have also been proposed (see
Each fact or reference type consists of a number of roles. Gardner 1983). The graphs have few operators, are easy
These describe the part (or role) each entity or label type to translate to the Peano-Russell notation and suit the
(to which the role is joined) plays in the fact or reference purpose we intend for them.
type. For example, the role played by PERSON in
CALLED is "is-named." The graphs have a number of parts:

Entities are non-lexical and are lexically identified by • Alpha part, equivalent to propositional logic.
reference types (e.g., CALLED). These are special fact • Beta part, equivalent to first order predicate logic.
types which associate entity types with the identifying label • Gamma part, equivalent to second, higher order
type. The references can be abbreviated by writing the and model logics.
corresponding label type in parentheses following the
entity. We have shown this for the entity type COUNTRY. Roberts (1973) has shown completeness and consistency

for existential graphs. In particular, Roberts uses Quine's
An example of a V[SIT fact type instance is <Jill,USA>. (1955) ML logic system.
We can show such populations as in Figure 2, where the

3



We shall informally describe existential graphs and relate The Beta part additionally has a line of identity, used to
them, where appropriate, to the more widely tmderstood represent an individual in the universe, and a spot which
propositional and first order logic and the Peano-Russell is equivalent to the FOPL predicate, e.g., Cold of
notation. The Alpha part has only three basic symbols: the Figure 4(b). In the Alpha part, the graph and the (propo-
sheet of assertion, the cut and the graph. The graphs are sitional) symbol were one and the same. However, in the
laid out on the sheet Of assemon (SA),an arbitrarily Beta part, a graph may consist of a number of symbols,
large area, which equates to a model of the universe of dis- hence the need to distinguish the symbol and the graph.
course. A graph instance is something which asserts a The line of Figure 4(a) indicates the existence of some-
possible state in the universe, viz. proposition. The sheet thing, e.g., (3x).
of assertion is also considered to be a graph, as the blank
SA expresses whatever initially holds in the UoD. IID>idl Cold - Wet k#revaphs

Graph instances written on the SA are asserted to be true. (3 K) (ax)Cold (Ex)Cold(*)A (Hy)Wet FOPL
By a graph is meant "any sign (symbol) which expresses in

W (b) (c)a proposition some state in the universe" (Roberts 1973,
p. 32). Some examples are shown in Figure 3. It should
be noted that the shape of the graphs (whether lines are Cold- Wel 0.0 W.' kirce Daphs

straight or curved or the shape of the closures) is not
important. Figure 3(a) contains two graphs which together (ix)(Oold(x) Wc«x)) ((Ex)Coll(x)) (Ex)@y)(Cold(x)AW«(y» xy y) R)PL
state that the propositions represented by Raining and (d) (c) (0
Cold hold, i.e., the conjunction of these holds. Peirce
distinguished graph and graph instance. In his terms, there Figure 4: Existential Graphs -- Beta Part
is strictly only one graph, Raining, of which there may be
a number of occurrences (graph instances); e.g., we may
have Raining repeated a number of times such as in We still have the convention that two graphs drawn on the
Figure 3(b). In the following we shall use the term graph same SA represent the conjunction of the graphs. Thus
rather than graph instance, except where we wish to make Figure 4(c) represents (3x)Cold(x) A (3y)Wet(y). In
the distinction. Figure 4(d), the line of identity between Cold and Wet

indicates that the two individuals represented by the ends
are identical, Le., (3x)(3y)(Cold(x) . Wet(y)   x= y)) or

Raining Cold Raining CD]d Rainills :(Sunny (3x)(Cold(x) A Wet(X)). This can be extended to n
individuals.

It 1§ ** and cold It Is mining andcold It 11 raining and not sunny
(a) M (c)

A line of identity passing through an empty cut indicates
C - ) C hytime- ) the non-identity of the individuals at the extremities. For

4-352/   example, Figure 4(f) is equivalent to
(3x)(3y)(Cold(x) A Wet(y) X y). The negation of a

Ifit is raining it is cloudy 1 i: sunny or cloudy If it is daytime it is sunny ligature indicates the non-identity of the individuals
Le.n(-,SAnC)E Sv C

)d.dy
denoted by the extremities of the ligature.

