
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1987 Proceedings International Conference on Information Systems
(ICIS)

1987

A METHODOLOGY FOR ADAPTIVE USER
INTERFACE DESIGN
Feng-Yang Kuo
University of Colorado, Denver

Jahangir Karimi
University of Colorado, Denver

Follow this and additional works at: http://aisel.aisnet.org/icis1987

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1987 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kuo, Feng-Yang and Karimi, Jahangir, "A METHODOLOGY FOR ADAPTIVE USER INTERFACE DESIGN" (1987). ICIS 1987
Proceedings. 40.
http://aisel.aisnet.org/icis1987/40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987/40?utm_source=aisel.aisnet.org%2Ficis1987%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A METHODOLOGY FOR ADAPTIVE USER INTERFACE DESIGN

Feng-Yang Kuo
Jahangir Karimi

Department of Information Systems
University of Colorado, Denver

ABSTRACT

A methodology, AUI (Adaptive User Interface), is presented in this paper for the design of
user interfaces that can accommodate users of different skill levels. The conceptual user
interface model, referred to as the dialogue schema in the AUI methodology, is derived by
analyzing the control structure of task requirements from the real time system and formal
language perspectives. The dialogue schema is used to generate three forms of dialogues:
question/answer, menu/form, and formal language. Alternative software tools to facilitate the
AUI methodology are also discussed.

1. INTRODUCTION
In Section 2 of this paper, an overview of the AUI

Recently, for user-computer interface design, formal methodology is presented. Sections 3 and 4 present
specification techniques such as extended State the methodology and its software tools respectively.
Transition Diagrams (STD) and Backus-Naur Form The final section discusses the conclusion and
(BNF) are used. The advantages of these techniques future research. Throughout the paper, a book-
are that (1) they allow the designer to specify the ordering system (Gane and Sarson 1979) is used as
user interface behavior independent of software an example to illustrate the AUI methodology.
implementation, (2) they can be stored in executable
forms which are readily manipulated by software 2. OVERVIEW
tools (Kuo and Konsynski 1987; Wasserman 19854
Wasserman et al. 1986) and (3) they can be used to User interface design can be said to be a design of
incorporate human factor guidelines into the user-system communication and of control over this
interface design (Reisner 1981, 1984). communication process by both the user and the

computer system. In the AUI methodology, the user
The research so far, however, has not addressed interface is treated as a formal language to
how user interface specifications using STD and facilitate the communication between the user and
BNF can be derived conceptually. For the techniques the system. The basic linguistic structure of the
to be useful to system designers, a top-down user interface is specified with modeling techniques
approach to deriving the user interface specifica- extended from STD and BNF, both of which are
tions from the original task requirements must be context free grammars.
provided. This paper presents a methodology, AUl
(Adaptive User Interface), to address this issue. In addition, this basic linguistic structure is derived
Furthermore, the AUI methodology extends the by analyzing the task's control structure (the timing
techniques to achieve adaptive interface design and condition) in order for the language to
(Dehning, Essig and Maass 1981; Edmonds 1978, adequately facilitate the user in completing the task
1981: Hall 1978) -- a design of interfaces that can (i.e., to invoke functions and to provide data). In
accommodate needs of different users (e.g., skilled the AUI methodology, the user-system interactions
versus novice). Many software tools can also be are regarded as events (actions initiated by the user
used to facilitate implementation in various phases or the system) happening in a real time system
of the AUI methodology. Consequently, effort to en,ironment, where both the user and the system
design user interfaces can be reduced when the AUI act concurrently and both demand the control of
methodology is used. the system. To analyze the task requirements and

302

DFD

CONTROL STRUCTURE ANALYSIS

ADFD

USER INTERFACE MODEUNG

AUI STD

DIALOGUE SCHEMA DERIVATION

AUI BNF

USER INTERFACE GENERATION

QUESTIONANSWER MENU/FORM COMMANDLANGUAGE

ENTER NAME: > ORDER/GET-C-N
 11„'IE: (NAME.·····)

ENTER ADDAESS: »RESS /GET·C·A
(ADDRESS..

Figure 1. An Overview of the AUI Methodology

the control structure, the AUI methodology adopts generate three forms of dialogues: formal language,
two analysis tools: the Data Flow Diagram (DFD) menu/form, and question/answer. Also, software
(Gane and Sarson 1979) and the Augmented Data tools can be used to facilitate implementation; those
Flow Diagram (ADED) (Ward 1986). The DFD, tools will hide implementation details from both the
which represents the system's process and data user and the designer.
requirements, is the input to the AUI methodology.
From this DFD, the ADFD is derived to capture the
control structure, which is an integral part of the Figure 1 shows the steps of the AUI methodology.
requirements for any real time system. The AUI methodology takes the DFD as input from

which the ADFD is derived. A technique extended
The extended STD and BNF models can then be from STD is used to model the behavior described
developed according to the ADFD. The extended in the ADFD. The extended STD representation is
STD and BNF models, referred to as the dia/ogue then mapped into the equivalent extended BNF
schema of an application system, are used to representation.

303

01 TA °:t]A 3,*TA
DATAD INVENTORY 0 1 CUSTOMER

|DATA |DATA - pATA

b , b TM SUMMARY 06 |BACKORDER 031NVENTORY1 |4 - 5 6. |7
CUSTOMERCFIER --1MITE -1 fiEFUE

 TATEMENl ISE
CUSTCIER #EM OMER)11ERCHAN-
CF[ER ULFILMENI

A A A A

, 3 1-
 ATA

04 EADETAIL Dl 'susTohER

03trly' »ATA
b,TA

Figure 2. High-Level for Book-Ordering System

3.THE AUI METHODOLOGY several processes; in such a case, these processes
are said to have interweaved events. Figures 4a
and 4b illustrate the application of these two steps

3.1 Deriving the Augmented Data Flow Diagram to the book-ordering system.

The AUI methodology takes the DFD of the system Third, for each group of processes that have
to be developed as its input. Figure 2 shows the interweaved events, an agent is assigned and its
overall DFD and a section of the detailed DFD for associated event-flows are specified. An agent is a
the book-ordering system. Discussed in depth by named control process that monitors the events by
Gane and Sarson (1979), details regarding using the receiving input event-flows from and sending output
DFD for requirements specification will not be event-flows to the marked processes. An input-event
discussed here. flow, which must be received by an agent, is the

signal representing the result of execution by the
marked process. The output event-flow, which must

