
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1984 Proceedings International Conference on Information Systems
(ICIS)

1984

Automatic Generation of Data Flow Diagrams
From A Requirements Specification Language
L. B. Protsko
University of Saskatchewan

P. G. Sorenson
University of Saskatchewan

J. P. Demblay
University of Arizona

Follow this and additional works at: http://aisel.aisnet.org/icis1984

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1984 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Protsko, L. B.; Sorenson, P. G.; and Demblay, J. P., "Automatic Generation of Data Flow Diagrams From A Requirements Specification
Language" (1984). ICIS 1984 Proceedings. 19.
http://aisel.aisnet.org/icis1984/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1984/19?utm_source=aisel.aisnet.org%2Ficis1984%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Automatic Generation of Data Flow Diagrams From
A Requirements Specification Language

LB. Protsko
RG. Sorenson

Department of Computational Science
University of Saskatchewan

J.P. Demblay
Department of Management Information Systems

University of Arizona

ABSTRACT

Escalating manpower costs in developing systems has caused an increasing need for greater
productivity in system development particularly in the analysis and design phases. Produc-
tivityinthesystemanalysisphasecanbeincreasedwiththeuseofcomputer-aidedtoolssuch
as SPSL/SPSA for specifying system requirements and methodologies such as structured
analysis. A structured analysis and documentation tool-the data flow diagram-allows an
analyst to model and document a system with relative ease; however, the manual production
of a data flow diagram is a time consuming process Combining the production of data flow
diagrams with SPSL/SPSA produces a synergistic effect on the increases in productivity
and ensures the use of standards andthe completenessof the diagram. This paperdescribes
the problems and design of the systemMONDRIAN that generates data flow diagrams from

an SPSA database. A variety of placement and routing algorithms that address the layout
problem are discussed. The resultsof apreliminary studyof the effectivenessofthese algor-
ithms and the adaptations required to improve and refine the prototype version of
MONDRIAN are presented

Introduction SPSL/SPSA is essentially a subset of the PSL/PSA
system that has been developed as part of the ISDOS

As improvements in productivity in later phases of the project at the University of Michigan ('Ibichroew and
system life cycle are achieved, the need increases for Hershey, 1977). The defined subset was derived based
computer-aided analysis *tools which improve produc- onananalysisofthemostpopularfeaturesofPSL/PSA
tivityintheanalysis phase. This paperis concernedwith that were used by practicing systems analysts (Perkins,
the development of such a tool 1979; Wig, 1979(a)). Another major project that has

stressed the development of computer-aided analysis
A structured analysis and documentation aid- the data tools is the PLEXSYS project at the University of
flow diagram (DFD)-allows an analyst to model and Arizona (Nunamaker and Konsynski, 1981). Both the
document a system easily. However, producing a layout ISDOS and PLEXSYS projects have examined the
for a data flow diagram manually is a time consuming problem of integrating structured systems analysis
problem. An analyst's productivity can be increased if a methodologies (e.g., Gane and Sarson, 1979, and
dataflowdiagramwereautomaticallyproducedfromthe DeMarco, 1979) with their systems. Neither project has
logical structure of the requirements definition. One handled the problem of automatically producing data
facility for producing such a definition is SPSL/SPSA flow diagrams in a satisfactory manner.
meaning Simple Problem Statement Language/Simple
Problem Statement Analyzer (Friesen et aL, 1981). This paper addresses the problem of automatically
SPSL/SPSA is a structured analysis and documenta- generating a layout for a data flow diagram from an
tion aid that allows a user to define formally the logical SPSA database. A system called MONDRIAN (Protsko,

structure and requirements of an information system, 1983) accesses an SPSA database to retrieve system
store this description in a database, and later produce flowinformationandgeneratesthedataflowdiagramfor
from the database various documentsandreports about the system. This paper outlines the design, and imple-
the system structure and requirements. mentation of placement and routing algorithms to be

157



used in MONDRIAN. It investigates the adaptation of tion. SPSL is a nonprecedural language used to define
placement and routing techniques used in design auto- formally the logical structure and requirements of an
mation for producing a layout suitable for DFDs. information processing system It permits the description

ofbothsystem-relatedanddata-relatedinformationinthe
It is important to list the benefits of computer-draw form of system flow, structure, size, and dynamics, as
DFDS. well as data structure and data derivation infonnation.

SPSA is a software package which accepts SPSL state-
1. The time saved between manual and auto- merits as input translates these into an internal form

mated production of a DFD is in the order of that is stored in a database, and generates various
many hours. For example, a DFD for the documentation and analysis reports
anaesthesia department example which is
presented later in the paper, took several A description of an information processing system is
hourstolayout(moretimewouldbeneededto based on language components, called objects, and the
prepai·e a finished product) as opposed to an relationsh*s between these components. The analyst
estimated 25 minutes to produce a finished creates an object and relates it, via relationship specifi-
pr,oduct using MONDRIAN. Of this estimated cations, to the rest of the system in a unit description
time, only a few minutes were required to calledasection In general, the orderingof sectionsis not
initiate the steps thus allowing the analyst to significant and, therefore, SPSL is nonproceduraL
perform other tasks while the DFD was being
generated. Some of the features of SPSL are shown through the use

of an example which represents a portion of a hospital's
2. As the complexity of the systemincreases, the anaesthesia department Such an example is given in

frequency of errors and omissions also in- Figure 2. Object names are in lower case, while SPSL
creases when manually drawing a DFD. By reserved words are in upper case. In the following
relyingon the SPSL/SPSA systemto provide discussion of SPSL components related to system flow,
completeness and consistency checks, the references to the SPSL example (Figure 2) are in the
computer-drawn DFDs should not be subject form of parenthetical comments. Each such comment
to such errors and omissions. contains line numbers which refer to the specific lines of

the example that contain the language components. A
3. A set of guidelines or standards for drawing more detailed description of these and other SPSL

DFDs are incorporated into the automated components not related to system flow and the produc-
package thus ensuring their usage. tion of DFDs is found in Friesen et aL, (1982).