Cd) (c) (0

Just as a predicate can have more than one argument,
Figure 3: Existential Graphs -- Alpha Part more than one line may be attached to a predicate (sym-

bol). The places of attachment are called hooks, and the
meaning of the hooks must be understood just as the

A single line, with no crossings, can be drawn around a positions of the predicate arguments in FOPL need to be
graph (a cut) to indicate the negation of the graph. For understood. Figure 5(a) represents someone is located
example, Figure 3(c) is equivalent to Raining A -Sunny. somewhere. In this case we arbitrarily decided to consider
For material implication (e.g., Raining * Cloudy, or "if the hook in front of the predicate to be the person and the
Raining then Cloudy"), the term "scroll" is used. This other hook to be the place.
example is shown in Figure 3(d). The graphs are read
from the outside inward (endoporeutic). In this example
(Figure 3(d)), reading from the outside inward we have Person
the antecedent ("if Raining") and then the consequent
("then Cloudy"). Located

With only negation and conjunction we need these to ( H x)(3 y)Located(x.y) (Vx)(Person(x) *Q(x))
represent disjunction. While this may appear awkward, we
emphasize that the visual representation is important and (a) 0)
one can quickly learn to recognize and draw this picture as Figure 5: Binary Predicates
a disjunction.

4



It is possible to have any nesting of cuts. Graphs are To be useful as a constraints language, the logic first needs
referred to as being evenly enclosed or oddly enclosed, to be extended by introducing "inequality" predicates ( < ,
depending on the depth of nesting. This is significant as 5,2, > , 0 )for numeric values.
those graphs evenly enclosed have been negated an even
number of times and thus have a positive sign (no nega-
tion) in the expanded FOPL (or propositional logic) form, COUNTRYwhile those oddly enclosed have a negation sign. Anything (country-name)

not enclosed (i.e., on the SA) is considered to be evenly    

enclosed.

When a line (of identity) crosses a cut, the nesting of the Country --' Visa-needs 1-- Country

cuts determines the equivalent FOPL variable scoping, with
Lf· Uve· ked·vis-the outermost extremity of the line determining the herc  0*Ki[·bere

position of the existential quantifier (the endoporeutic (a) ' Visa-needs (b)
view). For example, Figure 5(b) is equivalent to
-((3x)(Person(x) A -(3y)Located(y))), i.e.,
(Vx)(Person(x) * (3y)Located(x,y)). This figure also
demonstrates the use of the scroll in the Beta part. After Figure 6: A Constraint with Existential Graphs

some acquaintance with the graphs it is very easy to read
this as eve,yone is located somewhere. In this type of
structure, the antecedent is always oddly enclosed and the One of the advantages of a graphical language is allowing
consequent evenly enclosed. a user to see immediately the structures (relationships

between object types). Over-complication of a diagram
Constants are not treated differently from other symbols, defeats this advantage; thus it is important to keep the
which we have so far thought of as predicates. We treat number of graphical symbols to a minimum. By using
a constant the same as a unary predicate. If necessary, we existential graphs it permits the full power of FOPL to be
can distinguish constants by enclosing them in quotes. used to express constraints with few symbols. We could
However for our usage, as we shall see, this is not neces- use set constraints of NIAM when appropriate, i.e., to
sary as there is no ambiguity. express what we shall call our "specialty" constraints

(uniqueness, mandatory role, etc.), and existential graph
constraints when membership constraints are required or

4. EXTENDING CONCEMUAL SCHEMA NIAM does not have the appropriate symbol.
LANGUAGES

We shall incorporate existential graphs into NIAM and
While FOPL can be used as a conceptual schema language, E-R diagrams. We shall use fact types and relationship
it is very cumbersome. The fact type of NIAM and the sets as the existential graph predicates. NIAM cannot
relationship set of E-R are just predicates. However, both express existential quantification and thus we cannot
NIAM and E-R are strongly typed languages. The fact express that someone is located in a country. We use
type VISIT of Figure 2 must involve a person and a the incorporation of NIAM and existential graphs of show
country. Figure 5(b) represents eve,y person must be this in Figure 7.
located somewhere, although we have not specified the
type for the second predicate.

. NIAM constraints are set oriented. In terms of sets, the PERSON COUNTRY

existential graphs are"member oriented" in that we express
in an exclusion constraint, say, that there is no element that
is in both sets involved in the constraint. This potentially
gives greater scope for expressing constraints. For exam-   Visit
pie, given the NIAM schema of Figure 6(a), we may wish
to express that one does not need a visa to visit one's
own counter. We cannot express this with NIAM's set

Figure 7: Incorporation of NIAM and Existentia] Graphsconstraints as a country will generally appear in both roles,
i.e., in both sets, and we thus can't use the exclusion
constraint. However existential graphs do allow us to
express 'there cannot be a country which acts as a lives-in To use a predicate for more than one logical expression we

and a requires-visa-for in the same row." This is shown in use predicate instances. We can do the same in the
Figure 6(b). The combination of the NIAM constraints incorporated diagram by using an "image" of the fact type

as in Figure 8, which represents that there is a ./light toand the existential graph constraints is thus potentially the USA. Figure 9 specifies the constraint Bookingspowerful and simple. must not exceed the capacity of the flightl