To derive the Augmented Data Flow Diagram of the be sent by an agent, is the signal to enable/disable
system, the following procedure (summarized in (activate/deactivate) the marked process. In
Figure 3) is applied. First, the designer identifies addition, each agent has a "starting" input event-
all data that must be received from and sent to the flow and an "exiting" output event-flow to begin
user and marks processes that support the user's and end the agent's activities. When the "exiting"
access to those data. This step results in many output event-f'low is sent by the agent, all
marked processes in the DFD. Second, from this processes associated with the agent will be deacti-
marked DFD, the designer provides descriptions of vated. Thus, the deactivation of processes in the
events affecting each marked process. An event, in AUI methodology is implicitly defined by the
the AUI methodology, is a user's action (e.g., "exiting" output event-flow. Figure 4c shows the
entering data) to which the system must respond by agent C-N-AGENT, marked processes GET-C-N and
invoking the marked process (e.g., validating data). VALIDATE-C-N, and event-flows between the agent
Events are described without specifying how they and the two processes. A number is assigned to the
take place procedurally. An event may affect event-flows to show the order of event-flows.

304

1/
21 li

DERIVING THE ADFD

TERMINOLOGY:
EVENT = U SER ACTION TO WHICH SYSTEM MUST RESPOND
EVENT-LIST = L ISTOF THE DERIVED EVENTS

AGENT = CONTROLPROCESSTHATMONITORSTHE EVENTS

SYMBOLS:
EVENT FLOWS:

INPUT EVENT-FLOW (SIGNAL): - -
OUTPUT EVENT-FLOW (DISABLE): -
OUTPUT EVENT-FLOW (ENABLE): -

-- -----------------------

PACCEDURE
(0) DRAW DETAILED DFD, IDENTIFY PROCESSES WHICH

REQUIRE USER INTERFACE. MARKTHE PROCESSES

(1) IDENTIFYTHEAGENT (I.E.,CONTROL PROCESS
RESPONSIBLE) FOR EACH MARKED PROCESS

(3) 1 DENTIFY EVENT-FLOWS:
1 NPUT EVENT-FLOW: THE EVENT FLOW REPRESENTING

THE STATUS OF EXECUTION
OUTPUT EVENT-FLOW: THE ACTION TO ENABLE OR

DISABLETHEMARKEDPROCESS
EXITING EVENT-FLOW

Figure 3. Procedure to Derive the ADFD

When this three step procedure is applied to all activity (of the process) is taking place" and
marked processes, the ADFD is generated. The becomes inactive when its activity stops. A name is
ADFD includes (1) the data and process require- given to a state to describe what is happening
ments specified in the original DFD and (2) a list outside the agent but within the boundary of the
of agents and their associated event-flows that ADFD. Several states may be associated with any
describe the user-system interaction requirements given agent. In addition, a START state is created
from a real time system perspective. to represent the state in which the system is ready

and an EXIT state is created to represent the state
3.2 Deriving the AUI-STD Model from the ADFD in which the agent ceases all activities.

In the AUI methodology, a technique extended from Second, transitions between states are specified. A
State Transition Diagrams (STD), called AUI-STD, is transition has two parts: a condition and the
used to model an agent's behavior described in the action carried out when the condition is met. A
ADFD (summarized in Figure 5). Figure 5 shows the transition occurs because the agent receives a
AUI-STD for a section of the book-ordering system. certain input event-flow that requires the system to

respond and therefore sends a follow-up output
To derive the AUI-STD for an agent, the following event-flow to enable or disable a certain marked
procedure is applied. First, various states of the process. Thus, an input event-flow becomes the
system are identified. A state is a result of an condition of a transition and the follow-up output
output event-flow sent by the agent. It represents event flow becomes the action. In the AUI method-
that agent waiting for a certain user action or an ology, an action can only be (1) enable, (2) disable,
internal process to be completed. In other words, a or (3) leave the ADFD (corresponding to the
marked process is in an active state when "some "EXITING" output event-flow).

305

+Tl

A/CRECEIVABLE ORDERS FOR PREPAYINT

PREPAY
CFCERS

GET VALIDATE GET VALIDATE GET VALIDATE
CUSTOMER CUSTOMER CUSTOMIR CUSTOMEA CUSTOMER CUSTOMER
NAME NAME ADDRESS ADDRESS CREDIT CREDIT

\™ ASSEMBLE GENERATE GENERATE
VALID + OFIER + OFDER
CRJER MJMBER HETORY

4 1
. ORDERDETAILFILE ORDER HISTORY FILE

GET VALIDATE GET VALIDATE GET VALIDATE
BOCK 80CK BOOK BOOK BOOK BOOK
AUTHOR AJIMOR TITLE TITLE CUANITN QUANTITY

(1 ry.
CUSTOMEA \ CUSTOMER

DECREPENCY FU

Figure 4a. A Section of Detailed DFD of the Book-Ordering System

04. CUSTOMER

- ARRIVING CUSTOMER ORDER GET -- 254€4
1 ORDER

 M 4ER -t -2542 + 3*E», l DATA/ / START- F ILING CUSTOMER NAME -- -

CUSTO*R K

- V AUDATING CUSTOMER NAME - MAg- . los.
/CASTOMER)

0 -< f NAME 1
- FluNG CUSTOMER ADDRESS 166*.4

.-
 CetT

/

CtETOMER 3

- VAUDATING CUSTOMER ADDRESS FZE

GISS> -sfo!5 - -...
VALIDATE 60=, -0 :/ i I
CUSTOMER ·

'r.,
- F ILING BOOK TITLE NAME _*.8 - / ji

EXIT- V ALIDATING BOOK TITLE
- FIUNG BOOK AUTHOR /- \ 26; TR- START

- VAUDATING BOOK AUTHOR ,
CUSTOMER - " 74 III- / 1

- F ILING BOOK QUANTITY -,!MA-

-,'f'.3*- V ALIDATING BOOK QUANTITY 9·:°s;;© e- rS
CUSTO#*ER

FLE -1.0 /
o

0 UADORESS /-- 125* 'O EXFT

Figure 4b. Event List Figure 4c. The ADFD for a Section of the
Book-Ordering System

