
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1981 Proceedings International Conference on Information Systems
(ICIS)

1981

COMPLEXITY MEASURES IN SYSTEM
DEVELOPMENT
Benn Konsynski
University of Arizona

Jeff Kottemann
University of Arizona

Follow this and additional works at: http://aisel.aisnet.org/icis1981

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1981 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Konsynski, Benn and Kottemann, Jeff, "COMPLEXITY MEASURES IN SYSTEM DEVELOPMENT" (1981). ICIS 1981
Proceedings. 24.
http://aisel.aisnet.org/icis1981/24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1981?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1981?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1981/24?utm_source=aisel.aisnet.org%2Ficis1981%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

COMPLEXITY MEASURES IN SYSTEM DEVELOPMENT

Benn Konsynski
Management Information Systems

University of Arizona

Jeff Kottemann
Management Information Systems

University of Arizona

ABSTRACT

Complexity measurement algorithms for information systems
schemas are considered. Graph representations, based on an object-relation pardigm and linguistic models, are discussed. Software
science metrics are evaluated as complexity measures, as is the
cyclomatic complexity measure. The deficiencies of current
measures are highlighted. An alternative structural complexity
metric is proposed that reflects propagation effects. The system
development life cycle is used to determine realms of complexitythat provide a framework for evaluation of complexity of designsand for projecting complexity between system development life
cycle phases.

INTRODUCTION The Nature of Complexity
Complexity as Measurement Information Complexity is a phenomenon of observa-

tion. It is easily recognized but difficult toDecisions are based on information, value formally define. One feels that he cansystems, and evaluation procedures. Infor- make relative comparisons and partialmation is frequently presented in terms of orderings, yet explicit quantification"measurements" that communicate such elludes us. If one were to ask an automo-things as "status," "environment," "per- bile mechanic, "What is complexity?" sheformance," etc. Measurements reflect the may well answer, "The complexity of"values" of the observer (individual or sys- what?" If one were to ask her, however,tem), and may bias the decision making „What is more complex, a carburetor sys-process and consequently the resulting tem or a fuel-injection system?" she woulddecision. This paper addresses complexity answer, "A fuel-injection system." Askedissues related to the decision making proc- why, she might say, "Because when I have
ess in the information system development to trouble-shoot a fuel-injection system, itprocess. The intent of the discussion is to usually takes me twice as long."explore complexity measurements that
may be useful in the information system It is less difficult to address complexity
design process. The emphasis of the inquiry when we introduce a context of evaluation,
is on the technical system characteristics, a viewpoint, and focus for observation. By
both static and dynamic. Nevertheless, providing a context (i.e., by specifying cer-
many of the issues and concerns presented tain tasks to be performed with certain
are applicable to important behavioral objects), the meaning of complexity be-
issues. comes more formal, and one can determine

173

the relative difficulty of performing tasks. 1, the complexities are dependent upon
Furthermore, the measurement of relative context. As a program flow graph, the
difficulty can be made in terms of a unit figure depicts the transfer of control into
that is meaningful in the context of the sinks. Therefore, the current program
application (e.g., time to do the task). state becomes simpler, that is, state infor-
Complexity is closely allied to the notion mation that was relevant in the initial
of difficulty. Within a given context, com- choice of control flow path may wei I be-
plexity is recognizable as a measurable come unimportant as the paths converge.
cost. The determination of the contexts of Indeed, this convergence to a single exit
system complexity and the respective cost point is a major principle in structured
functions is one tool in the process of programming. Although a convergent
moving program/system design from (basi- structure simplifies program control flow,
cally) an art to (basically) a science, or at it complicates overall system flow. A
least an engineering discipline. convergent system flow results in schedul-

ing problems due to precedence. A sche-
dule slippage along any path will result in a

Context Dependency in Complexity propagation effect throughout the entire
Assessment system. In contrast to a convergent pro-

gram flow, all paths must be considered
In order to determine the complexity of a simultaneously in a system. This simul-
system, a context or perspective must be taneity enters into system complexity in a
adopted. The measures reflect the values combinatorial fashion. In general, conver-
and assertions associated with a context gence simplifies a program structure but
adoption. complicates system structures.