5



FLIGHI' COUNTRY
It would be desirable to be able to represent an element

Destination of an entity type, i.e., to have the equivalent of unary type

' '   predicates. In this case we express the image of an entity
type as a large blob. The constraint of Figure 11(a)
indicates that there exists at least one person in the
information base (which does lead to problems in not

-1-7-u.S.A permitting us to have an empty information base). Given
this construct, we have a representation for the mandatory

Figure 8: Using Images of Fact Types role. We represent eve,y petson has a surname as in
Figure 11(b).

Bookings
4 1 PERSON Has-surname SURNAME

0FLIGHT SEAT

(a)
PERSON Has-surname SURNAME

.

Capacity (440Figure 9. Constraint Specification with the Scroll

(b)
We can also use the existential graphs to represent
derivation rules. Where rules are of the form "consequent Figure 11: Using Entity Type Images
if antecedent," e®, x is the grand-parent-of zifxis
the parent-of y and y is the parent-of z. thenwe Can
use the scroll. An example is shown in Figure 10, where This construct can be used to represent the subtype
the maximum bookings for a flight can be derived from the definition. An example of a subtype definition is given in
type of aircraft used on a flight and the capacity of the Figure 12. Traveller is a subtype of Person and is defined
aircraft. This type of structure is also useful as the to be those people who visit countries.
constraint A person must be recorded as visiting a
country if they are booked on o flight which has that PERSON COUNTRYVisitcount,y as a destination, viz

(Flies * Destination)[person,country] C Visit.

FLIGHT Uses AIRCRAFF

04-IHDIA
Figure 12: Subtype Specification

TRAVELLER

We can use existential graphs to extend the graphical form
of any fact-based language. You can take your favorite
graphical knowledge representation language and use the
relationship type as the relationship predicate. If the
language is strongly typed (as most such languages are),OMax_book

SEATS
the same approach can be taken as we did with NIAM.

In particular the entity-relationship model (Chen 1976),
which is widely used, is well suited for such an extension.

Figure 10. Derivation with the Scroll E-R's relationship type and entity type are treated in the

6



same way as NIAM's fact type and entity type. We simply al such as no <statement>, e.g., no pe,son is to w'sit
use differently shaped image symbols to correspond to Fmnce, and those involving specific individuals, e.g., Bill
those of E-R. The example in Figure 13 is the E-R is not to visit France, use a type (iib) structure.
version of Figure 9.

PERSON m Visit n COUNTRY
4 BookingsA

- -France

FLIGHT SEAT n COUNTRYk 'I-< 3->-/3/ PERSON m Visit

45- b\ /n
\<  Capacity >/ -

PERSON m Visit n COUNTRY

Figure 13: Incorporation of E-R and Existential Graphs

(c) - France

5. EXTENDING THE METHODOLOGIES

The extended methodology is independent of the language PERSON -m_</V-Al_n COUNTRY
the graphs are being incorporated with. To make this .-.
point we give the examples using E-R. Cd) r -*C>- Francoh
For most constraints we tend to use the "if then" construct ---Al---*<
(the scroll). In our examples so far, the only ones not
using the scroll were existence or non-existence constraints. Figure 14: Possible Constraint Forms
These constraints are fairly straightforward. The only
problem anyone may have is in phrasing them as a
negation. The existence constraints (someone is booked Those involving (a) conditionals, such as 4 <condition >
on a fight) are the simplest. However, if we start with then <statement>, e. g., if someone visits a country that
an empty database then no facts are initially present and person needs a passport, (b) negative conditionals, e.g.,
thus such constraints are initially violated. Nevertheless we no one other than people visiting a countly needs a
shall consider such constraints in the following. passport and no one may visit a country without a

passpon, and (c) those involving all elements of a set,
We claim that there are four basic structures which we can such as any, eve/y, when, whenever, e.g., eve,yone visiting
use to represent most constraints. These are: a counny needs a passpon, use a type (iii) structure.

Where there are multiple conditional statements, the
(i) existence, e.g., someone is to visit France, predicates can be joined and expressions of any complexity

Figure 14(a). composed.