306

arcs. (Usually, the arc's label is the same as the
DE XM.. 15 AU SI!) M O 5!E L_ _ _ _ _ _ _ _ _ _ name of the corresponding lower-level AUI-STD.)
TER OlOGY. Aggregation will result in a hierarchy of AUI-STDs,

STATE - AGENT WAITING FORA CERTAINACTION in which a higher-level AUI-STD's arcs actually
TRANSITION . REPFESENTACHANGEOFSTATE represent lower-level AUI-STDs and only the lowest

level AUI-STD's arcs have conditions and actions.TRANSITION CONDITION - IMXATEST,€CALSE OFCAANGE

TAANSITION ACTION - ACTIONCARRIEDOUT WHEN THE
CONOITION IS MET Aggregation of the AUI-STD occurs at two levels:

SYMBOLS:
<LABEL> the object level and the control level. Aggregation

at the object level requires the grouping of AUI-
USER-INVOLVED NONUSER-NVOLVED STDs that reference data items belonging to the

STATE STATE same data object. From the standpoint of human
TRANSITION. E°951.-

ACTION cognitive factors, this grouping is necessary to

PROCEDURE ensure that, in the course of user-system interac-
(1) IDENnFYSTATESWITHANAME tion, user knowledge of "objects" used in the
(2) IDENrIFYTRANSITIONSBETWEENSTATES current task can be applied. Thus, the information
(3) PERFOR.(CONSISTENCY.COMPLETBIESSANDAEACHABMUTY processing capability (i.e., short- and long-termCHECKS
(4) AGGAEGAT™ ANAACNTI€AGGREGATED AUI_STD

REPRESENT THE LOWER LEVEL. AULSTD memory) required by the user (e.g., entering items
(a) AT THEOBJECTLEVEL: GROUPINGTHE STD'S belonging to the same object) can be reduced.

REFERENCING DATAITEMSBELONGNOTOTHE
SUE DATA OBJECT

(b) AT THECONTROLl.EVEL: GAOLPINGTHE STD'S Aggregation at the control level is further divided
8&EDONITHETYPEOFRELAMONISHIP into three types of grouping: functional, mutuallyO.E.. FUNCTIONAL MUTUALLY DEPENDENT.
COINCIOENTAL) dependent, and coincidental. Functional grouping is

the grouping of AUI-STDs for ADFD agents that
must take place serially (i.e., in a certain order) for
a given task. Functional grouping must be per-

Figure 5. Procedure to Derive AUI-STD from ADFD formed first because, for the user to complete the
task easily, the structure of user-system interfaces
must closely resemble the user's knowledge of the

Third, the following checks for consistency, task (which is supposedly embedded in the ADFD).
completeness, and reachability are performed to Furthermore, functional grouping results in a
ensure that the AUI-STD is correct (Birrell and reduction of information processing capability
Ould 1985; Karimi 1986; Ward 1986). For the AUI- requirement because it releases the user from
STD to be consistent with the behavior of its storing the task information in long-term memory.
agent, two conditions must be satisfied: (1) each For the same reason, mutually dependent grouping is
input event-flow of the ADFD must correspond to a performed next. Mutually dependent grouping is the
transition condition and vice versa and (2) each grouping of AUI-STDs for agents which (1) can take
output event-flow must correspond to an action and place simultaneously but the order of execution is
vice versa. The AUI-STD is complete if, for any immaterial and (2) refer to same data objects that
given input event-flow, a transition and its action are required to complete a given task. Finally,
(output event-flow) are defined. The AUI-STD is coincidental grouping is performed to group the STD
reachable if at least one path (consisting of one or of unrelated agents (no timing or data relationship).
more transitions) is defined between the START
state and the EXIT state. After these checks are The result of aggregation is a complete AUI-STD
performed, a name is assigned to the AUI-STD. model that describes the user interface structure.

This model is conceptual because no implementation
Fourth, an aggregation process is applied to details have been described. A complete AUI-STD
integrate all AUI-STDs to show the overall user- model for the book-ordering system is given in
system interaction requirements. To do so, a Figures 6 and 7.
recursive structure is incorporated in the AUI-STD
model (Jacob 1983; Woods 1970). In an aggregated 3.3 Generating the AUI-BNF Model
AUI-STD, a labeled arc is used to represent a
lower-level AUI-STD and a named node is also The AUI-STD model, which uses a recursive
created as an intermediate state to connect the structure, can be mapped into a context free

307

GLT C-N GET-8-T

SART F START I-- ----

ENABLE GEllING CUS NAME

-- -- --

ENABLE GETTING BOOK.TITLE

 GETTING CUSl ·NAME
INCORRECT AUST-NAME GETTING BOOK·TITLE

CUSI ·NAME RECElVEI) DISABLE VAl IDATING CUST NAME

DISABLE GETTING CUST NAME ENABLE GETTINGCUST.NAME BetT'-ILER CE"IEE_- ENABLE VALIDATING CUST-NAME EXITING

VALIDATING CUST NAME

CORRECI CUST NAME I L ---------

EXITING

((EXIT)) GET.8 A

START
GET-CA ENABLE GETTING BOOK-AUTHOR

START
C GETTING BOOK·AUTHOR)

-------- --
ENABLE GETTING CUST-ADDRESS |

- - - ixii ,a- - - - BOOK-AUTHOR RECEIVED

GETTING CUST ADDRESS
INCORRECT AUST ADDRESS

CUST·ADDRESS RECEIVED DISABLE VALIDATING CUST ADDRESS

DISABLE GETTING CUST-ADDRESS ENABLE GETTING CUST ADDRESS
ENABLE VALIDATING CUST-ADDRES

VALIDATING CUST-ADDRESS
GET-8-Q

((EED)_9!{JEFU'913et55 1 ' -EX]TING START
-------- 1

ENABLE GETTING BOOK-QUANIIT

GETTING BOOK-OUANTITY

GET-8-ON BOOK-OUANTITY RECEIVED I

EXITING

START
- - - - - - - -

0448LE GETTNSORDER·#afUBER
(EXIT3

GETTNG CADERNIMBER GET A BT

 .KX*RECTORDER+U«BEROADER+iNBEARECENE - - - - - - - - - - ('STARC)-------- DISABLE VALIDATING ORDER·NUMBER
DISABLE GETTING ORD€1*NUABER ENALVEGETTNGORDEA-N-*·48ER STARTENABLE VAUDATING ORDEA-NUMBE