Graph representations are often used in In contrast to convergence, the divergent
modeling software systems, communication flow of Figure 2 is a complicating struc-
networks, projects, etc. Graph schemata ture in programs, while it is simplifying in
of programs are used to support global large systems. In a program, divergence is
optimization, the development of testing a process of path selection. The state
strategies, etc. Graphic representation of space relevant to the current position
programs/systems can serve as a basis for along a path grows larger as the divergence
complexity assessment in program/system process continues. Each decision is based
design. The conclusions that can be drawn upon prior states and thus the complexity
based on the analysis of a graph model, (as a function of the state space) increases.
however, are contingent on the system Divergent flows in a system, on the other
being modeled; the context. hand, are simplifying; they allow for sche-

duling flexibility. A slippage in the execu-
The graph in Figure I depicts a structure tion of a discreet task (program) will
that converges along the direction of flow, affect only those tasks which are in the
while the graph in Figure 2 diverges. The transitive closure from that point. This
distinctions that can be drawn between scheduling flexibility is frequently used in
these two graphs is dependent upon the the exploitation of parallel processing.
context of review. If the graphs are used
in the context of a software system, the
nodes are discrete programs. If the graphs A Context Independent Basis
are used to represent prograrns, then the of Complexity
node-arc pairs might represent control
transfer points or some other inter-process In the context of project management,
relation. In the convergent graph of Figure complexity has three basic aspects:

174

0

0

Figure 1. A Convergent Structure

1175

0

Figure 2. A Divergent Structure

1.76

The complexity of the totality of represents a project or a software system,
individual tasks. timing considerations are easier to derive.

, 2. The complexity of the interrela- Analyses such as determining the shortest
tionship of tasks. path and assessing the impact of a schedule

slippage are easier to ascertain. If Figure
3. The complexity (volatility) of the 3 represents a program flow graph, path

environment within which the pro- driven analyses wi I I be easier. Examples of
ject is being conducted. such analyses include global optimization

and exhaustive program testing. These
context independent factors are valuable inTask complexity is represented by the the initial formulation of a complexityamount of operational resources (materi- model. They are, however, general andals, man hours, etc.) necessary to complete neglect many critical context dependentthe tasks. Task interrelatedness complex- factors. One must always be alert toity is manifest as the amount of support augmentation of complexity measures withresources (e.g., project manager hours) appropriate context dependencies.necessary to complete the project. Envi-

ronmental complexity is a higher level
con,plexity concern than are task and task AN IS COMPLEXITY MODELinterrelation complexities. At this higher FRAMEWORKlevel, the project is viewed as a task, and
the interrelation of tasks is a function of The system life cycle is one useful modelorganizational forces. Factors such as of system development and evolution. Aproject priority and resource allocation representative system I ife cycle is shownwhich are set at the higher, organizational
level, comprise the environmental com- in Figure 5.
plexity of individual projects. A combina- For purposes of this discussion, we havetion of the three aspects of complexity partitioned the life cycle into four setsindicate the overall complexity of a pro- which we call complexity realms denotedject (process) from a management stand- by R. The choice of realm partitions isN point. These three complexities will, in based upon temporal and operational rela-general, be evident in all systems of pro- tionships between life cycle phases.cesses.

R I = (1,2)Requirement definition and
Despite the role of specific contexts in logical design

1 complexity assessment, a general property
framework of complexity factors exists. R2 = (3,4,5,6) Physical design throughm The context dependencies of complexity implementation
stem from the realization of the three
types of complexity presented above. Two R3 = (7)System performance
graph structures are presented in Figures 3
and 4. Whether the graph structures repre- R4 = (8)Maintenance and modification
sent projects, software systems, or pro-
grams, several context independent obser- R I deals with the complexity of capturingvations can be made. The graph of Figure the requirement specifications in a com-3 has eight paths. The graph of Figure 4 plete and consistent logical design. R2has eleven. Therefore, most complexities involves the complexity of designing, con-which arise due to the number of paths will structing, and implementing a physical de-apply regardless of the context. If graph 3 sign which is complete and consistent with

177

1

4

1

1

Figure 3. A Structure with Eight Paths

178

0

Figure 4. A Structure with Eleven Paths

179

complexity conflict is illustrated in Figure
6. The code in this figure was constructed

1. Requirements Definition to optimize run-time efficiency. Using
multiplication, the 16th power of a

2. Logical Design variable X is calculated. Although this
code is computationally efficient and may

3. Physical Design be desirable in R3, it is undesirable in R4.

4. Construction

5. Testing
Y=X '

6. Implementation
1 DO 10 I = 1,4

7. Operation 10 Y=Y*Y
8. Maintenance

Figure 6. Trading Run-Time Efficiency
for Modifiability

Figure 5. A System Life Cycle
A third justification of realm partitioning

the logical design. R3 is concerned with is based on the temporal nature of the life
the complexity with respect to overall cycle. The detail level of information that
operating efficiency of the object system. is available at each life cycle stage varies.
In the context of a program, R3 is akin to The information space enlarges at succes-
the notion of computational complexity. sive phases. of the system life cycle. The'
R4 addresses the flexibility inherent in the realms, then, are partitioned to reflect this
system implementation. information spae differential.