(ii) non-existence
6. CONCLUSIONS

(a) of one element, e.g., there is someone who is not
to visit France, Figure 14(b). We have shown that we can significantly extend the power

of fact-based languages using a relatively simple graphical
(b) all elements, e.g., no one is to visiting France, language which has the power of FOPL. The techniques

e.g., Figure 14(c). could be used with any language with graphical predicates.
The advantage of the fact-based languages is their strong

(ili) scroll, e.g., eve,yone is to visit France, Figure 14(d). typing.

Whenever we have constraints Iike someone or Jill, i.e., We have demonstrated elsewhere (Creasy 1988) that
those involving the existence of a fact, we use a type (i) existential graphs can be easily learned and used to express
structure. For constraints that involve the existence of an constraints, subtype definitions and deduction rules. We
unspecified individual for whom we wish to express a believe there is no necessity for analysts to have a back-
negative we use (iia). Other negatives without a condition- ground in logic to use the graphs.

7



As shown in Section 5, most constraints involve the scroll Harel, D. 'On Visual Formalisms." Communications
and will not involve structures more complicated than ACM, Volume 31, Number 5, May 1988, pp. 514-530.
those presented. The various forms can be learned by
example and combined as necessary. The graphs have the Nicolas, J. M. "Logic for Improving Integrity Checking in
advantage that, if required, the full power of FOPL can be Relational Data Bases." Acm Infonnatica, Volume 18,
used. pp. 227-253.

Having represented the constraints graphically, we need a Nijssen, G. M. "On Experience with Large-Scale Teaching
method to compute them to determine whether or not they and Use of Fact-based Conceptual Schemas in Industry
hold. We have shown elsewhere (Creasy 1988) that the and University." In R. Meersman and T. B. Steel Jr.
graphs can be simply mapped to Prolog to achieve this. (Editors),Proceedings IFIP Conference on Data Semantics
While Prolog may be useful in demonstrating the comput- (DS-1),Amsterdam: Elsevier North-Holland, 1986.
ability of the constraints, it is totally inefficient to recom-
pute the constraints after each change of the database Nijssen, G. M., and Halpin, T. A Conceptual Schema
state. As an alternative method of computing, we note and Relational Database Design: AFact-Based Approach,
that the existential graph form also lends itself to a Englewood Cliffs, New Jersey: Prentice Hall, 1989.
technique suggested by Nicolas (1982). This permits
efficient computation of most constraints. Olle, T. W.; Hagelstein, J.; Macdonald, I. G.; Rolland, C.;

Sol, H. G.; VanAssche, F. J. M.; andVerrijn-Stuart, A. A.
Infonnation Systems Methodologies - A Framewolk for

7. ACKNOWLEDGEMENTS Undeistanding. Wokingham, England: Addison-Wesley,
1988.

We wish to acknowledge the anonymous referees for
constructive comments on the presentation of this paper. Peirce, C. S. Collected Papers of Charles Sanders Peirce,

Volume 4. A. W. Burks (Ed.), Cambridge, Massachusetts:
Harvard University Press, 1960.

8. REFERENCES Quine, W. V. Mathematical Logic, (Revised Edition).
Cambridge, Massachusetts: Harvard University Press,

Abiteboul, S., and Hull, R. "1FO: A Formal Semantic 1955.
Database Model." ACM Transactions on Database
Systems, Volume 12, Number 4, December 1987, pp. 525- Reiter, R. "On Integrity Constraints." Proceedings ofthe
565. Second Conference of Theoretical Aspects of Reasoning

about Knowledge. Pacific Grove, California, March 7-9,
Chen, P. P. "The Entity-Relationship Model -- Towards 1988, pp. 97-111.
a Unified View of Data." ACM Trai:sactiotis oi; Database
Systems, Volume 1, Number 1, March 1976, pp. 9-36. Roberts, D. D. The Existential Graphs of Charles S.

Peirce. The Hague: Mouton, 1973.
Creasy, P. N. "Extending Graphical Conceptual Schema
Languages." Internal Report, University of Queensland, Verheijn, G., and van Bekkum, J. "NIAM: An Informa-
1988. tion Analysis Method." In T. W. Olle, H. G. Sol, and

A. A. Verrijn-Stuart (Eds.), Infonnation System Method-
Gardner, M. Logic Machines and Diagrams (first pub- ologies -- A Framework for Understanding, CRIS Task
lished 1958), Brighton: The Harvester Press, 1983. Group of IFIP WG8.1. Amsterdam: North-Holland, 1982.

8


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1989

	TOWARDS MORE POWERFUL CONCEPTUAL SCHEMA LANGUAGES
	Peter Creasy
	Recommended Citation


	tmp.1422403491.pdf.wWHRO