ENABLE GETTING BOOK TITLE
VALJOATING OADER-NUMBEA

_998fFf , ---'-- 1 L
GETTINGBOOK-TITLE

EXITING

Exii, a- *»gITLE RECEIVED _

GET·RON

GET-R BO

START------- , ((ED)
ENAAE GETTE ORDER#*MBER Cry)

START

GETTINGOADER NLS,BER
ENAaLE-g-NE- K4JANrIT· L

CADER+UABER RECEIVED GETTING BOOK·QUANTITYS>
EXITING -- --

5£#9141'1751,5Ep
EXITNG

Figure 6. The AUI-STDs for the Book Ordering System .-7

308

2
0
1

AGGREGATION OF THE AUI STD

GET-C-D
GET-C-N GET-C-A

(START j NODE-1 *
GET-B-T GET-B-A GET-8-Q

(EED (EED UE))
CONTROL LEVEL;
NEWORDER (mutually dependent)

GET-C-D GET-B-D

CE@D CETZ>
GET-B-D GET-C-D

NODE-5

CANCEL-BACK-ORDER (functional)

GET-B-ON

(EXIT

RETURN-BOOK
GET-R-ON GET-R-BT GET-R-BQ

<NODE-6 <EED (Car))

BOOK-ORDER-SYSTEM (coincidental)
-NEW-ORDES---¥

/SZZ \CANCEL-BACK-ORDER.-

-RETURN-BOOK-

Figure 7. Aggregation of AUI-STD at the Object and Control Level

grammar using a BNF like representation. In the of production rules that describe how the language
AUI methodology, a technique extended from BNF, (the user interface) can be generated through two
called AUI-BNF, is used for this purpose (sum- types of symbols: terminal and non-terminal. A
marized in Figure 8). The AUI-BNF model consists terminal symbol is a word in a lexical category

309

generation of the language is obtained by placing
DERIVE AULBNF MODEL- the name of the aggregated AUI-STD on the left
TERMINOLOGY· side of a production rule and, on the right side, the

PRODUCTION RULES - SETOFRULESTOPRODUCETHE labels of arcs. To concatenate the symbols on theLANGUAGEE right side of a production rule, the operator OR (1)
NONTERMINAL SYMBOLS = SYMBOLS THAT APPEAR AS THE LEFT- is applied if the order of execution in the AUI-STDHANDSIDEANY RULE

is immaterial. Otherwise, the operator AND (+) is
TERMINAL SYMBOLS = SYMBOLS NOT APPEARING AS THE

LEFT-HAND SIDE OF ANY RULEE applied according to the exact sequence defined in
the AUI-STD. Because of the recursive structure

DISTINGUISHED SYMBOLS = THE NONTERMINAL SYMBOLS FROM
WHICH ALL LANGUAGE STRINGS ARE embedded the AUI-STD, this process can be
DERIVED repeatedly applied to define all non-terminal

SYMBOLS: symbols used in the AUI-BNF model for a given
+ (AND) APPUEDIFTHEORDEROFTHE EXECUTION system. To define the terminal symbols, the lexical

ISABIDED BY™EEXACT SEQUENCE requirements of the data are evaluated. Terminal

L _(01)_ _ -------------- for DIGITS; A, B, ..., Z, a, b, ..., z for ALPHABETS)
APPUED IF THE ORDER IS IMMATERIAL symbols of a given lexical category (e.g., 1,2, ..., 0

PROCEDURE: are then assigned to the right side of production
FROMTHE HIGHEST TOTHE LOWEST LEVEL AUI_STD: rules to generate the lowest level non-terminal

(1) PlACE THENAMEOFAGGREAGTE AUI_STD ONTHE symbols (obtained from the lowest level AUI-STD).
LEFT SIDEOF THE PRODUCTION RULE

(2) PLACETHELABELSOFARCSON™ERIGHTSIDEOFTHE
PRODUCTION RULE, ASSIGN THE OPERATORS (ANO'OR) Thus, for the highest level AUI-STD, a starting
TOCONCATENATE THESYMBOLS ACCORDINIGTO THE symbol (i.e., the name of the aggregated STD for
SEQUENCESPECIFIEDINTHEAUI_STD the entire system) is created as the distinguished

(3) FOLLOW THE RECURSIVE STRUCTURE IN THE
AUI_STD MODEL, REPEAT (1) AND (2) non-terminal symbol from which all strings of the

FORALLLOWEST-LEVELNON-TERMINALSYMBOLS: language are derived. This distinguished non-
(4) PLACE™E S™BOLONTHE LEFTSIDEOFTHE terminal symbol is produced by placing the labels of

PRODUCTION RULE arcs of the higliest level AUI-STD on the right side
(5) GENERATE THE TERMINAL SYMBOLS BY EVALUATING of the rule. This procedure is repeated untilTHELEXICAL REQUIREMENT OF THE DATA

reaching the lowest level AUI-STD, in which the
name of the arc is obtained by using the name of
data item referenced in the transition's action.
(The data item name can be obtained from the

Figure 8. Procedure to Derive AUI-BNF Model DFD's data dictionary if available.)

The internal state (i.e., a rectangle) requires special
(e.g., alphanumeric) and can only appear on the treatment in the AUI methodology. The internal
right side of a production rule. A non-terminal state and its outgoing transitions are ignored if no
symbol is a composite syntactic symbol to be cyclic transition is caused by the activity of the
described by other terminal or non-terminal symbols. internal process. (That is, the user need not have
A non-terminal symbol may appear on the right or the language to interact with the system.) If,
left side of a production rule. Two operators are however, a cyclic transition is caused (e.g.,
available to concatenate symbols on the right side GETTING-C-N triggers VALIDATING-C-N which in
of a production rule: the OR operator (represented turn causes a transition to GETTING-C-N), a special
by the "r) for symbols that can occur in any order token DISPLAY is used as a terminal symbol and a
and the AND operator (represented by the "+") for repeating definition is defined in the BNF. This
symbols that must occur in the specified order. A token is used for the display of messages (such as
* sign is assigned to a symbol (on the right side of "invalid customer name") regarding the semantics of
a production rule) when an arbitrary number of the system (i.e., the name is syntactically correct
repetitions are allowed. The AUI-BNF model of the but not valid in the database).
book-ordering system is described in Figure 9.

