
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1985 Proceedings International Conference on Information Systems
(ICIS)

1985

Techniques for Understanding Unstructured Code
Mel A. Colter
University of Colorado at Colorado Springs

Follow this and additional works at: http://aisel.aisnet.org/icis1985

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1985 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Colter, Mel A., "Techniques for Understanding Unstructured Code" (1985). ICIS 1985 Proceedings. 6.
http://aisel.aisnet.org/icis1985/6

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1985/6?utm_source=aisel.aisnet.org%2Ficis1985%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Techniques for Understanding Unstructured Code
Mel A. Colter

Associate Professor of Management Science and Information Systems
College of Business Administration

University of Colorado at Colorado Springs
P.O. Box 7150

Colorado Springs, Colorado 80933-7150

ABSTRACT
Within the maintenance activity, a great deal of time is spent in the process of understandingunstructured code prior to changing or fixing the program. This involves the comprehensionof complex control structures. While automated processes are available to structure entire
programs, there is a need for less formal structuring processes to be used by practicing profes-sionals on small programs or local sections of code. This paper presents methods for restruc-
turing complex sequence, selection, and iteration structures into structured logic. The pro-cedures are easily taught and they result in solutions of reduced complexity as compared tothe original code. Whether the maintenance programmer uses these procedures simply forunderstanding, or for actually re-writing the program, they will,simplify efforts on unstruc-
tured code.

Introduction task (Colter and Couger, 1984; Couger and Colter, 1985;
Guimaraes, 1983; Lientz and Swanson, 1981).

The maintenance of existing software comprises a major
portion of the productive effort of the software industry. Despite the growing literature on maintenance, however,
Though estimates vary and questions concerning the very little published support for practical tools and tech-
exact demarcation between development and mainten- niques for performing maintenance exists. While we
ance persist, most authorities agree that 40-75% ofall DP

have greatly impPoved our understanding of the mainte-
budgets are expended on maintenance (Boehm, 1981;

nance process, we have done little to aid the maintenance
Couger and Coulter, 1985; Elshoff, 1976; Lientz and programmer directly. Early work on translating pro-
Swanson, 1978). From another perspective, Boehm grams with GOTO's into programs with DOWHILES
(1981) has surveyed estimates which indicate that up to

was published in 1971 (Ashcroft and Manna, 1971).
75-80% of all life cycle costs are expended on mainte- Except for a few other translation and style articles, little
nance. The increasing average life of software (Boehm, else of direct applicability to maintenance programmers
1981), along with the growing amount of software enter- appeared until 1982. Then, Elshoff and Marcotty sug-

gested a method for improving the readability of existinging the maintenance process, indicate that maintenance
costs will continue to rise, both in terms of absolute bud- code through a series of transformations of the code
gets and in terms of total life cycle costs. (Elshoff and Marcotty, 1982).

A growing body of literature reflects this importance by It is the thesis of this paper that tools, techniques, and
treating the maintenance effort from multiple perspec- methodologies are badly needed to aid the maintenance
tives. Some authors have contributed papers which aid programmer. In, the maintenance mode, most of the
understanding of the maintenance process itself (Colter target code is of substantially lower quality than we
and Couger, 1984; Harrison, et. al., 1982; Vessy and would like. At the same time, a growing percentage of
Weber, 1983). Others have concentrated on factors af- our new employees are coming into maintenance with a
fecting maintenance loads (Berns, 1984; Colter and good background in structured programming but abso-
Couger, 1984; Elshoff, 1976; Gremillion, 1984). lutely no preparation for understanding, modifying, and
Another subset of the literature discusses the manage- retesting unstructured programs. This paper extends the
ment and productivity issues related to the maintenance work of Elshoff and Marcotty by providing some simple

70



techniques to aid maintenance programmers in the under- to making a change. Therefore, this paper concentrates
standing of poorly structured code. on a set o f techniques for understanding the control flow

of unstructured code.