Data Flow Diagrams System flow is expressed in SPSL by defining system
components; these can be one of six types of objects,
namelyaprocess (lines 15, 21, 25), andinterface (1,3,5,9,

A data flow diagram is a structured systems analysis and 11), anentio'(14,20,24,34), and input (36,37), anoutput
documentation aid that provides a pictorial description (13, 33), and a set (28, 31). An inte,face represents a unit
of the flow of data through a system (Gane and Sarson, inthereal worldthatinteracts withthe system. An enti<y
1979). DFDs implicitly define the boundary of the sys- represents a logical information unit that is maintained
tembyshowingthesourcesanddestinationsofdata(Le., by the system and stands fora real world object such as
the system's interfaces). The logical functions, the data anemployeeorapart.Asetrepresentsacollectionofone
that flow between functions, and data stores or reposi- or more types of logical information units (Le., entities).
tories are also identified and named in a DFD. In order to describe system flow, nine relationships are

used: generates (2,4,6,7,8,26), receives (10, 12, 18, 19),
An example data flow diagram, produced by references (27), creates (16), uses (17, 23), adds (22). The
MONDRIAN, is given in Figure 1. It is assumed in this modtes, updates, and removes relationship are not
paperthatthe readeris familiar with the use of data flow illustrated in this small example.
diagrams in conjunction with structured systems analysis
techniques. For those not familiar, Gane and Sarson The primary functions of the SPSA software system are
(1979) or DeMarco (1979) provide excellent references. threefold:

SPSL/SPSA 1. It provides a facility to compile SPSL state-
ments and store an equivalent representation

SPSL/SPSA (Friesen et aL, 1981) is a subset of the of the problem statement in a database.
PSL/PSA package described by'Ibichroew and Hershey
(1977) which has been developed at the University of 2. It enables modification of a problem state-
Michigan as a system to aid in analysis and documenta- ment stored in a database.

158



Iii„ ./I'll

im 1 =mwit

/6

=
= 75 1

St-r 
pru--Mr

N m r C r1=1 up , 1
E r

r

Figure 1

DFD for Anaesthesia Department Example

159



' 1> DEFINE EUTERFACE medical-records; 3. It contains facilities to produce reports from a
2> GENERATES patient-info; problem statement stored in an SPSA data-

base and to determine if a problem statement
3> DEFINE INTERFACE anaesthetisti is complete. The five reports that are pro-
4> GENERATES anaesth-record; duced are described by Wig (1979(b)).

5> DEFUZE INTERFACE or-department; The interface to SPSL/SPSA is dependent upon the
6> GENERATES or-slate; nature of the installation, Le., interactive or batch. The
7> GENERATES operative-record presentimplementation runsunderthe UNIXoperating
8> GENERATES anaesth-recordi system and supports both types of interfaces. A detailed

tutorial description of SPSL/SPSA is given by Friesen
9> DEFINE INTERFACE physician-billing-office; et aL, (1982).

10> RECEIVES accounting-form
Relationship Between

11> DEFINE INTERFACE std-program- SPSL/SPSA and DFDs
coordinator;

12> RECEIVES student-schedule;
Objects and relationships used in SPSL to describe

13> DEFINE OUTPUT student-schedule; systemflowcan beequated tothe components of DFDs.
SPSL's interface, process, and set are equivalent to the

14> DEFINE ENTITY unmatched-records; external entity, process, and data store in aDFD, respec-
tively. A DFD data flow may be equated to the SPSL

15> DEFINE PROCESS obtain-missing-records; input, output or entity. The SPSL relationships (gener-
16> CREATES matched-records; ates, receives, references, adds removes, creates, and
17> USES unmatched-records; uses) indicate the directionofthe data flowinDFDs. The
18> RECEIVES patient-info; generates, adds, and creates relationships indicate an
19> RECEIVES anaesth-record outward flow, whereas the receives, uses, removes and

references relationships involve an inward flow. The
20> DEFINE ENTITY matched-records; update relationship, used to describe data derivation in

SPSL, indicates a bidirectional flow between objects
21> DEFINE PROCESS store-anaesth-record; when applied to DFDs. A detailed discussion of the use
22> ADDS numbered-anaesth-red TO of structured systems analysis in conjunction with

anaesth-red-file; SPSL/SPSA is provided by Channen et aL, (1984).
23> USES numbered-anaesth-red;

In addition to a direct equivalence between SPSL sys-
24> DEFINE ENTITY numbered-anaesth-red; tem flow descriptors and DFD symbols, SPSL/SPSA

and DFD can each be used in the development of the
25> DEFINE PROCESS schedule-students; other. A high-level DFD created initially to describe a
26> GENERATES student-schedule; system can be used as a starting point for the creation of
27> REFERENCES student-recordi an SPSL description. Further analysis would typically

involve the completing of a more detailed SPSL/SPSA
28> DEFINE SET anaesth-red-file; description. After using the SPSA report facilities to
29> CONSISTS numbered-anaesth-red; ensure completeness and consistency, a detailed DFD
30> ORDERED BY anaesth-number; canthenbe created automaticallyby computerfromthe

SPSA database.
31> DEFINE SET student-file;
32> CONSISTS student-record Requirements for Data Flow

Diagram Layout33> DEFINE OUTPUT accounting-form;

34> DEFINE ENTHY student-record; In addition to the obvious goal of accuracy, an overall
35> IDENTIFIED BY student-name; objective when creating DFDs, either manually or auto-

matically, is clavity (Le. readability) of the diagram.
36> DEFINE INPUT patient-info; Clarity is not easily achieved, particularly when describ-
37> DEFINE INPUT anaesth-record ing large systems, The main reason is the difficulty of

identifying important characteristics of an easy-to-per-
Figure 2 ceive diagram. A balance must be achieved between the

SPSL Extracts from Anaesthesia Example symbols, text, and white space in a DFD. Arcs for data

160



flows connecting interfaces, data stores, and processes, 2. There should be an upper limit to the number
must be long enough and sufficiently spaced to identify of crossoversthatoccurina dataflowdiagram.
the name of a data flow; however, they must not be so This maximum should be related to the size
long that the components connecting the arc are errone- andcomplexityofthe systembeingdescribed
ously thought to be separated logically.