To translate the AUI-STD model into the AUI-BNF Finally, descriptors, specified within two double
model, the following procedure is applied. First, quotes ("), are assigned to all non-terminal symbols
from the highest to the lowest level AUI-STDs, and the special terminal symbol DISPLAY. This step

310

BOOK-ORDER-SYSTEM :=-
NEW·ORDER' " 1 CANCEL-BOOKORDER· · 1 RETURN-BOOK" '

NEW-ORDER . (GET-C-D· · + GET-B-D· ·) 1 (GET-B-D" " + GET-C-D" ")
CANCEL-BACK-ORDER :.. GET-B-ON· ·
RETURN-@OOK :-= GET-R-ON· ' + GET-R-BT- - + GET-R-BQ· ·
GET-C-D :.= GET-C-N· " + GET-C-A· ·
GET-B-D :-- (GET-B-T· " + GET-B-A· · + GET-B-Q" 7*
GET-C-N :.. CUST-NAME I (CUST-NAME + DISPLAY + CUST-NAME)'
GET-C-A :== CUST-ADDRESS I (CUST-ADDRESS + DISPLAY + CUST-ADDRESS)'
GET-B-T =- BOOK-TITLE
GET-B-A :== BOOK-AUTHOR
GET-B-Q :.= BOOK-QUANTITY
GET-B-ON :.= ORDER-NUMBER
GET-R-ON :=. ORDER-NUMBER
GET-R-BT :== BOOK-TITLE
GET-R-BQ :=. BOOK-QUANTITY
CUST-NAME :-= (AIBI.. IZIalbl . . . Izl.)'
CUST-ADDRESS :=- (011] . . I9IAIBI... IZIalbl...IzI .)*
BOOK-TITLE :=. ((0111.. 191AIBI . . . IZIalbl . . . Izl . 1%1$1&1/1)'
BOOK-AUTHOR :== (AIBI... IZIalbl . . . Izl .)·
BOOK-QUANTITY :== (0111.. - 9)'
ORDER-NUMBER :=- (0111...9)·

Figure 9. The AUI-BNF Model for the Book-Ordering System

enables the AUI-BNF model to support different symbols, terminal or non-terminal, available on the
forms of dialogues (discussed in the next section). right side of the production rule. Similarly, error

messages are generated for errors committed by the
3.4 Transformation into Different Dialogue Forms user during the course of interaction. Messages

related to semantics are generated by displaying the
The AUI-BNF model, as the dialogue schema for an descriptor of the terminal symbol, DISPLAY.
application's user interface, can be used to develop Figure 10 shows a possible command language and
three types of user interfaces commonly used in the handling of online help and error messages for
business: formal language interface (for expert the book-ordering system.
users), menu/form interface (for frequent users),
and question/answer interface (for infrequent,
novice users). The dialogue schema can also be used
to develop online help and error messages as
feedback to the user.

Command:
ORDER·SYSTEM/NEW·ORDER/

3.4.1 Formal language dialogues GET-C-0-(NAME-. ,ADDRESS..)+
GET-8-D-(BOOK-TITLE-...,BOOK.AUTHOR....,BOOK·QUANI 11 Y. . . .)

The AUI-BNF model can be used to develop a Help. Response:
HELP ORDER-SYSTEM Commands in ORDER.SYSTEM areformal language because it is a context free

NEW„ORDER. CANCEL·ORDER, RETURN-BOOKgrammar. The parsing technique for a context free HELP BOOK-QUANTITY QUANTITY must be digits (1,2,. , ., 9,0)

grammar has been studied in-depth in the area of
Error: Response:formal languages and will not be further discussed ORDER-SYTEN/. . ORDER-SYSTEN/. .here. A formal language such as a command A

Incorrect syntaxlanguage is considered a better tool for an expert
user because of its efficiency in the user's entering
language statements.

In the AUI-BNF model, online help messages are Figure 10. A Possible Command Language for the
created for all non-terminal symbols by identifying Book-Ordering System

311

3.4.2 Menu/form dialogues available) or given by the designer. Figure 12
illustrates the use of Heuristic 2.

To use the AUI-BNF model to generate menu/form
dialogues, the following two heuristics are applied:

Heuristic 1: for non-terminal symbols that are Production Rules
GET-C-D :-- GET-C-N· · + GET-C-A· ·

produced purely by the OR operator, a menu can be GET-C-N :-- CUST-NAME I (CUST-NAME + DISPLAY + CUST-NAME)·
created. The name of the menu is the name of the GET-C-A :-- CUST-ADDRESS I (CUST-ADDRESS + DISPLAY + CUST-ADDRESS)

CUST-NAME :-- (AIBI. IZIalbl . . . Izl.)·non-terminal symbol on the left side of the CUST-ADDRESS :-- (0111.. 191AIBI .. . IZIalbl Izl)'

production rule. The options of the menu are the Form:
GET-C-Dsymbols on the right side of the production rule. A

CUST-NAME ·· :
number is assigned to the options in ascending CUST·ADDRESS ·:
order. The descriptors can be used in the menu to
explain the meaning of the option. Two modifica-
tions regarding the semantics of this menu are made
here. First, a QUIT option, although not defined in Figure 12. Using Heuristic 2 to Generate
the production rule, is assumed. Second, a re- Form Dialogues
peating structure (with a * symbol) is also assumed
so that the user can stay in this menu unless the
QUIT option is selected. Figure 11 illustrates the It is also possible to generate a hierarchy of forms
use of Heuristic 1. based on this heuristic. Using the following

production rule:

NEW-ORDER "" :== (GET-C-D"" + GET-B-D"") 1
Production Rule: (GET-B-Ir + GET-C-D"")
BOOK-ORDER-SYSTEM :-

NEWORDER· • 1 CANCEL-BACKORDER· · 1 RETURN-BOOK·
the OR operator in this rule is used to show that

Possible menu structure: GET-C-D and GET-B-D need to be performedBOOK-ORDER-SYSTEM
1. NEWORDER- - although the order is immaterial. Because both GET-
2. CANCEL-BACKOADER· · C-D and GET-B-D can become forms (using heuristic
3. RETURN-BOOK· ·
4. OUIT 2), the above NEW-ORDER production rule can then

The production rule assumed implicity: be used to generate a form which consists of two
BOOK-ORDER-SYSTEM :-- other forms (Figure 13). Note that because GET-B-D(NEW-ORDER· · 1 CANCEL-BACK-ORDER· · 1 RETURN-BOOK· ·)· has a repeating definition in the production rule,

the user can stay in this form until a signal (e.g., a
function key) is issued by the user to stop this
form.