Partitioning the system development life Realms are defined.in terms of properties.
cycle into realms is j ustified for several The properties describe · the basis for the
reasons. First, the sets of attributes ap- "complexity space'." It is desirable to
plicable to the different realms are to identjfy properties that are orthogonal.
some extent disjoint. In other words, some THe orthogonality allows us to focus on the
attributes are relevant to' only a subset of several dimensions of complexity, making
the realms. Separation into realms takes complexity analysis a modular process.
into account the context dependencies of Further, orthogonality will ensure that
complexity. Second, several attributes several dimensions of complexity can be
span realms. This spanning phenomenon explained (measured) with a minimum of
stems from context independencies and information. Let the properties of com-
may result in conflicting objectives, e.g., plexity be denoted by P.
minimizing complexity in R3 implies a sub-
optimal level of R2 and R4 complexity, where
minimizing R4 complexity implies a sub-
optimal level of R2 and R3. Separation of P I = Volume
the life cycle into realms assists the
designer/manager in identifying attributes P2 = Distribution
which cause conflicts in complexity con-
cerns. A simple example of this type of P3 = Location

180

Volume is a measure of the size of an effort metric of software science serves as
entity. An entity may be a FORTRAN the Volume property. An alternative to
subroutine, a PSL process description, etc. McCabe's Cyclomatic complexity, v(G), is

v Distribution is a measure of the inter- proposed for the Distribution property. In
relatedness of components within a addressing the Location property, the con-
module. Location is a measure of the cept of information hiding (Parnas, 1972)
intermodular interface complexity for a serves as a representative example.
given module. The location measure deals
with the relative functional/conceptual A COMPLEXITY MODEL FOR R2
distance between modules. In general,
location is a measure of "environmental" P I: Volume
interactiob. The orthogonality of these
properties in software is supported by Halstead (1977) developed a linguistic-like
empirical evidence (Tanik, 1980). As dis- model of software, called software
cussed earlier, these properties are also science. Software science offers several
useful in the evaluation of project com- prograrn characteristic measurements
plexity. These three properties provide a which are based upon counts and estima-
context independent basis for complexity tions of counts of operations and operands.
assessment. Software science metrics are derived using

the following parameters:
Each property is defined in terms of its
attributes. Let the set of attributes Be n I = the number of unique operators
denoted by A. A given element in A is an
attribute which belongs to property P in n2 = the number of unique operands
realm R.

N I = the total number of occur-
There exist two basic types of attributes. rences of all operators
There are attributes of the system itself

, (e.g., the number of discreet system pro- N2 = the total number of occur-
cesses), and there are the attributes of rences of all operands
resources applied to realize the system
(e.g., the qualifications of the project The vocabulary, n, of an algorithm is de-
members). The first set of attributes is a fined to be n I+n2. The length of an
result of system design, whereas the algorithm, N, is defined to be N I+N2.
second set is a result of project manage- Given that n tokens are used N times, the
ment (resource allocation). This distinc- minimum number of bits needed to repre-
tion is important from a systein develop- sent an algorithm can be expressed
ment standpoint. Complexity l eve l s are (N 1 +N2) log(n 1 +n2), or simply (N)log(n).
controlled via the attributes that contri- The logarithms in the following discussion
bute to system complexity. The control are base two. This measure, based on
mechanisms used wi I I depend on the type information theory, is referred to as the
of attribute in question. If the attribute is volume, V, of an algorithm.
one of design, system design methodologies
are used as control mechanisms. If, on the The value of V depends upon whether an
other hand, the attributes are resource algorithm is implemented in a "high" or
related, then possible control mechanisms "low" level language. The most succinct
include resource allocation and scheduling. (highest level) representation of an algo-

rithm is a call to a function or procedure.
In the following section, a complexity A FORTRAN program which calculates the
model is synthesized for realm R2. The sine of a variable x can be written as

I 8I

siinply SIN(X). The minimum, potential criminations E (for effort) necessary to
volume V* of an algorithm requires two write a given program can be given by
operators (N 1 *=n 1 *= 2) . One operator is
needed to name the function and the other E=V/L
to serve as an assignment or grouping
symbol. The minimum number of unique and as cited earlier
operands n2* is equal to the nurnber of
input/output parameters. Since each L=V*/V
unique operand need occur only once, we
know that N2*=n2*. Potential operator thus
and operand measures can be used tO 2
derive the minimal potential volume for a E=V /V*
given algorithm.