The length of data Bow arcs also affects clarity in the
When developing MONDRIAN, criteria regarding rep- sense that very short arcs do not allow enough room to
lication, crossovers, length and spacing of data flow arcs position data flow names properly on an arc. Short arcs
and positioning of names of data flows had to be estab- can also result in the excessive clustering of the icons.
lished. Replication is only valid for data stores and Data flow arcs which are very long can complicate the
interfaces, as the replication of processes may give a process of determining where the flow originates and
false impression of the system being described, e. g., a terminates.
replicated process may be thought of as two separate
functions. This can cause particular problems if trans- The following criteria regarding length of data flow arcs
formation or transaction analysis (Yourdon and were formulated
Constantine, 1979) is performedbecausethe immediate
recognition of the function may be lost For example, if 1. The distance between icons should be suffi-
the input(s) to a processare shownleavinga secondicon ciently large such that the arc's name cannot
for that process, the relationship between the input (s) be associated incorrectly with any other arc
and outpu«s), as well as the function of the process may and that the arrowhead and arc are clearly
not be understood. visible.

Replication can be used to achieve clarity by reducing 2. Data flow arcs should not be longer than the
the lengths of data flow arcs, increasing the spacing equivalent of one page length.
between data flow arcs, minimizingthe numberof cross-
overs, and/or minimizing (or eliminating) the number of Names of data flow arcs are placed horizontally beside
wandering arcs (arcs with excessive turns and detours the arc. Positioning data flow arc names such that the
between their sources and destinations). Although rep- name can only be associated with the arc is achieved by
lication can be a powerful tool in achieving clarity, its left or right justifying the name next to the arc or by
overuse can be a hindrance to clarity. Excessive replica- breakingthearcandcenteringthenamebetweenthearc
tion can result in complicated searches for replicated segments. It is felt that clarity is severely inhibited if an
interfaces or data stores that may be more tedious than arc has more than two turns, and consequently, replica-
following long, wandering, or crossing data flow arcs. tion is adopted whenever possible to avoid arcs with
Criteria for replications include: excessive turns.

A General Architecture of1. A maximum number of data flows may origi-
nate from or terminate at any one interface or MONDRIAN
data store (currently set at 12 and 7 respec-
tively). After this maximum has been reached, MONDRIAN accesses an SPSA database to produce an
replication of that icon must occur. adjancency list containing the system flow components

of the database. The head nodes of the adjacency list
2. Replication should be used when a data flow represent the process, data store (set), and interface

cannot be drawn without violating the criteria objects. The list nodes represent a data flow between
regarding length, crossovers, or wandering the corresponding head nodes.
arcs.

If a process has more than a maximum number of data Tb record the placement and connection of objects,
flows associated with it (cumently set at 12), it is recom- three gdd systems are used. The first, the main grid is
mendedthatthedescriptionoftheprocessbeexpanded used to record the placement of objects. The informa-
to a set of lower level descriptions. tion contained in this grid is the object's name, type,

Crossouers aid clarity byallowinginterrelatedicons to be identification number, and the number of times the

positioned in groups, thus giving a more accurate repre- object is replicated. The second grid, the subgrict repre-
sentation of the system being described. As withreplica-

sents 5 X 5 subdivision of each square of the main glid.

tion, excessive crossovers can detract from clarity. Cri-
The subgrid is used to record the details of the connec-
tions (data flows) between objects. The dotted lines ofteria regarding crossovers include: Figure 1 represent the main grid for the DFD contained

1. Crossovers should not be made over any type in that figure. The solid lines in the upper lift corner of
of icon or the name of a data flow arc. the diagram represent the subgrid.

161



Tb account for the spacing requirements of data flow 2. Process that information to produce a layout
diagrams, a modification in the use of the main grid of the DFD in the grid system, and
structure is required. For example, rather than allowing
icons to be placed in every grid square, a template 3. Use the grid system to produce the final copy
overlaying the main grid indicates which squares may be of the DFD.
used for icon placement The template is created by
repeating the pattern shown in Figure 3 beginning in the
upper left corner of the main grid. A square of the main The high-level structure chartthatprovidesanoverview
grid on which an"X" lies is a square in which an icon can of the architecture of MONDRIAN is shown inFigure 5.
be placed Except for those positions around the per-
imeterof the grid, this approach allows sixteenconnect- Module CREATE- ADJACENCY_LIST of Figure 5
ing positions for each placed node. The positions around is responsible for extracting the required information
the perimeter of the grid have at least seven of the six- about the system being analyzed by accessing an SPSA
teen connecting positions. No icon can have more than database and storing it in an adjancency list. In this
twelve arcs incident to it therefore, the sixteen reach- adjacency list a head node represents a process, data
able positions should be sufficient to find positions for store, orinteiface. Each head node hasasetoflistnodes.
nodes connecting to any one icon. Each list node represents a data flow which either

originates or terminates at the object represented by
The template is compressed to create a new grid struc- the head node. A list node contains information about
ture, named the workspace, by dividing the grid into the data flow such as name, direction of flow, and a list
segments of two squared by two squares such that each of possible paths
segment contains one "X" of the repeating pattern (see
Figure 3). Figure 6b shows a small segment of the adjacency list

for lines 11, 12, 13, 25, 26, 27, 31, 32 and 34 of the
Fourdistinctsegmenttypes, basedonthepositionofthe SPSL descrip on given in Figure 2 and the data flow dia-
"X' within the segment, are formed by this division. An gram shown in Figure 68. As each segment of the SPSA
array containing the relative x and y coordinates required object table is accessed, a head node is allocated and
to reach each of the sixteen alternative positions in the linked into the adjacencylist Afterallthe head nodes have
workspace grid is created for each of these types. The been allocated, list nodes are created for each data flow
workspace square contains anindicatorof its type and a in the system. As shown in Figure 6b, two list nodes are
value used as an index into the corresponding alternatives created for each data flow. One is placed in the set
array. Figure 4 shows one of the segment types and its belonging to the "originating" head node, while the
alternative positio:ns. second is placed in the set belonging to the "terminating"

head node. For example, in Figure 6b the list node
MONDRIAN has three main functions which are to: "student-schedule" is contained inthe set forhead node

"std-program-coordinator" as an inputand in the set for
1. Ertractand store informationaboutthe system, "schedule-students" as an output

A

AAA A

AA
A A

A A
AA

A
A

Figure 3 Figure 4

Repeating Pattern and Division into Segments Fpe I Segment and Its Alternative Positions