Figure 11. Using Heuristic 1 to Generate
Menu Dialogues From the implementation point of view, the

windowing technique can be used to implement the
menus and forms (see Section 4). A window is

Heuristic 2: for (1) non-terminal symbols t assigned to a menu or a form, and a window
hat are produced by the AND operator and (2) on consisting of sub-windows can be assigned to a
the right side of the rule, non-terminal symbols can hierarchy of forms.
be further produced by terminal symbols that repre-
sent data items of the same object, a form con- Finally, online help regarding the syntax can be
sisting of fields can be created. The name of the handled by typing the token "?" and, in response,
form is the name of the non-terminal symbol on the the system will generate help messages regarding
left side of the production rule. The text labels of the syntax requirements. This is a standard feature
fields are the non-terminal symbols which are assumed for all menus and forms in the AUI-BNF
produced directly from the terminal symbols. The model although not specified explicitly. If addi-
descriptors can be used to explain the meaning of tional messages are to be provided to the user, an
the labels. The length of the field is extracted indicator to an external file can be assigned to the
from the definition stored in the data dictionary (if production rule, Online error messages regarding

312

in Heuristic 1 are made here. Figure 14 illustrates
the use of Heuristic 3.

Production Rules:
Produclion rule:

NEWORDER- * :-- (GET-C-D' · + GET-8-0- 7 1 (GET-B-D· · + GET-C-D' 7 BOOKERDER-SYSTEM :--
GET-C-D :-- GET-C-N· · + GET-C-A· · NEW-ORDER· · 1 CANCEL-BACK-ORDER· ·1 RETURN-BOOK- -
GET-C-N :.. CUST-NAME I (CUST-NAME + DISPLAY + CUST-NAME)'
GET-C-A :.- CUST-ADDRESS I (CUST-ADDRESS + DISPLAY + CUST-ADDRESS)· Possible question format:
GET-8-0 :-- (GET-8-T- - + GET-8-A· · + GET-B-Q· 1 ORDER-SYSTEM
GET-B-T :-- BOOK-TITLE Choose from (1) NEW-ORDER· ·
GET-8-A :-- BOOK-AUTHOR (2) CANCEL-OADER
GET-8-0 :-- BOOK·QUANTITY (3) RETURN-BOOK• ·
CUST-NAME :-- (AIBI . . . IZIalbl . . . 1/1.)' (4) QUIT
CUST-ADDRESS :.. (0111.. 191AIBI... IZIalbl . . .lzl.)'
BOOK-TITLE :.. ((Oil I . . 191AIBI .. - IZIalbl . . . Izl . 1%1$1&14) Answer: _
BOOK-AUTHOR :-- (AIBI... IZIalbl... Izl.)
BOOK-QUANTITY :-- (0111...9)•

Forms: Figure 14. Using Heuristic 3 to Generate
Questions for Options

GET-C-D
NAME -
ADDRESS -:

Heuristic 4: for (1) non-terminal symbols that are
GET-B-D produced by the AND operator and (2) on the rightBOOK-TITLE -:

BOOK-AUTHOR -: side of the rule, non-terminal symbols can be
BOOK-QUANTITY -- further produced by terminal symbols that represent

data items of the same object, a series of type 2
Figure 13. A Hierarchy of Forms Generated questions are created for each of those non-

by a Nested Production Rule terminal symbols produced directly by terminal
symbols. The generation of a question occurs by
simply placing the non-terminal symbol and its

the syntax can be handled in the same way as a descriptor following the word "enter." Figure 15
formal language. Online help and error messages illustrates the use of Heuristic 4.
regarding use of the menu/form technique should be
a part of the software tool's functionality and
thereforeare nota concern here.

Production Rules:

3.4.3 Question/answer dialogues GET-C-D:=- GET-C-N· · + GET-C-A· ·
GET-C-N -- CUST-NAME I (CUST-NAME + DISPLAY + CUST-NAME)·
GET·C-A :-- CUST-ADDRESS I (CUST-ADDRESS + DISPLAY + CUST-ADDRESS)·To generate question/answer dialogues from the CUST.NAME :.. (AIBI. . . IZIalbl . . . Izl.)'AUI-BNF model, a top-down, sequential execution of CUST-ADDRESS :-- pill . . 191AIBI . . . IZIalbl... Izl.)*

the model is performed. A question can be (1) one
that requires the user to select from available Possible question format:
options (e.g., options of a menu, referred as type 1 GET-C-D:

question) or (2) one that requires the user to enter Enter NAME -?
Answer:the value for a data item (e.g., fields of a form, Enter Address-?

referred to as type 2 question). The above two Answer:
heuristics are modified for generation of question/
answer dialogues.

Figure 15. Using Heuristic 4 to Generate
Questions for Data Entry

Heuristic 3: for non-terminal symbols that are
produced purely by the OR operator, a type 1
question can be created. The question is derived by When a repeating definition is used in the produc-using symbols on the right side of the rule as the tion rule, a question such as "more (yes/no)?" isavailable options. Also, the two modifications made automatically placed at the end of the series of

313

questions (Figure 16). Finally, online help and windowing technique is chosen for handling menus
error messages can be handled as they are for and forms. Two parts of this component are
menu-form dialogues. required: the window specification tool and the

window manipulation tool.