, Of the many software science equations,
V* =(NI* + N2*) log (n 1* + n2*) the EFFORT equation cited above is most

closely allied to a notion of complexity.
and given N I* = n l* = 2 and N2* = The attributes used in the EFFORT model
n2* are language-defined and user-defined

tokens. This choice of factors to be con-
by substitution V* = (2 + n2*) log (2 sidered, as with all selection factors,
+ n2*) directly impacts the interrelationships that

can be determined. Several questionable
Potential volume offers insight into the assumptions are those related to unity and
level of a program. The level of a program linearity.
is defined as the ratio of potential volume
to actual volume; given V* and V, program Implicit in the counting strategy is the
level, L, can be defined as V*/V. Two assumption that operators are of equal
observations can be made based on this significance. Figure 7 illustrates two
formulation. First, if a given algorithm is typical COBOL statements. As the counts
translated into a different implementation for n l, n2, N I, and N2 are equal for both
language, as the volurne increases statements, software science metrics wi 11
(decreases) the level decreases (increases) derive equality in the complexity assess-
proportionally. Second, the product of L ment of the two statements.
and V* remains constant for a given
language. Halstead uses the measures of If A greater B and not C less D
volume and program level to derive a
measure of programming effort. Compute A = (B + C) * D

The implementation of an algorithm entails Figure 7. Two Typical COBOL
N selections from a vocabulary n. Hal- Statements
stead reasoned that if a "mental binary
search" is used to make the N selections,
then on the average (N)log(n) mental com- The counting strategy is a linear frame-
parisons are required to generate a pro- work as well as unitary. It is evident that
gram. The number of elementary mental software science metrics do not explicitly
discriminations necessary to make each reflect differences in program structure.
comparison is dependent on the program Figure 8 illustrates two skeletal code seg-
level L. Further, programming difficulty is ments. Figure 8A depicts a recursive
inversely proportional to the level L. (nested) decision construct, and Figure 88
Therefore, the total number of mental dis- depicts a linear case construct. Given that

182

IF IF
IF ELSE IF
IF ELSE IF
IF ELSE IF
ELSE ELSE IF
ELSE ELSE
ELSE
ELSE

(B) (A)

A Recursive (nested) A Linear (Case)
Decision Structure Decision Structure

Figure 8. Two Skeletal Decision Structures

the counts for each code segnnent are systems in a distributed network, etc. The
identical, the software science measure of interrelationships between nodes are repre-
effort will again be equal for the two sented as connective arcs. In general, the
segments. arcs indicate some form of communication

or relation between nodes. The inter-
Despite the fact that software science process communications include such rela-
makes many subjective explicit and implic- tions as control transfers, exchanges of
it assumptions regarding language seman- data sets, etc.
tics, it has several qualities valuable to our
research activities. First, the operator/ In assessing the complexity of a given
operand counts are easily determined in graph structure, a major concern is the
the compilation process. Second, the complexity of the collection of inter-
model accommodates a view of abstraction relations--the configuration of arcs.
level via the notion of language level. Figure 9 illustrates three nodes with their
Third, by manipulating the counting incident arcs. How can the complexity of
strategy, software science can be made each node be quantified? If it is presumed
selective. Software science metrics are that complexity is a noncombinatorial
useful in assessing complexities arising phenomenon, then a simple count of the
from system volume (P I). As we have incident arcs would suffice. In the context
seen, however, they do not explicitly mea- of a graph this measure simplifies to the
sure structural complexity. counting of arcs. Using an arc counting

strategy, the complexities of the graphs in
Figure 9 are 2,4, and 6 respectively. In

P2: Distribution (Structure) order to get a useful measure of system
complexity, the relationships between

Process structures are frequently repre- nodes and arcs must also be addressed.
sented as graphs, with the nodes of the
graphs representing control transfer points The cyclomatic number of a graph has
in a computer program, the discrete pro- properties that suggest its utility as a
grams of a software system, the discrete complexity metric. The cyclomatic