162



MONDRIAN

EXTRACT AND   PROCESS INFO. DRAW
STORE INFO. TO LAYOUT DFD DFD

CREATE_ADJACENCY CHOOSE PLACE CONNECT
LIST OBJECT OBJECT OBJECT

Figure 5

High Level Structure of MONDRIAN

A link is established from the list node to the second When redundancy has been eliminated, the information
head node (that is, if the list node is in the set belonging contained in the adjacency list is processed to produce a
to the "originating*head node, a linktothe"tetminating" layout of the DFD in the grid system (Figure 5-
head node ismade). Thisallowstheplacementofobjects PROCESS_INFO_TO_LAYOUT_DFD).
to be made in any order and connections to be made as
each object is placed. In some situations different An initial implementation of the modules CHOOSE _
SPSL statements will pmduce identicallistnodes (thatis, OBJECT, and CONNECT_OBJECT followed the
they represent the same being passed in the same direc- guidelines outlined in Section 2. The placement algorithm
tion between two objects). An example of this occurs (PLACE.OBJECA did not make use of the work-

when a process creates, adds, and references the same space grid and therefore relied solely on the calculation
entity. If no further processing is done, three identical of positions to create white space. Routing (CON-
data flows would exist Therefore, after the adjacency NECT_OBJEC'I) was carried out as each icon was
list is completed, it is traversed and all redundant list placed. Several problems became clear; the routing
nodes are eliminated and labelling of some data flows lead to the inability of

 mzmr ' - 55. ' 1 

Schedde
- 00«DAKSTD-program Students ...%*25

Coordinator

srzorr -
ALI

Sudent Fne -AD an UST NOO.

(a) Data Flow Diagram (b) Partial Adjacency List

Figure 6

Data Flow Diagram and Partial Adjacency List

163



routing other data flows and excessive spacing at the 1. Constructive initial-placement,
edges of the diagram and insufficient spacing in the
centerof the diagram. These problemslead to aninvest- 2. Iterative placement-improvement, and
igation of the placement and routing techniques used in
design automation. The next section discusses these 3. Branch and bound.
techniques and their applicability to the placement and
routing of DFDs. The algorithms in the first and third classes are "con-

structive" while those in the second are"iterative". TheThe final module (module DRAW_DFD) represents iterative algorithms seek to improve a placement by
the actual drawing of the DFD on a screen or hardcopy repeated modifications. At every stage there is a com-
dfvice. The completed grids, along with the size of the plete placement available (that is, every element ismain gdd that is used, are passed to the graphics placed). The constructive algorithms produce a place-
package which, in the original implementation, pro- ment layout only on termination
duced the DFD on a Versatec printer/plotter. Current
versions pmduce the DFD on a Ramtek graphics ter- The survey conducted in Protsko (1983) included algor-minal, Ramtek printer, AED graphics terminal and an ithms from each of three classes. In particular, algor-HPplotter. TheDFDshowninFigurelwasproducedon ithms from the constructive initial placement class con-an HP plotten sisted of a pair-linking algorithm and a cluster-devel-

opment algorithm (Kurtzberg, 1965). The iterative place-
ment development algorithms consisted of a pair-wiseSurvey of Placement and iteration algorithm (Steinberg, 1961), two relaxation

Routing Techniques methods (Fisk, 1967; and Quinn, 1979) and the Monte
Carlo approach ofHanan (1972). The branch and bound

The area of design automation has produced many algorithms consisted of the matrix-scan and row-scan
placement and routing techniques for the automated approaches of Gilmore (1962).
generation of circuit board layouts. A survey of these
techniques was undertaken by Protsko (1983) to deter- In general, the orderof growth forthe heuristic methods
mine which, if any, techniques could be applied to the ranges from n2 for the pair-linking and cluster- devel-

production of DFDs. This section briefly describes this o ment and for some of the interchange techniques, tosurvey. Algorithms involving multiple layers were not n for the approximation of the branch and bound
included due to their apparent unsuitability for DFDs techniques. However, the order of growth does not
which have only one layer. identify the amount of processing time a specific prob-

lem requires orthe size of problem the various methods
PLACEMENT can conveniently handle. For example, the constructive

methods can handle far larger problems than the com-
The placement problem consists of determining the plete interchange techniques even though they are both
optimal positioningof interrelated entities to fixed loca- of order n2 (Hanan and Kurtzberg, 1972).
tions contained in a given area subject to a set of
constraints. A well known mathematical problem re- Hanan and Kurtzberg recommend the pair-linking or
lated totheplacementproblemisconcemedwithsetsof cluster-development methods for securing an initial
points, whereas the quadratic assignment problem is placement, along with an iterative placement-improve-
concerned with pairs of points. If all signal sets (set of ment method such as pairwise interchange or Steinberg's
points to be connected) of a placementproblem contain assignment method. The pair-linking method produces
exactly two modules, the placement problem reduces to a betterlayout(as faras circuitlayoutis concerned) than
the quadratic assignment problem. Even if the signal the cluster-development method, but requires more
sets are not uniformly of cardinality two, an associated processingtime. Therefore, the choiceofmethod should
assignmentproblem can be derived from the placement bebaseduponthelayoutrequirementsandtheprocess-
problem (Hanan and Kurtzberg, 1982). This reduction ing time available. We elected to adapt the pair-linking
allows any method of solution for the quadratic assign- and the cluster-development algorithms for DFD
ment problem to be used for the placement problem placement
The quadratic assignment problem has been shown to
be NP-complete (Garey, Johnson and Stoclcmeyer, 1974).
Therefore, heuristic methods are used to approximate ROUTING
an optimal solution.

The four subproblems within the wiring problem. are
Hanan and Kurtzberg (1972) classify the approaches to wire list determination, layering, ordering, and wire
the placement problem into three classes, based upon layout The wire list determination subproblem creates
the heuristic used: a listing of precisely what wires are to be laid out The

164



layering subproblem decides where (on which layer) ing of the wire layout The nature of the upper and lower
each wire should be located Ordering decides when paths used in MONDRIAN is similar to that of
each wire assigned to a layer will be laid out The wire Raghavan's upper and lower paths However, the selec-

layout subproblem determines how each wire is to be tion of paths is more complex due to the greaternumber
routed. of upper and lower paths for each icon. Raghavan's

algorithmdoesnot allowcrossoversandreplication.The
In rectilinear wiring, the pairs of points to be connected combinationoforderingandwirelayoutinonealgorithm
are grid points. Wires must run along grid lines and no was the main reason for including this algorithm in the
two wires can share the same grid segment No wire can evaluation
cross a grid point that is to be connected to another grid
point These constraints oftenrequire thatmultilayered
boards be used. The determination of the minimum RELATIONSHIP OF CIRCUIT LAYOUT
number of layers needed to wire a given wire set in a PROBLEM TO DATA FLOW DIAGRAM
rectilinear fashion has been shown to be NP-hard PRODUCTION
(Raghaven, 1981).