The windowing specification tool can automatically
Production rules:

create the window for a menu or a form (e.g.,
assigning the location and its layout) according to

NEW-ORDER· * :.- (GET-C-D· · + GET-B-D· 1 1 (GET-8-D· 7 + GET-C-D· -) the syntactic and lexical definitions specified in the
GET-C-D :-- GET-C-N-·+ GET-C-A· ·
GET-C-N :-- CUST-NAME I (CUST-NAME + DISPLAY + CUST-NAME)· BNF model (Gait 1985). This tool also allows the
GET-C-A :-- CUST-ADDRESS I (CUST-ADDRESS + DISPLAY + CUST-ADDRESS)· designer to modify the window if desired.
GET-8-D :-- (GET-B-T• · + GET-8-A· · + GET-B-Q· ·)*
GET-B·T ·-- BOOK-TITLE
GET-8-A :-- BOOK-AUTHOR The window manipulation tool is invoked, during the
GET-B-Q :-- BOOK-QUANTITY run time, to generate windows and facilitate user-
CUST-NAME :-- (AIBI . . . IZIalbl M)·
CUST-ADDRESS :-- (0111..191AIBI . . . IZIalbl... Izl.)' system interaction. This tool accepts user input
BOOK-TITLE- :-- ((0111.. 19[AIBI... IZIalbl... Izl . 1%1$1&14)' and provides temporary buffers for the input. The
BOOK-AUTHOR -- (AIBI... IZIalbl . . . Izl .)'BOOK-QUANTITY ·-- (0111. 9)' buffers are passed to the application system when

the interaction is successfully completed. A log file
Possible questions format: can be created to record the user input so that

GET-C-D:
Enter NAME' '? he/she can later be shown what occurred during the
Answer: session. This log file may also be used for the user
Enter ADDREST ? to "undo" certain dialogues. Errors, when made byAnswer?

the user, can be displayed using a separate window.
GET-8-D: To increase keystroke efficiency, function keys can
Enter BOOK-TITLE 7
Answer: be used. A HELP key is used for reviewing help
Enter BOOK·AUTHOR 7 messages, including those for the syntax and for
Answer: how to use the window manipulation tool. A DO key
Enter BOOK-QUANTITY™ ·?
Answer: allows the user to send a signal to the system for
More (Yes or NO): _ successful task completion. Other commonly used

function keys such as the EXIT and ABORT keys
Figure 16. Using Heuristic 4 to Generate can also be provided. In the AUI methodology, the

Questions for Repeated Data Entry use of function keys is considered a part of the
software tool's functionality and should be standar-

4. AUI SOFTWARE TOOLS dized and made available to all users of all applica-
tions. Thus, the designer need not be concerned

The present research investigates an integrated with the use of function keys in the model.
software tool environment, referred to as the User
Interface Management System (Figure 17), to For question/answer dialogues, the UIMS component
facilitate implementation. The input to the UIMS is is a software tool that sequentially delivers the
the BNF model of an application system. The UIMS questions and answers according to the dialogue
has several software tool components for handling schema. This tool also provides a buffering facility
different dialogue forms. Prototypes of several like the window manipulation tool for the user to
UIMS software tools have been implemented in a "undo" dialogues.
related research project (Kuo and Konsynski 1987).

For formal language dialogues, the UIMS component 4.1 Adapting to Different Users
is a BNF parser (like YACC in the Unix environ-
ment). This parser can provide buffers for alt An important feature of the UIMS identified at
strings entered by the user so that, in case of present is that the three forms of dialogues must be
errors, the user can correct the input string interchangeable upon the user's request. To do so,
without reentering the entire string. it is planned to use a MODE key to allow the user

to change mode of interaction at any time. To do
For menu-form dialogues, the UIMS component is so, the user's input, regardless of the form of
more complex. In the AUI methodology, the dialogues, is converted internally to the BNF

314

 APPLICATION 1 APPLICATION 3

 DIALOGUE DIALOGUE DIALOGUE
 SCHEMA J SCHEMA < SCHEMA J-- --

USER INTERFACE
MANAGEMENT

SYSTEM

V
QUESTION/ANSWER MENUFORM COMMAND GUAGE

II*
NOVICE FREQUENT EXPERT
USER USER USER

Figure 17. The AUI Software Tool Environment

representation. Thus, the user can switch to the UIMS to support various programming languages and
menu/form mode for data entry after entering a simple, high-level function calls to the UIMS to
command string such as ORDER-SYSTEM/NEW- facilitate development of application software.
ORDER. By the same token, a novice user can
change from question/answer mode to menu/form It is important to point out that dialogue indepen-
mode when he/she becomes more experienced. The dence, which refers to the separation of definition
user need not know how the three modes are (i.e., the BNF model) from the manipulation of
handled internally. dialogues, can therefore be achieved. The UIMS tool

can be shared by various applications and the
4.2 Dialogue Independence and Virtual Interface design and implementation of the user-system

Handler interface can be simplified due to dialogue indepen-
dence.

The UIMS, like the DBMS which hides the physical
storage structure from the designer in data manage- Furthermore, the UIMS can be designed to support
ment, must hide from the designer in dialogue implementation on many incompatible hardware envi-
management the complexity encountered in the ronments (e.g., workstation, terminal). The architec-
implementation of interface design (such as parsing, ture of the UIMS is divided into many layers while
displaying screen, and handling user keystroke). only the lowest-layer software is hardware depen-
This objective can be achieved by allowing the dent (Kuo and Konsynski 1987). The UIMS can

315

invoke appropriate lowest-level software for each event-flows to help the designer developing the user
different hardware environment where the interface interface model. The model, when developed, can
must be supported. Thus, the UIMS can virtually be directly used by the UIMS for implementation.
support user interface manipulation for all applica- Consequently, the AUI methodology can more
tion systems on all available hardware environments. effectively facilitate iterative design of user
This is referred to as the virtual interface handler interfaces.
concept in the AUI methodology.

4.3 The Model Generation Tool and Iterative Design 4.4 Using the AUI Software Tools without DFD

For a methodology to support adaptive user The AUI methodology, although assuming the DFD
interface design, the methodology itself must be of a system as its input, can be used independently.
adaptive (i.e., respond to changes of requirements as The modeling tool described above can be modified
soon as possible). In this regard, the AUI method- to accept data and process requirements, events,
ology is adaptive because changes of requirements and event-flows from the designer. Thus, the AUI
(in the DFD, events, or event-flows) can be methodology can be used with many automated
immediately reflected by the user-system interface structured design methodologies such as CAPO
model. Furthermore, many modeling steps in the (Karimi 1986).
AUI methodology can be automated (e.g., deriving
the STD from the ADFD and performing a consis-
tency check). The present research is studying this 5. CONCLUSIONS AND FUTURE RESEARCH
software tool (Figure 18). The idea is to have this
tool accept the DFD and descriptions of events and In conclusion, this paper presents a methodology for

designing user interface based on a system's
requirements embedded in the Data Flow Diagram.
Three styles of user interface can be generated.