183

0 0 1

6 6
Figure 9. Nodal Complexity

number has been proposed as a measure of nodal complexity = indegree * out-
complexity in computer prograrns degree
(McCabe, 1976). The cyclomatic numbers
of the graphs in Figure 9 are all I. where indegree and outdegree are the

counts of arc "heads" and arc "tails" that
Al I of the above approaches assume that are incident to graph nodes. The measures
complexity is a linear function. The of complexity for the three nodes in Figure
assumption of linear complexity increase is 9 are 1,4, and 9 respectively.
suspect. Intuitively, the entry of new
complexity factors frequently has more As dicussed earlier, process structures may
than an additive affect on overal I complex- be represented as graphs. In turn, prece-
ity. Intuitively, we would anticipate that dence graphs are frequently represented as
linear metrics either neglect important n by n boolean matrices. Given a matrix
dimensions of complexity or they do not representation of a graph, B, the indegree
effectively reflect complexity growth. of a given node is the sum along the

respective column of B. The outdegree is
Given that structural complexity is heavily the sum along the respective row. The
influenced by the combinatorial relation- ordered set of indegrees will be referred to
ship between nodes, it is desirable to as the CONVERGENCE of a graph. The
derive a function that reflects the combin- ordered set of outdegrees wi I I be termed
atorics. One function that satisfies this the DIVERGENCE of a graph. The conver-
criterion is gence of the graph forms an n-member

184

(non-boolean) vector, C. The divergence of ing" such cycles is questionable. Figure 10
the graph forms an n-member vector, D. depicts one such transformation. The
The vector product CD is an approximation invention of the single return arc has an
of the connective complexity in a graph unbounded impact on the number of paths
and, thus, of the underlying system being through the graph, but has only a minor
modeled. impact on the value v(G). The large

increase in the number of paths would have
The structural complexity (distribution) significant influence on many aspects of
measured by the product CD reflects only program analysis--exhaustive testing, for
first order connectivity. The true com- example. An alternative way to force leaf
plexity of a process is a function of the nodes into the complexity analysis is to
density of the transitive closure of the assume that the program graphs are well-
process as well. It may be desirable, then, formed. This transformation has no impact
to include higher order connectivity in the on the number of paths and has a trivial
analysis. By taking successive powers of B, impact on v(G)--at most a delta v(G) of I.
the product CD can be derived for all In this discussion, it is useful to make the
orders (dimensions) of connectivity. These assumption that the graphs are well-
orders can also be obtained by a traversal formed rather than strongly connected.
of the graph itself. Further, the reach- Note that well-formedness is a major
ability matrix might be used to reflect premise of structured programming--one
higher order connectivity. In the following entrance, one exit--while the introduction
discussion we wil I apply the three complex- of cycles in the form of "backward gotos"
ity measures discussed above to the analy- is discouraged.
sis of structural complexity of software.

Figures I I through 14 are reproductions of
A frequently cited control flow complexity several program flow graphs used by
metric is the graph cyclomatic number. McCabe in illustrating the "behavior" of
McCabe developed a complexity metric the cyclomatic complexity metric. The
based upon the cyclomatic number of a figures also include the values of v(G) and
program flow graph. The cyclomatic first order CD for each of the graphs. The
number of a graph represents the number relative ordinal ranking of the graph com-
of linearly independent circuits in the plexities are similar between v(G) and CD.
graph. These basic paths, when taken in The relative differences (ratios) in
combination, can be used to generate all measured complexities between each of
possible paths through the graph. The the graphs, on the other hand, vary for
metric defines the complexity of a pro- each of the v(G) and CD metrics.
gram, v(G), to be the number of nodes (n)
minus the number of arcs (e) plus 2. Figures 15 and 16 are graphs of "extreme"

situations. The cases illustrate the utility
The cyclomatic number is a measure of improvement of CD over v(G). Figures 15
cycles (circuits). Therefore, the assump- and 16 present two program graph topolo-
tion that the graph is strongly connected gies and their respective skeletal code
underlies the measure v(G). The measure- representations. Figure 15 depicts a pro-
ment of v(G) formally requires that the gram graph of a recursive decision struc-
graph be strongly connected. To transform ture; a completely balanced nested IF
a given program f low graph into a strongly block. Figure 16 presents a program graph
connected structure, cycles must be intro- of a linear decision structure; a case IF
duced. Cycles, however, are critical block. As v(G) does not recognize the role
factors in themselves when assessing pro- of convergence and divergence and thegram complexity. The validity of "invent- propagation effect, it will judge both pro-

185

98
1

v(G) = 4 , v(G) =
Number of paths = 5 Number of paths =

(a) (b)

Figure 10. "Invention" of a Return Arc

0
8

v(G) = 3

CD = 8

Figure 11

187

v (G) = 6

CD = 19

Figure 12.