The purpose of any placement technique is to produce
Another wiring problem is that of wiring a given wire set the desired layout The desired layout for design auto-
onagridsubjecttotheadditionalconstraintthatnowire mation placement (modules, boards or sets of boards)
may bend more than ktimes (Pomentale, 1965). Whenk and data flow diagrams are quite different One of the
is equal to one, this problem is known as Manhattan most frequently used constraints in design automation
wiring. Raghaven et aL, (1981) have developed on 0(n3) placement is minimizing the total wire length. This
algorithm which determines if a given wire set is constraint tends to cause a clustering of nodes. Often,

Manhattan wireable in one layer. It also produces the this clustering takes the form of every slot (cell) on the
layout within the stated time bound, if it is Manhattan board being occupied. Thisheavyclustering, considered
wireable on one layer. They also show that the determi- valuable in design automation, is not desired in DFDs.
nation of the minimum number of layers needed for The difference between the white space required in

Manhattan wiring is NP- hard. DFDs and circuit boards is based upon the intended use
of each product The design automation pr,duct is to

In the portion of the survey dealing with routing, wirelist transmit electrical signals, whereas the data flow dia-
determination ordering, and wire layout were discussed gramistoconveyinformationaboutasysteminpictorial
Layering was only briefly mentioned as it is not applicable form. As a consequence, the most effecient design auto-
to DFD production Wirelist determination approaches mation placement techniques (that is, ones which pro-
such as minimnl spanning tree (Loberman, 1957), mini- duce the heavy clusterin0, are not suitable for the
mal steiner tree (Hwang, 1979) and travelling salesman productions of DFDs without substantial modification.
(Breuer, 1972) were described. The wire layout ap-
proaches that were discussed included Lee's algorithm Another major difference between the two areas is the
and its variations (Lee, 1961; Fisk, 1967; and Breuer, meaning that can be derived from the interconnection
1972) as well as an approach to one layer Manhattan arc. The connections in the circuit layout problem are

wiring (Raghavan, 1981). Raghavan's approach also in- not differentiated nor directed as they are in DFDs.
cluded ordering of wires. Also, an approach to wire
layout using a limited backtracking algorithm for 2- The boards (planes) used in the circuit layout problem
CNF-satisfiability (Even et aL, 1976) was discussed. are often multilayered or are two-sided, whereas the

data flow diagram is contained on a single plane. Thus,
Lee's algorithm (1961) addresses the issue of wire- theapproacheswhichassumeamultiplaneenvironment
layout, but not ordering. In particular, it does not take are not appropriate for the production of DFDs.
advantage of the fact that the position of the nodes are
known. It was felt that Lee's algorithm would not pro- The data flow diagram has some features which are not
duce significantlydifferentroutingthan wouldthe algor- included in the circuit layout problem. One such feature
ithm used in the initial prototype with an ordering is the labelling of the data flow arcs. Labelling could be
routine. Because of this similarity and the large amount incorporated into a standard routing algorithm by adjust-
of processing time required, Lee's algorithm was not ing the incremental distance of the grid to include room
considered for evaluation as a DFD routing algorithm. for the label This, however, would require very large

icons to be used or dramatic reduction of the number of
Raghavan's algorithm addresses both the ordering and arcs incidental to any one icon-
wire layout problems. Although this algorithm is not
designed to handle crossovers and replication, it can be Another feature ofDFD production which is notpresent
modified to do so. An important feature of Raghavan's in design automation methodology is the replications of
algorithm which is needed for DFD routing is the order- interface and data store icons. One advantage ofreplica-

165



tionisthatifapathcannotbefoundforaninterconnection coordinates represent the numbers assigned to each
(and if one icon represents a data store or interface), a headnode connected by the listnode. The value, p,
replicated version of that icon can be placed in a grid identifies the types of two headnodes connected by the
position so that the connection can be made. Theuse of listnode. If they are both processes, p equals three. If
replication increases the difficulty of the procedure as they are a process and a data store, p equals two and if
decisionsmustbemadeaboutwhentostop yingtofind they are a process and an interface,p equals one. These
a path and replicate the node and to which icon position values are used to derive a priority for the placement of
future arcs are to be connected. process nodes and to assist in minimizing the amount of

replication of data stores. A larger p value produces a
A feature which is allowed in some routing methods and largervalueintheP-matrixandthelargestvalueintheP-
data flow diagrams (but not in Mahattan or recticlinear matrix is chosen for placement This is a deviation from
wirin0 is the crossoven As in the methods which allow the design automation pair-linl ng method which is
crossovers, their use in the production of DFDs should designed to compensate for the difference in the nature
be minimized. The fact that Manhattan wiring does not of the signal sets between design automation and DFDs.
allow crossovers does not preclude its use for DFD Specifically, signal sets in design automation consist of
routing. two or more elements, whereas those in DFDs have

exactly two elements. Without this modification there
Placement Algorithm Selected would be little, if any, difference in the P-values as most

node pairs are connected by only one arc. Very rarely
are node pairs connected by more than two arcs.

Theproperplacementoficonsiscriticalintheproduction
of easy-to-understand data flow diagrmma A poor place- The initial pair of nodes is determined by finding the x
ment strategy can position icons such that a routing and y coordinates of the P-mat ix containing the maximum
algorithm, no matterhow sophisticated, cannotposition value. Ties are broken by finding the pair with the
the data flow arcs subject to the guidelines set out highest total weighted connectivity. The weighted con-
previously. Although two placement algorithms (pair nectivity is calculated by summing a weight factor for
linking and cluster development) were considered for eachincidentnode. The weightingfactor depends onthe
inclusion in upgrading the system MONDRIAN, only type of theincidentnode. Inthecurrentimplementation,
the pair-linking algorithm is outlined here since it per- process nodes are assigned a weight of 3, data stores 2
formed best in the preliminary evaluation. A detailed and interfaces 1. If this calculation does not resolve the
description of both algorithms can be found in Protsko,
(1983). tie, the arst pair is selected. These weights were chosen

to promote the placement of process nodes before data
stores or interfaces.