The Unstructured Code Problem There are two types of control structures contained with-
in any program. They are:

THE QUALITY OF MAINTAINED
CODE 1) Problem-related control structures

2) Implementation-related control structures.A large percentage of the code in maintenance fails to
meet today's generally accepted program quality stan-
dards. The reasons for this are many, but the following

Problem-related control structures are those necessary to

points are most explanatory. First, much of the industry's solve the program problem effectively. Implementation-
existing code is old, having been written prior to conver- related control structures, on the other hand, exist in code

sion to the structured techniques. Second, many organi- only because ofthe nature of the program solution chosen
zations have yet to implement improved program design

by the programmer or maintainer and these structures

and construction standards. Finally, for those shops may have little or nothing to do with the original program

where clean code is delivered into maintenance, that problem. The issue here is that the maintenance program-
clean code often degenerates rapidly due to uncon- mer, upon examining the program, has no simple way to

determine which control structures are integral to thestrained maintenance efforts. functionality of the module and which are there simply as

The sad truth is that much of the code in maintenance a result of poor design or coding practices.
today is of poor design and construction. This problem
was noted in a survey of programmers by Lientz and The study and understanding of these combined sets of
Swanson (1980) and in another survey of programmers control structures comprise a significant portion of the

and managers by Couger and Colter (1984, 1985). In amount of time necessary to perform a specific mainte-

those studies, programmers reported that poor program
nance task. In an informal study of over 200 maintenance
programmers undertaken by this author, respondents re-design and poor program code accounted for the majority ported that over 50% of their time in a maintenance effortof their problems in the maintenance environment.
is taken up by,the efforts necessary to understand code

The concept of code quality may be discussed at a number prior to making a change. When questioned about this
of different levels. For the purposes of this paper, a well-

understanding effort, the vast majority of respondents

structured program is considered to be one which is com- indicated that the clarification of control structures ac-
prised of a set of hierarchically related modules where the counted for a large portion of the understanding effort.
individual modules are of low complexity and easy to
understand. In addition, at the code level, the control Because of the importance of the control structure to
structures are expected to be predictable and recogniz-

maintenance efforts, a simple control related complexity
measure will be used throughout the remaineder of thisable, reflecting the practices of structured logic.
paper to provide comparisons between similar pieces of

Unfortunately, much of the code in maintenance consists code. That measure will be the number of branching
of large programs (hundreds and even thousands of lines statements plus 1, which is an approximation to

of code per module), which ref'lect anything but struc- McCabe's cyclomatic complexity number and the lower
tured logic. This code exhibits complex control struc- bound on the complexity calculated by Myers (See Harri-

tures which must be understood before any maintenance son, et. al. (1982)). While a number of other code mea-
sures and metrics exist, this simple metric is useful forefforts can be successful.
the comparison of alternative solutions.

CONTROL FLOW COMPLEXITY
THE NEED FOR TOOLS

A great deal of discussion on complexity as it relates to
maintenance has appeared in the literature. Harrison, et. As indicated above, a great deal of software maintenance

al. (1982) suggest that control flow metrics do a good job is performed on large, complex programs which exhibit
ofdifferentiating between two programs which are other- unpredictable control flows which require up to 50% of
wise similar. In addition, it appears that the complexity the maintenance effort to understand. Worse yet, much
of the control flow of a program is directly related to the of the effort spent on understanding the existing code is
amount oftime spent in understanding existing code prior of only short term value since maintenance program-

71



mers' notes and other on-the-spot documentation are The processes discussed here use pseudocode as an alter-
usually thrown away after the change is successfully native representation of logic. If unstructured logic can
made. As a result, the same understanding effort may be represented in pseudocode with only sequence, selec-
occur on the same piece of code multiple times over the tion, and iteration, then complexity is reduced andunder-
life of the program. This is an unnecessarily redundant standability is increased.
expenditure of scarce resources in the maintenance envi-
ronment. If the understanding component can be re-
duced, and if the results of that understanding can be AUTOMATED VERSUS NON-
saved effectively, then it should be possible to dramati- AUTOMATED RESTRUCTURING
cally reduce the cost of maintaining many systems.