188

v(G) = 9

CD = 35

Figure 13.

189

v(G) = 19

CD = 79

Figure 14.

190

BEGIN NEST

IF
IF

v(G) = 8 IF
ELSE

CD = 20 ELSE
IF
ELSE

ELSE
IF

IF
ELSE

ELSE
IF
ELSE

END NEST

Figure 15. A Recursive (Nested) Program Flow Graph
and Code Representation

191

BEGIN CASE

IFv(G) = 8
ELSE IF
ELSE IFCD = 8 ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE

END CASE

Figure 16. A Linear (Case) Program Flow Graph
and Code Representation

192 '

grams to be of equal complexity: v(G) in complexity of the linear case structure of
Figure 1 5 = 8, v(G) in Figure 1 6 = 8. The Figure 16.
measure CD, on the other hand, does
recognize the distinction between these The distribution complexity (P2) of a
two programs: CD in Figure 1 5= 20, CD in module is a measure of intra-modular
Figure 1 6=8. structure. It should measure the density of

connection between components in a
As the number of arcs is dependent on the module. A simple count of arcs does not
nurnber of nodes in the above topologies, reflect relative degrees of connective den-
the functions v(G) and CD can be reduced sity. The measure v(G) treats density as a
to functions of the number of nodes. A global, linear property of a graph. Further,
plot of v(G) for each topology is presented CD treats the density of connection of a
in Figure 17, and a plot of CD is presented given node as a nonlinear property. Using
in Figure 18. We should note that n less first-order CD, the overall complexity is
than or equal to 4 is a degenerative case reflected as the sum of individual nodal
where the two topologies are identical. complexities. Full-order CD, on the other

hand, treats both nodal and overall graph
Based upon the plot of measured complex- complexities as nonlinear progressions.
ity as a function of the number of nodes in Given Halstead's effort metric as a
Figure 17, the measure v(G) asserts that: measure of the complexity of "describing"

the components of a module and CD as a
1. Given an equal number of nodes measure of the complexity of intra-

(n >4), the complexity of a case modular connectivity, we must now address
structure is greater than that of a the complexity of a module's interface
nested structure. with other modules.

2. As the number of nodes increases,
the complexity of a case structure P3: Location (Interaction)
increases at twice the rate of a
nested structure· Parnas recognized that changes in a com-

pleted system are simplified when the con-
Based upon the plot in Figure 18, the nections between modules are designed to
measure CD asserts that: contain as little information as possible

(Parnas, 1972). Design decisions should
1. Given an equal number of nodes anticipate change. The basic thesis of

(n > 4) the complexity of a case Parnas' work in this area is that the de-
structure is less than that of a signers who specify the system structure
nested structure. should control the distribution of design

information, hiding details that are likely
2. As the number of nodes increases, to change. One objective of this approach

the complexity of a nested decision is the isolation of change impact.
structure increases at one and one
half times the rate of a linear case The notion of "information hiding"
structure. addresses the design process as much as it

addresses the product of design. In hiding
When analysis of CD is extended to higher design information, we are also making the
orders of connectivity, the measured com- functional responsibilities clear which
plexity of the recursive decision structure affects the understandabi I ity and chang-
of Figure 15 will increase. Higher order ability of the system. Measures must
analysis does not increase the measured reflect the amount of knowledge that the

193

v(G)

v(G) of Case Structure
=N-2

v(G) of Recursive
Structure =N/2

2

4 N

Figure 17. A Plot of v(G)

1.94

CD

CD of Recursive Structure
= 3/2N - 4

CD of Case Structure
=N-

2

4 N

Figure 18. A Plot of CD

195

system modules have of each other con- Synthesis of an R2 Complexity Model
cerning the nature of their activities. We
can see that inefficiencies are introduced The above complexity metrics may be
under this criteria.. By minimizing the applied in synthesis of a complexity func- 1
amount of information shared between tion for realm R2. The EFFORT metric of
modules one expects that the difficulty of software science can serve as the Volume
system construction and modi fication will property, the measure CD as a Distribution
be lessened. property metric, and information hiding as

the Location property. A weighted com-
In terms of the location property (informa- bination can be used to measure complex-
tion hiding), we are concerned with the ity in R2.
type and amount of inter-module communi-
cation. A straightforward.measure. of the
location property ih realm R2 ik R2 = E (Wp)(f(Ap))