An adaptation of the design automation pair'linking
algorithmtotheDFDlayoutproblembeginsbychoosing, All positioning of nodes in this algorithm uses the work-
as anucleus, the pairofnodes whichhavethe largestsum space grid described in Section 3. The initial pair of
of common weighted signal sets. Unplaced nodes are nodes are placed near the center of this grid These
selected on the basis of high connectivity to a placed positions were chosen such that placement can proceed
node and positioned as close as possible to that placed in all directions.
node. The steps of the following general algorithm are
elaborated upon in this subsection. To aid in the selection of unplaced modules, a vector of

boolean values is maintained These values are used to
1. Determine connectivity of each pair of nodes. recordwhetherthecorrespondingnodehadbeenplaced

To select the unplaced node with the highest connect-
2. Select initial pair of nodes for placement ivity to a placed node, each row of the P-matrix which

has a truth value in the corresponding position of the
3. Position initial pair of nodes placed-vector, is examined. The entries for which the

corresponding position of the placed-vector has a value
4. Repeatsteps5 and6 untilallnodesareplaced of faise are compared to find the one with the largest

value. The x position of the maximum value gives the
5. Select next node for placement number of the unplaced node, while the y position gives

the number of the connecting placed node. Ties are
6. Place next node. broken in a similar fashion to tie-breaking in the selec-

tion of the initial pair. The only difference is that if a tie
The P-matrix isann byn array, where n is the numberof occurs in the calculation of the weighted connectivity of
nodes to be placed. I is initialized by traversing the the pairs, the pair containing the unplaced node which is
adjacencylist Foreachlistnode of theadjacencylist, the to be connected to the greatest number of currentlr
value in the xy position is incremented byp The x andy placed nodes, is selected.

166



The positioning strategy algorithm is somewhat modified PREDETERMINED END-POINT
from that used in the design automation pair-linking ALGORITHM
algorithm. This modification was required to accommo-
date the special use of the workspace grid and the two MONDRIANs original routing algorithm routes each
element signal sets of DFDs. arc in the order determined by an ordering routine and

considers only how the path affects those arcs which
If the node being placed is only to be connected to the have already been placed
placed node of the pair, the current alternative on the
alternativelistfortheplacednodeischosen.Thecurrent The description of this algorithm begins with an over-
alternative is found by using the index value and type view of the ordering routine used. This is followed by a
indicator of the workspace position occupied by the discussion of the method for finding all possible paths
placed node. The type indicator specifies which of the for each arc and choosing the most appropriate one.
four alternative-position arrays to use and the index Next, the assignment of the paths to the subgrid is out-
value specifies which of the sixteen positions in the array lined. The presentation discussion is concluded with a
to use. The relative x and y coordinates found in the description of replication and relocation
alternative-position array are added to the x and y
positions of the placed node to produce the workspace The orderingroutine is used to produce the sequence of
coordinates for the unplaced node. The index value is arcs for whichpaths must be determined.This routine is
thenincrementedforthe nextplacementofanode. If the based on the ordering algorithm described by Akers
calculated position has been previously assigned a node, (1972). An order table is created to record the sequence.
the incremented index value is used to determine the It is represented by an array witharow foreacharctobe
next alternative position.

A
If the node being placed is connected to more than one
node but only one of those nodes has been placed, a B
determination of the area in which the unplaced nodes POINT VALUE ORDERING

should be located is made and the alternative closest to c• D

that area ip chosen. The determination is made by r'  A:5 4TH

looking at each of the connecting but unplaced nodes. If . B:1 2ND

the connecting unplaced node is within three links (arcs) B 00 1ST
of a placed node, the coordinates ofthatplacednodeare
used in the calculation of an average position. The c D:2 3RD

alternativeposition forthe placednode ofthe pairwhich
D'is closest to this average position is chosen for the

unplaced node. A'
Figure 7

Whenmore thanone ofthe connectingnodes are current-
ly placed, the average position of these nodes is deter- Rectangles and Point Values for Ordering Algorithms
mined. If uiis position is reachable from the placednode
of the pair, it is selected for the unplaced node. If the
averaged position is not reachable from the placed node routed. Eachrow has an entry forthe addressof the list-

of the pair, the alternative of the placednode closesttothe node, the address of the headnode, and a point value. To

average position is selected as the position for the create the sequence, the adjacency list is traversed. For

unplaced node. each listmode, a rectangle is created using the coordi-
nates of the two connecting headnodes as opposite cor-
nerpoints.Everyotherlistnodeisexamined. Ifone ofthe
connecting headnodes falls within the rectangle, the
point value in the order table position representing the
listnode for which the rectangle was created, is incre-
mented by one. Figure 7 shows a set of points their

Routing Algorithm Selected squares, and the resulting point values

7140 approaches to DFD routing were selected; namely After eachlistnodehas beenexamined,theordertableis

an adaptation of one layer Manhattan wiring and 2- sortedinascendingorderofthepointvalueusingaquick
CNF-satisfiability; another based on predetermined sort
endpoints for the DFD arcs. Since the later method out-
performed theformerinpreliminaryevaluations,itisthe Paths are found for each arc by examining each row of
only method outlines here. the sortedorderlist Finding all valid paths fora particu-

167



12, 2 3

12 4 1 2 3
12 4 2 4

14 8
S"8 10 .

. .7
10 6

10 6
987

D-. 7
Figure 8

Possible Starting or Ending Positions for Arcs

lar arc begins by checking for the presence of another The second level of assigning paths is only used when
node along the main grid squares in which the path may one of the six paths from the first level are suitable and
lie. Ifanode ispresent,allpaths inthatdirectionare con- when the first level of path assignment is completed for
sidered blocked. If both directions are blocked, replica- all other arcs. In this level, the other possible combina-
tion or relocation of a node is considered. tions (shown in Figure 10), are used to determine the

remaining paths between the nodes rather than allocate
Once the possible directions of paths are determined, pathnodes for each alternative, the subgrid squares
the subgrid coordinates forthe starting, ending, and cor- around each node are examined. If the square is empty, a
nerpoints of the individual pathsare calculated. A path- path could begin or end there. If such a square exists
node for each path is allocated and linked into a path list for both nodes and if they are on appropriate sides of the
attached to the listnode representing the arc Figure 8 node, a pathnode is allocated and the coordinates as-
showsthepossiblestartingorendingpointsforeachicon signed. When all possible paths have been assigned,
type. In this level of path assignment, only six paths be- each is validated as in the first leveL
tween icons are possible. These paths are shown in
Figure 9. After all possible paths at the particular level have been

allocated fora node, they are ratedand the path withthe
highest rating chosen. Paths are rated in terms of the
following criteria

1. Position on the icon and corner type,

2. Direction of path,

3. Number of crossovers produced, and

4. Length of path.

Figure 9 .'.