In the past several years, a growing number of automated
Clearly, the maintenance programmer needs tools to aid code restructuring systems have become available. One
in the understanding of existing code. In this paper, a set can now submit COBOL programs to one of several com-
of procedures are offered to meet this need. As noted panies and receive a restructured version which meets the
before, these procedures are extensions of the technique rules of structured programming. While some programs
offered by Elshoff and Marcotty (1982). While their are candidates for this type of automated restructuring,
approach results in the restructuring of code, it suffers the process is not without problems. First, the number of
from three major weaknesses. First, it is highly formal source lines usually increases significantly as a result of
and implies that the programmer will actually rewrite the the process. Second, the size of the load module in-
code as a part of the restructuring process. Unfortu- creases, as does the average run time for most such pro-
nately, the rewriting of code is often frowned upon in grams. Third, the control structures inserted by the auto-
shops which subscribe to the old adage, "If it ain't broke, matic restructuring routines seldom have anything to do
don't fix it!" As a result, maintenance programmers who with the original problem, resulting in a preponderance
could otherwise benefit from the Elshoff and Marcotty of implementation related control which obscures the
approach fail to reap those benefits because of their per- problem related control. Therefore, the understandabil-
ception that they must use all of the procedure and notjust ity of the resulting code remains lower than one would
part of it. Second, the procedures described by Elshoff like. Finally, it is often helpful if small programs or pro-
and Marcotty require more detailed instructions to be gram segments can be restructured for understanding
useable to most practicing professionals. Finally, the purposes without submitting a large program or system
procedure appears highly formalized. As a tool, it is for automatic restructuring. It is clear that a large amount
therefore hard to expect maintenance programmers to use of code in existing production libraries will remain in its
it frequently. Weiser (1982) comments that programmers present state for some time and that human intelligence
approach complex programs by using tools in a hierarchi- will be the vehicle for understanding of code prior to
cal manner. That is, they first attempt to use simple tech- maintenance. As Elshoff and Marcotty said in 1982,
niques to solve their problems, then move to more com-
plex approaches only when necessary. They continue to "The understanding developed by the programmer
apply stronger tools in a stepwise fashion until they suc- is generally well beyond the capability of artificial
ceed in using a tool strong enough to meet the complexity intelligence, and the undesirable side-effects often
of the problem. The techniques presented in this paper introduced by automatic restructuring techniques
may be used in a highly informal manner, yet they are can be avoided."
sufficiently robust to aid in the understanding of ex-
tremely complex code. The following section describes tools and techniques

which utilize the knowledge of the programmer to
The goal of the paper is therefore to describe code analy- achieve a true understanding of code.
sis and understanding tools which:

1) are easy to use Restructuring Techniques
2) significantly decrease the understanding compo- THE RESTRUCTURING PROCESSnent of a maintenance effort

When working with poorly structured, complex code, it3) support documentation to aid future maintenance
efforts is generally impossible to attach all ofthe weakness ofthe

program simultaneously. As a result, programmers
usually seek to identify subsets of the program which sup-4) support actual code rewriting when desired. port meaningful efforts. Weiser (1982) refers to these

72



program subsets as "sliced" which represent relevant which code block C has been added to the end of a sub-
portions of a program for the purposes of specific analy- routine rather than inserted into the logic where it be-
sis. longs. This type of situation may reflect a last minute

addition during design, or it may be the result of an addi-
The techniques presdnted here explicitly assume the use tion ofcode during maintenance. In any case, it decreases
of slices to segment code into understandable and modi- the readability of the program and increases the complex-
fiable segments. As Weiser points out, there are many ity through the addition of two unnecessary control state-
different types of slices, and more than one will be used ments. These control statements are classic examples of
here. However, the most common slice will be the code implementation related control. They have absolutely
block. A code block is defined as a set ofcontiguous state- nothing to do with the original problem and greatly de-
ments which have a single entry and a single exit. The crease understandability.
code block may be a few lines of code, or it may be an
entire program. The importance of the code block in the In this situation, code block C cannot be reached through
analysis of a program for understandability is twofold. sequential execution and it is clear that it can simply be
First, statements in code blocks may be clumped together moved to the appropriate location in the program. This
to simplify the program portion in which the block re- is illustrated in Figure 1, resulting in a reduction in the
sides. Second, in order to reorder or otherwise modify control flow complexity oftwo. Notice that, assuming no
the logic in a section of code, that section of code must other reference to Label- 1 and Label-2, they may be
represent a code block. That is, the single entry, single removed, further simplifying the program. Furthermore,
exit criterion is critical to the re-representation of logic. note that the new configuration of code blocks A, C, and