DFD EVENT-FLOWS The roles of modeling the user-system interfaces in
this methodology are useful to dialogue management,

Data and process Control and timing like Abstraction (Smith and Smith 1977) and Entity-
requirement requirement Relationship (Chen 1976) approaches to the concep-

tual modeling in data management. Many
AUI advantages can be attained by using this methodo-

logy:MODEL
GENERATION 1. It can be easily integrated with and take

TOOL advantage of many existing structured design
methodologies. The user-system interface design

A therefore becomes an integral part of the system
development life cycle. The overall effort to
develop the interface can also be reduced.

V 2. The methodology offers clearly defined steps for
conceptual design of the user interface (i.e.,

AUI_ST D modeling the user-system interface from both the
real-time system and the formal language

A Ul_B N F perspective). Other approaches such as USE
MODELS (Wasserman et al. 1986), FLAIR (Wong and Reid

1982), and SCREEN RIGEL (Rowe and Shoens
1983) have not addressed this issue.

3. Using a technique such as BNF enables the
incorporation of human factors into the design

Figure 18. The AUI Model Generation Tool evaluation. More important is that the dialogue
Environment schema of various applications can be evaluated

316

to further ensure consistent user interface across Edmonds, E. A. "Adaptive Man-Computer Inter-
application systems. This evaluation can be per- faces." In M. J. Coombs and J. L. Alty (eds.),
formed on the use of terminal and non-terminal Computing Skills and The User Interface, Academic
symbols and the production rules for each Press, London, 1981, pp. 389-426.
dialogue schema. If, for instance, two applica-
tions refer to the same data item using different Hall, P. V. "Man-Computer Dialogues for Many
terminologies (i.e., inconsistent non-terminal Levels of Competence." proceedings of the
symbols), the evaluation will reveal this inconsis- European Computing Congress, 'London, 1978.
tency. Inconsistent production rules regarding
the same symbol can also be detected by Gane, C., and Sarson, T. Structured Systems
comparing the symbols and the operators used on Analysis: Tools and Techniques. Englewood Cliffs,
the right side of the rule. Consistent user- Prentice-Hall, New Jersey, 1979.
system interfaces across applications can reduce
the user's learning effort for those applications. Gait, J. "An Aspect of Aesthetics in Human-Com-

puter Communications: Pretty Windows: IEEE
Two directions are planned for future research. Transactions on Software Engineering, Vol. SE-11,
The first direction is to investigate the integration No. 8, 1985, pp. 714-717.
and sharing of dialogue schema for various applica-
tions. "System-initiated" adaptation, which refers to Jacob, R. "Using Formal Specifications in the
the system's ability to dynamically identify and Design of a Human-Computer Interface." Com-
adjust the user interface to the user's skill level, munications of the ACM, Vol 26, No. 4, April 1983,
will also be studied. pp. 259-264.

The second direction is to study which various Karimi, J. "An Automated Software Design Method-
human factors, cognitive or behavioral, are relevant ology Using CAPO." Journal of MIS, Vol. 3, No. 3,
and how they can be incorporated into various 1986, pp. 71-99.
stages of the methodology. The AUI methodology
in its present form does not address issues such as Kuo, F. Y., and Konsynski, B. "Dialogue Manage-
the user's mental model construction for task ment Support for Dialogue Independence: MIS
analysis, memory capacity implication of alternative Quarterly, Vol. 11, No. 4, December 1987.
syntax structure, and ergonomics in the human-
computer interaction when different interface styles Reisner, P. "Formal Grammar and Human Factors
are selected. Those issues will be carefully Design of an Interactive Graphics System." LEEE
evaluated in order to improve the AUI methodology. Transactions on Software Engineering, Vol. SE-7,

No. 2, 1981, pp. 229-240.

REFERENCES Reisner, P. "Formal Grammar as a Tool for
Analyzing Ease of Use: Some Fundamental Con-

Birrell, N. D., and Ould, M. A. A Practical cepts." In J. C. Thomas and M. Schneider (eds.),
Handbook for Software Development. Cambridge Human Factors in Computing Systems, Ab\ex,
University Press, London, 1985. Norwood, NJ, 1984, pp. 53-78.

Chen, P. "The Entity-Relationship Model-Toward a Rowe, L., and Shoens K. "Programming Language
Unified View of Data." ACM Transactions on Constructs for Screen Definition: /EEE Transac-
Database Systems, Vol. 1, No. 1, 1976, pp. 9-36. tions on Software Engineering, Vol. SE-9, No. 1,

1983, pp. 31-39.
Dehning, W.; Essig, H.; and Maass, S. The Adapta-
lion of Virtual Man-Computer Interfaces to User Smith, J., and Smith, D. "Database Abstractions:
Requirements in Dia/ogs. Springer-Verlag, Berlin Aggregation and Generalization." ACM Transactions
Heidelberg, New York, 1981. on Database Systems, Vol. 2, No. 2, 1977, pp. 105-

133.
Edmonds, E. "Adaptable Man/Machine Interfaces for
Complex Dialogues: Proceedings of the European Ward, P. "The Transformation Schema An
Computing Congress, London, 1978, pp. 639-646. Extension of the Data Flow Diagram to Represent

317

Control and Timing: IEEE Transactions on Wong, P., and Reid E. "FLAIR -- User Interface
Software Engineering, Vol. SE-12, No. 2, 1986, pp. Dialogue Design Tool." Computer Graphics, Vol. 16,
198-210. No. 3, July 1982, pp. 87-98.

Wasserman, A. "Extending State Transition Diagra- Woods, W. A. "Transition Network Grammars for
ms for the Specification of Human-Computer Natural Language Analysis." Communications of the
Interaction." IEEE Transactions on Software ACM, Vol. 13, No. 10, October 1970, pp. 591-606.
Engineering, Vol. SE-11, No. 8., 1985, pp. 699-713.

Wasserman, A.; Shewmake, D.; Pircher, P.; and
Kersten, M. "Developing Interactive Information
Systems with the User Software Engineering
Methodology: IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, 1986, pp. 326-345.

318

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1987

	A METHODOLOGY FOR ADAPTIVE USER INTERFACE DESIGN
	Feng-Yang Kuo
	Jahangir Karimi
	Recommended Citation

	tmp.1422285514.pdf.Z5MZZ