P
Location = E(Wi)(Ci)

Where Ap is the set of attributes belonging
Where Ci is a count of the number of to property P, f(Ap) is the function defin-
communicated items of type i, and Wi is ing the relationship between each Ap in P,
the weight attached to communicating and Wp is the relative weight (coefficient)
items of type i. Examples of Ci include of property P in R2. An example taxon-
the number of input parametes and the omic realm/property/attribute breakdown
number of output parameters. is depicted in Figure 19.

R2

p p p
1 2 3

nnNN Convergence Divergence Number Number
1 2 1 2 o f o fVector Vector

Input Output
Items Items

Figure 19. Attribute Taxonomy for Realm R 2

196

Complexity Measurement in Other Realms Chrysler (1978) has conducted research
related to complexity projection. Chrysler

Existing software complexity models are used step-wise multiple regression to cor-
concerned in large part with the stages of , relate program and programmer character-
physical design and construction. These istics with the time taken to complete a
stages, however, are relatively inexpensive programming task. Using a sample of 31
in terms of resource consumption. COBOL programs, five independent vari-
Further, the complexities manifested at ables were found that resulted in a multi-
these stages are often a direct result of pie correlation coefficient of .836.
complexities introduced at earlier stages
of the life cycle, and complexities intro- 1. Programmer experience at the
duced in early stages manifest themselves facility.
heavi ly in the later phases of operation and
maintenance. Problems of logical design 2. Number of input files.
complexity and maintenance complexity
are more acute and costly. If a complexity 3. Number of control breaks and
model is to serve as a robust tool for totals.
software engineering and software project
management it must encompass the entire 4. Number of input edits.
life cycle. The benefits of a broader view
of complexity will be far reaching. 5. Number of input fields.

The formulation of complexity models in The values for the five independent vari-
each realm is constrained by the amount ables are available at the conclusion of the
and nature of information available in the logical design phase, and are avai lable for
realm. The attributes available in each projecting complexity from R I to R2. Fur-
realm are candidates for inclusion in the ther, the attributes can be broken into the
complexity model. Further, attributes that two classes--design attributes and resource
are available in more than one realm offer attributes. Whereas the variables two
the potential for complexity projection. through five are design attributes and must

be controlled during logical design, the
first attribute is a human resource attri-

Complexity Proiection bute and can be control led at the end of
R l. A similar approach can be used to

Complexity measures within a given realm develop complexity projection functions
are useful in the evaluation of productivity between all realms. For example, a mea-of the realm activities. The rneasures sure of environmental volati I ity made dur-
serve as feedback mechanisms and guide- ing logical design (R I) can be used to
lines for programmers, analysts, and project maintenance complexity (R4).designers. To be of use to project manag-
ers, however, a complexity model must go Once complexity measures have beenfurther--it must support project scheduling formulated for each realm, a similar
and resource allocation. Given, for exam- approach can be used to derive complexitypie, information available at the end of the projection functions. A first approxi-logical design phase, R I, it would be useful motion of the projection functions can beto project the complexity in R2. As men- derived by identifying the attributes avail-
tioned earlier, several attributes may span able in realm Rn which were included as
realms. Although the spanning phenome- independent variables in the complexitynon introduces conflicting objectives, it model for realm Rn+ 1. Then, using a
does make complexity projection feasible. generalized model management approach

197

(Elam and Henderson, 1980; Konsynski, the system design process. Both the lin-
1981), the complexity measurement and guistic and graph theoretic models offer
projection models can be refined on a con- useful information at different stages.
tinuing basis. Further, both have limitations that make

them insufficient as stand alone measures.
The refinement process takes two forms-- An object/relation paradigm offers a basis
projection refinement and model refine- for comparison between alternative tech-
ment. Projection refinement is a function niques.
of the temporality of the system life cycle.
In R I a relatively limited amount of even- Four realms in the design process were
tual implementation information is avail- discussed in which differing complexity
able. The validity of a projection, though, concerns exist. These realms deal with
is a function of the amount of avai lable initial requirements specification and
information. The complexity in R4, for analysis, the design and implementation
example, is better projected from R2 than process, the system in operation, and the
from R 1. As the design process continues, maintenance and modification activities.
then, the complexity projections can be The differing "environmental concerns"
refined. call for different complexity concerns in