B may support their merging into a single conceptual
In this paper, it is suggested that the restructuring and block, since no control structures exist to separate them.
understanding process begin with the most straightfor-
ward targets of opportunity and progress towards the A more common type of sequential code block problem
more difficult portions of code. In general, the easiest is illustrated in Figure 2. There, the code block is reused
way to simplify a program is to deal with code blocks rather than duplicated in the code. For the purposes of
which are simply out of place. When code blocks are understanding the section of code in which this structure
moved to their appropriate location in the program, con- resides, it is worth copying the code block to achieve a
trot structures are reduced and the sequential nature of reduction in the control complexity of the code of in-
the logic is clarified. terest. As shown in Figure 2, the copying of the code

block C allowi us to remove two inplementation related
After the sequential nature of the logic is cleaned up, then control structures, delete the use of the control variable,
the selection constructs are usually the next easiest por- FLAG, and remove references to Label-1 and Label-2.
tions of the code to understand, In languages which do
not support the IF-ELSE-ENDIF structure, the selection When trying to simplify code to aid understanding, this
construct accounts for a great deal of implementation treatment of code blocks is the best place to begin restruc-
related control. As a result, the re-representation of un- turing the code. First, the structures are relatively easy
structured selection contructs greatly simplifies the logic to identify in the code. Second, each time a code block
of the program. Finally, after the sequence and selection is moved or copied to its proper sequential location, the
contructs are understood, the maintenance programmer control compldxity is reduced by two and the understand-
can concentrate on the iteration constructs. Unstructured ability is greatly increased. Even though this process may
loops are among the most difficult to understand and it is result in an increase in the actual amount of code in the
best to simplify the program to the greatest extent pos- program, that increase is easily offset by the positive re-
sible before tackling them. The following discussions sults of the process. Once all of the opportunities for the
present detailed examples of the understanding and re- clarification of the sequential structure of the program
representation of sequence, selection, and iteration. have been exhausted, then the more complex structures

may be examined.

CODE BLOCKS-THE SEQUENCE
PROBLEM THE SELECTION STRUCTURE

The simplest code block to recognize and deal with re- Of the three inajor logical structures (sequence, selec-
suits when a block of code simply resides in one portion tion, and iteration), the selection construct becomes the
of the program while its execution belongs in another most awkward when it is not implemented cleanly. When
location. For example, Figure 1 shows a situation in the IF-ELSE-ENDIF structure is not available in a lan-

73 ,



A A
GOTO LABEL-1

LABEL-2

B
RETURN

LABEL-1

C B
GOTO LABEL-2 RETURN

Figure 1

Code Block Out Of Place

TA A
SET FLAG = "ON"
GOTO LABEL-1 -0.

LABEL-2 SET FLAG = "OFF" C

B
---

LABEL-1 -- B
--. .--

IF FLAG = "ON" THEN LABEL-2 --

- ICED --

ED

Figure 2

Code Block Duplicated

74



guage, or when it is available but not used, the program The next step in the restructuring of the code involves the
will exhibit complex combinations of conditional and un- collapsing of the structure into the selection constructs.
conditional branches. As a result, the exact nature of the While this process may be performed quickly by a pro-
original problem becomes obscure and maintenance ef- fessional maintenance programmer who is familiar with
forts are extremely difficult. the process, it is broken into two steps here for the pur-

poses of illustration. The key to the collapsing process is
The restructuring of complex selection contructs requires to realize that the second version of the code contains two
a careful set of steps as indicated below. code blocks which present opportunities for relocation.