Possible Paths Between Nodes

After all possible paths at this level have been assigned
to pathnodes, each path is checked for validity. 'Ib be
valid, the path must not cross through an icon or share a
corner position with another arc. To check for validity,
the contents of each square of the subgrid in which the
path would pass is examined. If the square is empty, the
examination moves to the next square on the path. The
only acceptable content of a square is the indicator of Figure 10
another arc if the coordinates are notthose of the corner
of the arc. Any other content indicated the path is invalid Second Level Path Possibilities

168



The first two criteria are used to produce balanced rout- grid squares. The size and location of a block varies with
ing in the diagram. The third is used to minimize cross- the type of placement If the text is to be placed along a
overs and the fourth is used to minimize the length of horizontal line, the block consists of three consecutive
paths.   squares along the arc as shown in Figure 1la. These

three squares may be right on the arc or immediately
As each path is chosen, it is assigned to the subgrid. Us- above orbelow the arc. Whenthe blockisabove orbelow
ing the starting, ending, and corner coordinates, each the arc, it is desirable to leave a buffer of three squares
subgdd square on the path is examined. If the square is above (or below) the text block so that two arc names do
empty, an indicator of the direction (horizontal vertical notoverlapandthename canbe uniquelyidentifiedwith
or corner) is placed in the square. If the square contains its arc Ifthe textis to be positioned along a verticalline,
the directional indicatorofanotherarc(otherthana cor- three options (Figure 1lb) are available. The first two
ner), the contents are changed to show a crossoven Ifthe options involve a two by two block of squares on either
square'scontentsindicateacornerofanarcoranode, an side of the arc When the diagram is drawn, the text is
error has occured. Allindications added or changed as a right or left justified so that it lines up against the arc.
resultof this pathare negatedandanew pathis selected The third option involves a two by two block of squares
and the process repeated. If all the paths from the first centered on the arc. The arc will be broken at this point
level (see Figure 8) are eliminated, the path for the re- and the text centered between the arc segments.
maining arcs are assigned. When first-level paths for all
arcs have been assigned and an arc (or arcs) remain un- The selectionofthe position forthe blockisrestrictedto
routed, the second level of path assignment is invoked. those positions on the arc which would not result in the
The second level of path assignmentuses the additional text being placed in the beginning or ending square of
possible paths shown in Figure 9. If this fails to produce the arc or extending over a corner of the arc.
the required paths, the arc is considered unroutable.

To begin the selection of the position for the text the
Replication is used when a path between two nodes (one center point of a straight arc or the center point of the
being an interface or data store) does not exist, is too longest segment of an arc with a turn, is chosen. If this
long, or creates too many crossovers. The position that position cannot be used, a position slightly off-centerfor
the replicated node will occupy is calculated in a similar straightarcsorthecenterpointoftheshortersegmentof
fashion to the regular placement procedure butwith the an arc with a turn is chosen If this position also fails, an
positionoftheprocessnodeoftheoffendingarchavinga exhaustive search of all positions on the arc is under-
greater weight in the calculation. Once a new position is taken. The first two positions are selected to try to pro-
chosen, placement and routing proceed in the usual duceabalancedpositioningoftertonthearcs. Ifnoposi-
manner. tion along the arc can be used, the arc will be unlabelled

whenthediagramisdrawnandamessageindicatingthis
TEXT POSITIONING is given to the user.

Textispositionedon arcsinthe order determined by the The routing algorithm described in this section and the
ordering routine used in the predetermined-endpoint Raghaven-2-CNF-basedalgorithmwerepairedwiththe
routing algorithm. 'Ibxt is positioned in a block of sub- placement algorithm and the cluster-development

ARC

ABOVE

CENTERED

ARC

CENTERED RIGHT

BELOW

1 LEFT

C« 1
4J

Figure 11

Possible Positions of Text Blocks a) Horizontal b) Vertical

169



algorithm in order to be evaluated Based on a prelimina.ry greatly facilitate the extensions that were just proposed
evaluation (see Protsko, 1983), the algorithm pair of pair- for MONDRIAN.
linking placement and predetermined- endpoint routing
are recommended as the pair to be used for production Finally, some further testing and evaluating of the quali-
of DFDs. ty of the layouts produced by the improved prototype

must be undertaken to ensure that the generated dia-
grams are comparable to a well-planned manually pro-

Conclusions and Proposed duced layout

System Enhancements
REFERENCES

In this paper, the problem of producing computer-
drawn data flow diagrams was introduced. A general Akers, S. B. "Routing," Design Automation in Dikital
architecture for MONDRIAN, a prototype system Systenr 77:eoly and lichniques, Volume 2, Chap. 6,
developed to layout DFDs automatically, was presented Prentice-Hall Englewood Cliffs, New Jersey, 1972.
Various placement and routing algorithms that addressed Breuer, M A. "RecentDevelopments in the Automated
the layout problem were described. The pair-linking Design and Analysis of Digital Systems," 13·oceeding
placement and predetermined-endpoint routing algor- of the IEEE, Volume 60, Number 1, January 1972,
ithms were thought to be the most promising strategies pp. 12-27.
and are currently being adapted to an improved, refined Channen, E., Sorenson, R G. and Pemblay, J R "Struc-
prototype. Tb exploit more fully the benefits of auto- fired Systems Analysis Using SPSL/SPSA," Depart-
mated pix)duction of DFIX future enhancements should ment ofComputational Science Technical Report877,
be completed in two main areas: improvements to University of Saskatche%van, Saskatchewan, Canada
MONDRIAN and extending MONDRIAN. 1984.