each realm. A general framework was
If a complexity model is to reflect the proposed to realize an overall system
evolutionary nature of system develop- development complexity model which will
ment, the model must "learn." Model support complexity assessment and projec-
refinement via feedback wil I ensure that tion.
the model reflects reality. When, for
example, the actual maintenance complex-
ity for a given system is attained, this BIBLIOGRAPHY
information can be used to update the
forecasting/projection functions, R I to R4 Chen, E.T. "Program Complexity and Pro-
and R2 to R4. grammer Productivity," IEEE T on Soft-

ware Engineering, Software Engineer-
Conclusions ing, Volume 4, Number 3, May 1978, pp.

187-194.
A robust Information System complexity Chrysler, E. "Some Basic Determinants of
model must accommodate a holistic view Computer Programming Productivity,"
of the system development process. We CACM, Volume 2 1(1978), pp. 471-483.
benefit little from application of control Curtis, B., et al. "Measuring the Psycho-
mechanisms late in the life cycle when the logical Complexity of Software Main-
factors contributing to system complexity tenance Tasks with the Halstead and
were introduced in a much earlier phase. McCabe Metrics," IEEE T on Software
By iterating toward a thorough complexity Engineering, Software Engineering,
model, relevant factors of complexity will Volume 5, Number 2, March 1979, pp.
be unveiled. Complexity control mecha- 96-104.
nisms can then be initiated to control rele- Elam, J., Henderson, J., and Miller, L.
vant factors during the proper life cycle "Model Management Systems: An
phase. Approach to Decision Support in Com-

plex Organizations," Proceedings of the
The authors have examined the character- Conference on Information Systems,
istics of current alternative complexity 1980, pp. 98-110.
measures with the objective of determining Fitzsimmons, A. and Love, T. "A Review
useful measures during different stages in and Evaluation of Software Science,"

198

ACM Computing Surveys, Volume 10, ters, Volume 9, Number 5, December
Number 1, March 1978, pp. 2- 17. 16,1979, pp. 207-211.

Halstead, M.H. Elements of Software Parnas, D.L. "On the Criteria to be Used in
Science, North-Holland Publishing Co., Decomposing Systems into Modules,"
1977. CACM, Volume 15, Number 12,

Hansen, W.J. "Measurement of Program December 1972, pp. 1053-1058.
Complexity by the Pair (Cyclomatic Schneider, G.M., Sedlmeyer, R.L., and
Number, Operator Count)," SIGPLAN Kearny, J. "On the Complexity of
Notices, Volume 13, Number 3, March Measuring Software Complexity,"
1978, pp. 29-33. AFIPS Conference Proceedings, May

Kearney, J., Sedimeyer, R., Thompson, W., 1981,pp. 317-322.
Adler, M., and Gray, M. "An Analysis Tanik, M.M. "A Comparison of Program
of Software Complexity Measurement," Complexity Prediction Models," ACM
Technical Report 81-26, Computer SIGSOFT, Volume 5, Number 4, October
Science Department, University of 1980, pp. 10-16.
Minnesota, Minneapolis, Minnesota, Tausworthe, R.C. Standardized Develop-
July 1981. ment of Computer Software, Prentice-

Konsynski, B.R. "Model Management in Hall, Englewood Cliffs, New Jersey,
Decision Support Systems," Presented 1977.
at the NATO Advanced Study Institute Woodward, M.R., et al. "A Measure of
on Data Base and Decision Support Control Flow Complexity in Program
Systems, Estoril, Portugal, June 1981. Text," IEEE T on Software Engineering,

McCabe, T.J. "A Complexity Measure," Software Engineering, Volume 5,
IEEE T on Software Engineering, Soft- Number 1, January 1979, pp. 45-48.
ware Engineering, Volume 2, Number Zolnowski, J.C. and Simmons, D.B.
4, December 1976, pp. 308-320. "Measuring Program Complexity,"

Oulsnam, G.G. "Cyclomatic Numbers Do Digest of Papers of Fall COMPCON77,
Not Measure Complexity of Unstruc- pp. 336-340.
tured Programs," Info Processing Let-

199

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1981

	COMPLEXITY MEASURES IN SYSTEM DEVELOPMENT
	Benn Konsynski
	Jeff Kottemann
	Recommended Citation

	tmp.1422051635.pdf.aiye9