First, note that the code at LABEL-3 and LABEL-5 ends
1) Isolate the selection structure as a code block with with control transfers to the end of the code segment.

single entry and exit. Second, note that both of these code blocks are single
entry, single exit, and that they are accessed only through

2) Expand the structure by formalizing the IF-ELSE- the execution of additional GOTO's in LABEL-1 and
ENDIF structures. LABEL-2. As a result, the code block at LABEL-3 can

replace the GOTO LABEL-3 within LABEL-1 and the
3) Collapse the structure into itself by moving inter- code block at LABEL-5 can replace the GOTO LABEL-5

nat code blocks. within LABEL-2. The third version of the program seg-
ment reflects this set of code block movements.

4) Remove redundant control statements. '
Now, recognize that all of the code under LABEL-1 rep-

This process is illustrated in Figure 3, and the following resents a code block with a single entry and exits to a
discussions clarify the series of transformations sug- common location. Furthermore, this block is directly
gested for the example. This code is a simplification of accessed through the execution of the GOTO LABEL-1
code from an actual program, and it is common within the at the top of the code. As a result, all of the code under
programs of many shops. First, note that the structures LABEL-1 can be moved to replace the GOTO LABEL-1
of interest for this example are simplified by summariz- statement. The same argument allows us to move all of
ing all but the important control structures. For example, the code under LABEL-2 to replace the GOTO LABEL-2
the line 0 PROCESS-A 0 represents an internal code statemen,L Note here that the explicit declaration of the
block withing the structure. That code block may be a implied (GOTO LABEL-4) which was added early in the
single line of code or it may contain significant complex- process is now critical. Without that implied GOTO, the
ity of its own. Second, the structure must be recognized code block movement would be highly constrained.
as a selection structure and isolated as a code block with
single entry and exit. The fourth version of the program segment illustrates the

complete collapsing of the structure into the set of IF-
Considering the problem of recognizing this type of ELSE-ENDIF structures. Nore that there are four occur-
structure, note that the initial version of the code in Fig- rences of the statement, GOTO LABEL-4, in this ver-
ure 3 represents the original unstructured code. In that sion. However, the natural operation of the selection
version, note that the control flows are all downward and construct makes these statements totally redundant.
intersecting with a subset of the control branches termi- Whenever the execution reaches one of these statements, '
nating at a common exit. This set of characteristics is the operation of the selection constructs would result in
commonly seen in structured implementation of the a clean jump to the end of the construct anyway. The
selection construct. removal of these unnecessary control statements is illus-

trated in,Figure 4, along with the original code for com-
The second version of the program in Figure 3 results parison. It is clear that the restructured logic is much
from the expansion of the structure through the formal- easier to read and that the programmer who understands
ization of the IF-ELSE-ENDIF structures. In this pro- the restructured version will be able to work with the
cess, a simple translation into formalized pseudocode has original version if necessary. Note also that the complex-
occurred. The IF-ELSE-ENDIF structures are clarified ity of this code has been reduced to a value of 4 from an
through some expansion ofthe original code. In addition, original value of 8.
note that an implied GOTO has been added at the end of
the code at LABEL-5. In the original code, there is a
sequential execution of LABEL-4 after LABEL-5. How- UNSTRUCTURED LOOPS
ever, the restructured version will probably result in the
movement of LABEL-5 as a single entry, single exit code The last major structure causing problems in unstruc-
block and the transfer code of control to LABEL-4 must tured code is the iteration structure. Here, because of the
be maintained. As a result, the implied (GOTO LABEL- weakndses of specific languages or due to improper use
4) at the end of the structure is always added to the code of stronger languages, programmers create multiple exit
at this point. loops and intersecting loops which make maintenance