DeMarco, T Shctured Analysis and System Specqi-
A valuable extenstion to MONDRIAN would be an cation, Prentice-Hall Inc, Englewood Cliffs, New
interactive component which would allow the analyst to Jersey, 1979.
modify the generated diagram. This component would Even, S.,Itai, A.,and Shamir, A. "On the Complexity of
allow theusertoroute the arcs which were notrouted by Timetable and Multi-Commodity Flow Problems,"
MONDRIAN. When modifications to the diagram are Society for Indusvial and Applied Mathemadcs-
the addition or deletion of objects (processes, data Journal of Computing, Volume 5, Number 4, Dec-
stores, or interfaces), it would be desirable to concur- ember 1976, pp. 691-703.
rently update the SPSA database. When making addi- Fisk, C. J., Caskey D. L and West, L L "ACCEL:
tions to the diagram, the analyst would not have to be Automated Circuit Card Etching Layout" Pmceed-
overly concerned with the placement and routing involved, ings of thelEEE, Volume 55, Number 11, 1967, pp.
as the extended system would produce a new layout 1971-1982.
when the additions were completed Freisen, AL W, Soreson, R G. and 'Demblay, 1 R

SPSL/SPSA Primer Version L 4 Department
A major improvement to the prototype would be the of Computational Science Technical Report 82-5,
capability of producing DFDs in tien Many of the ana- University of Saskatchewan, Saskatchewan,
lysts evaluating the DFDs suggested this for the larger Canada, 1982.
systems. 'Ib accomplish this, two extensions to Gane, C. and Sarson, T. Structured Systems Analysis:
MONDRIAN would be required First, MONDRIAN 7bols and 7tchniques, Prentice-Hall, Inc., Engle-
should support the production ofa series ofDFDs show- wood Cliffs, New Jersey, 1979.
ing the hierarchical structure of the system description. Garey, MIL, Johnson, D. S. and Stockmeyer, L "Some
That is, it should produce a DFD for each successive re- Simplified NP-Complete Problems," Proceedings
finement of the system description. The second exten- ofthe 6thAnnualACMSMnposium on the Theory of
sion would have MONDRIAN support the logical group- Computing, Seattle, Washington, April 1974, pp.
ing of elements in the system being described. This 47-63.
would allow the user to specify (perhaps by use of the Gilmore, R C. "Optimal and Suboptimal Algorithms for
SPSL concept keyword) which objects are logically re- Quadratic Assignment Problems," Joumat of the
lated and which should be placed in one area of the dia- SocietyforInduskinlandAppliedMathematics, Vol-
gram or in a separate diagram. ume 10, Number 2, June 1966, pp. 305-313.

Hanan. M and Kurtzberg, 1 M. "Placement Techniques"
A major improvement in the implementation of the Design Automation of Digital Systems, Theoo
MONDRIAN prototype would involve changing the and 7tchniques, Volume 1, Chap. 5, Prentice-
adjacency list structure to a database structure which is Hall, Englewood Cliffs, New Jersey, 1972.
retained after the generation of the diagram This would Hwang, E W "An 0(n log n) Algorithm for Suboptimal

170



Rectilinear Steiner Fees," IEEE 7)ansactions on MSc. Thesis Departmentof Computaional Science,
Circuits and Systems, Volume CAS-26, Number 1, University of Saskatchewan, Saskatchewan,
January 1979, pp. 75-76. Canada, 1983.

Kurtzberg, J. M "Algorithms for Backplane Formation," Quinn, N.R. Jr. and Breuer, M.A "A Forced Directed
in Microelectronics in I,arge System  Spartan Books Component Placement Procedure for Printed

1972. Circuit Boards," IEEE 7)ansaction on Circuits and
Lee, C. Y. "Algorithm for Path Connections and Its Systems, Volume CAS-26, Number 6, June 1979,

Applications," IRE knsactions ofELectronic Com- pp. 377-388.
puters, Volume EC-10, Number 3, September 1961, Raghaven, R., Cahoon, J. and Sahni, S. "Manhattanand
pp. 346-365. Rectilinear Wiring," Technical Report 81-5,

Loberman, H. and Weinunberger, A "Formal Proce- University of Minnesota, Minneapolis, Minnesota
dures for Connecdng Terminals With a Minimal Wire March 1981.
Length," 1 ACM Volume 4, October 1957, pp. Steinberg, L. "The Backboard Wiring Problem: A
346-365. Placement Algorithm," SIAM Reu, Volume 3,

Nunamaker, 1 E and Konsynsli, R "Formal and Auto- Number 1, January 1961, pp. 37-50.
matic Techniques of System Analysis and Design," Dichroew, D. andHershey, E."PSL/PSA: A Computer
inSysternsAnalysisandDesignAFoundationforthe Aided Technique for Structured Documentation
1980's, W Gotterman et aL, (ed.), North Holland and Analysis of Information Systems," IEEE
Publishing Company, Amstedam, The Netherlands, 7}ansactions on So/huare Engineering, Volume SE-
1981, pp. 291-320. 3, Number 1, 1977, pp. 48-58.

Perkins, D.R. "The Design of a User-Oriented Interface Wig, E. "PSL/PSA Reporting and Prototype Output
foraMinicomputerImplementationofaComputer- Generation Facilities in a Mini-Computer
Analysis and Documentation Package," M.Sc. Environment" M.Sc. Thesis, Department of
Thesis, Department of Computational Science, Computational Science, University of Saskatchewan,
University of Saskatchewan, Saskatchewan, Canada Saskatchewan, Canada, June 1979a
June 1979. Wig, E. "Computer-Aided Systems Analysis Reporting,"

Pomentale, T "AnAlgorithm for Minimizing Backboard Department of Computational Science Technical
Wiring Functions," Communications of the ACM, Report University of Saskatchewan, Saskatchewan,
Volume 8, Number 11, November 1965, pp. 699- Canada, September 1979b.
703. Yourdon, E. and Constantine, L Structured Design,

Protsko, L.B. "Placement and Routing Algorithms for Prentice-Hall, Inc, Englewood Cliffs, New Jersey,
the Automatic Generations of Data Flow Diagrams," 1979.

171


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1984

	Automatic Generation of Data Flow Diagrams From A Requirements Specification Language
	L. B. Protsko
	P. G. Sorenson
	J. P. Demblay
	Recommended Citation


	tmp.1422238178.pdf.m_zBA