75



IF CONDITION-1 THEN GOTO LABEL-1 IF CONDITION-1
GOTO LABEL-2 GOTO LABEL-1

LABEL-1 IF CONDITION-2 THEN GOTO LABEL-3 ELSE
, PROCESS-8 , · GOTO LABEL-2
GOTO LABEL-4 ENDIF

LABEL-3 , PROCE55-B .
GOTO LABEL-4 LABEL-1

LABEL-2 IF CONDITION-3 THEN GOTO LABEL-5 IF CONDITION-2
, PROCESS-C, GOTO LABEL-3
GOTO LABEL-4 ELSE

LABEL-5 , PROCESS-D , · PROCESS-A ·
LABEL-4 + CONTINUE - GOTO LABEL-4

ENDIF

LABEL-3
· PROCESS-B ·
GOTO LABEL-4

LABEL-2
IF CONDITION-1 IF CONDITION-3

GOTO LABEL-1 GOTO LABEL-5
ELSE ELSE

GOTO LABEL-2 PROCESS-C ·
ENDIF GOTO LABEL-4

. ENDIF
LABEL-1

IF CONDITION-2 / LABEL-5
· PROCESS-B · · PROCESS-D *
GOTO LABEL-4 (GOTO LABEL.-4)

ELSE
· PROCESS-A · LABEL-4·
GOTO LABEL-4 · CONTINUE  

ENDIF

LABEL-2
IF CONDITION-3 IF CONDITION-1

· PROCESS-D · IF CONDITION-2
(GOTO LABEL-4) · PROCESS-B ·

ELSE GOTO LABEL-4
· PROCESS-C • ELSE
GOTO LABEL-4 , PROCESS-A

ENDIF 04 GOTO LABEL-4
ENDIF

LABEL-4 ELSE
- CONTINUE · lF CONDITION-3

· PROCESS-D ·
(GOTO LABEL-4)

ELSE
· PROCESS-C ·
GOTO LABEL-4

ENDLF
ENDIF

LABEL-4
•CONTINUE ·

Figure 3

Understanding Unstructured Selection Constructs

76



IF CONDITION-1 THEN GOTO LABEL-1 IF CONDITION-1
GOTO LABEL-2 IF CONDITION-2

LABEL-1 IF CONDITION-2 THEN GOTO LABEL-3 · PROCESS-B ·
· PROCESS-A · ELSE
GOTO LABEL-4

LABEL-3 · PROCESS-B · ENDIF
.PROCESS-A .

GOTO LABEL-4 ELSE
LABEL-2 IF CONDITION-3 THEN GOTO LABEL-5 IF CONDITION-3

· PROCESS-C· · PROCESS-D ·
GOTO LABEL-4 ELSE

LABEL-5 · PROCESS-D · · PROCESS-C ·
LABEL-4 · CONTINUE · ENDIF

ENDIF

LABEL-4
· CONTINUE ·

Figure 4

The Restructured Selection Construct

efforts extremely difficult. This section first treats the assumed in this case that the variable, 1, was originally

multiple exit loop problem. Then, the intersecting loop used simply to crehte a looping structure which would be

problem is discussed at length. exited through one of the internal exit structures. How-
ever, that variable has been included in the alternative
solution to provide an error procedure in case the loop is

Multiple Exit Loops not exited in a normal fushion. Otherwise, the loop will
be terminated whdn the variable, EXIT-CONDITION, is

Loops with multiple exits are quite common in older, set to anything other than "NULL". The form of this

unstructured code. Additionally, newer code often exhib- solution requires that GOTO statements be embedded in
its this characteristic due to the need for multiple paths the code, but they branch downward and only to the end
out of iterative structures. For example, in on-line sys- of the logical structure. This use of GOTO statements,
tems, loops may terminate normally, because of a bad while not approved by purists, is still an improvement
data value, or because of the use of an interrupt key by over the original code.
the operator. While these problems may be handled with ,
purely structured logic, the resulting solutions often con- The real strength of the new solution is that it explicitly
tain multiple levels of nested IF structures and program- indicates the methods by which the loop exit can be ac-
mers commonly refuse to implement such structures. complished at theend of the loop structure, An examina-

tion of the current value of EXIT-CONDITION will
Figure 5 shows a multiple exit loop and an alternative Clearly indicate the nature of the last loop exit. Further-
solution to the code segment. First, notice that the orig- more, the structure easily accommodates the later inser-

inal code has two branches to labels which are external tion of additional exit criteria during maintenance of the
to this code segment. These branches violate the single program.
entry, single exit criterion. Worse, they may transfer
control to portions of the program which are far away
:from the segment of interest. The maintenance program- The Intersecting Loop Problem
mer who must trace an error through this loop will have
to locate the external labels. In some cases, it may be dif- Of all unstructured program problems, the intersecting
ficult or impossible to determine exactly which exit from loop situation is among the most difficult to understand,
the loop was accomplished for a given situation. debug, or modify. This section presents a stepwise trans-

formation process which converts intersecting loops into
In the Qlternative solution, the total amount of code has a set of logical structures using only DOWHILE and
been increased in order to clarify the loop structure. It is DOUNTIL structures. The discussion uses the example

77



DO 100 I=1 T O 9999 SET EXIT-CONDITION = "NULL"
· PROCESS-A · 5ET COUNT = 0
IF (CONDITION-1) THEN GOTO LABEL-1 DOWHILE EXIT-CONDITION = "NULL"
· PROCESS-B · INCREMENT COUNT
IF (CONDITION-2)THEN GOTO LABEL-2 · PROCESS-A ·
· PROCESS-C · IF (CONDITION-1)

100 CONTINUE SET EXIT-CONDITION = "BAD DATA"
GOTO 100

ENDIF
· PROCESS-B ·
IF (CONDITION-2)

SET EXIT-CONDITION = "EDIT ERROR"
GOTO 100

ENDIF
· PROCESS-C ·
IF (COUNT.GE.9999)

SET EXIT-CONDITION = "ERROR"
ENDIF

100 ENDDO
IF (EXIT·-CONDITION.EQ."BAD DATA")

GOTO LABEL-1
ELSEIF (EXIT-CONDITION.EQ."EDIT ERROR")

GOTO LABEL-2
ELSEIF (EXIT-CONDITION.EQ."ERROR")

· HANDLE ERROR ·
ENDIF

Figure 5

Multiple Loop Exits

in Figure 6 and consists of the following steps, quence, or they contain control structures of their own,
but they may be represented as code blocks for the pur-

1) Isolate the looping structure as a code block with poses of understanding the looping constructs. It is criti-
single entry and exit. cal to this analysis that only the looping structures remain

in the target code. This is why the simplification of the
2) Simplify the structure by identifying internal code sequence and selection structures is performed first. If all

blocks. other opportunities for simplification have been taken,
then only looping structures remain for consideration.

3) Represent the simplified structure as a flowchart. The second portion of Figure 6 shows the introduction of
code blocks A through E to achieve the simplification

4) Convert the flowchart to pseudocode using only necessary to consider the loops.
structured logic.

Once the code is simplified and the loops are clearly iden-
5) Simplify the pseudocode. tified, a simplified flowchart of the program may be

drawn. This step is important in the transformation of the
In Figure 6, it is assumed that the code represented in the intersecting loops into structured logic. Remember that
example is a single entry and exit code block and that no intersecting loops are not possible when only sequence,
other references to the statement labels 100 and 200 exist. selection, and iteration are used. Therefore, the original
Furthermore, assume that the lines of code between the program cannot be converted directly into structured
labels and the control statements are irrelevant to this pseudocode. In this case, the more general logical repre-
analysis. That is, those lines of code are either pure se- sentation available through flowcharts must be used as an

78



A
LABEL-1

LABEL-1

B
LABEL-2

LABEL-2
---

IF (CONDITION-1) THEN LABEL-1 E C
---

IF (CONDITION-1) THEN LAB

IF (CONDITION-2) THEN LABEL-2

--D
IF (CONDITION-2) THEN LAI

1 IE
A

4
B

DO A
DO B

C' DO C
DOWHILE C 1

DO B
DO C

ENDDO DO A
Cl DO D   DO B

DOWHILE C2 DOUNTIL NOT C2
DO C DO C
DOWHILE C 1 ' DOWHILE Cl

DO B ' DO B
D * DOC * DOC

ENDDO ENDDO
DO D , DO D

ENDDO ENDDO
DO E DO E

C2

E ,

Figure 6 '

Intersecting Loops

79



intermediate transformation. Only then can the struc- logic. The goal of the new representation is to obtain a
tured logical constructs be identified. version of the logic which can be understood by the main-

tenance programmer.
The fourth section of Figure 6 shows the pseudocode
equivalent of the flowchart. The process by which this First, in Figure 7, assume that the relevant code has been
pseudocode is obtained is simplified if a few straightfor- examined and that there are no external references to any
ward rules are followed. First, simply represent a single of the statement labels indicated in the code. Further-
flowchart symbol, one at a time, resulting in a single code more, assume that the segment is single entry and single
block operation for each line of pseudocode. Second, exit. Also, in Figure 7, note that the program segment has
never anticipate loops. Always wait to implement a loop been broken into a set of code blocks to simplify discus-
until the condition branch symbol is encountered. In this sion of the problem.
case, the first conditional branch checks the value of Con-
dition-1. At this point, since the program checks the con- The next step involves the identification and handling of
dition prior to the execution of the loop, the pseudocode any code blocks which are out of sequence. Examination
representation re4uires a DOWHILE structure. This of the code reveals that code block E is used in two ways.
should always be the case when translating from flow- First, it is executed sequentially immediately after block
charts to pseudocode. Always wait until the conditional D. However, it is also executed through the use of a
control transfer is encountered and then implement a switch and some control code after the processing of
DOWHILE. This is not to say that no DOUNTILs will block B. Here, the copying of code block E between
be encountered in this process. They will be discovered blocks B and C allows us to delete both references to
in later steps as the pseudocode is simplified. SW 1, and remove the two control statements, GOTO 300

and IF SW 1 = "ON" THEN 400. Finally, statement
After the pseudocode representation is obtained, examine labels 300 and 400 are no longer needed.
the structure for opportunities for simplification. In gen-
eral, this simplification will occur when common code Figure 8 shows the results of moving the code block and
blocks are identified and recombined. In this case, the the removal of the implementation related control. The
two shaded portions of the pseudocode solution are dupli- control related complexity of the original program was
cate blocks. In fact, the common block is performed once 10. Now, that complexity has been reduced to 8.
and then performed again in a DOWHILE structure. This
can be re-represented as a DOUNTIL. The final portion Figure 8 also shows that, without the control statements
of Figure 6 shows that simplification. At this point, there and unnecessary labels, the blocks within the program.
is no further obvious simplification possible of the logic. may be re-identified. Blocks B, E, and C may now be

combined for the remainder of the analysis, resulting in
Note that the original problem in this case contained two the new block designations shown in the figure.
loops which intersected. However, the structured solu-
tion contains two nested loops. Though no formal proof Since there are no more opportunities to move code
is known to this author, it has been my experience and the blocks to simplify the sequence structure of the program,
experience of others using this simplification process that we now seek to identify selection constructs within the
a set of n intersecting loops always converts into a set n code. It is clear that the code in blocks D, E, F, G, and
nested loops in the structured logic. H is related through a set of control structures which are

downward branching and intersecting. Furthermore,
there is a common exit indicated at line 600. As noted

A GENERAL EXAMPLE earlier, this is an example of the kind of solutions which
result when selection constructs are built with conditional

The preceding sections have discussed a set of proce- and unconditional branches.
dures by which problems of sequence, selection, and
iteration can be restructured through re-representations Figure 9 shows the program segment after the selection
in structured logic. This section provides a detailed dis- structure has been restructured. As a result of this re-
cussion of a code section in which a number of such prob- structuring, the complexity has dropped to 6. Therefore,
lems exist. Within the code section presented in Figure the understanding process has begun with a program with
7, there is a code block out of place due to the re-use of a complexity of 10 and reduced it to a complexity of 6 in
code within the program. Additionally, there is a selec- only two steps. The restructuring process used here was
tion construct which has been implemented with condi- exactly the same as that discussed in the section on selec-
tional and unconditional branching statements. Finally, tion construct. In the first version in Figure 9, the code
when all of the other issues are clarified, a set of inter- blocks are labeled as they were in Figure 8. However, the
secting loops are found to exist. The following para- entire section from block D through block H may now be
graphs detail the use of the rules discussed in the earlier treated as a single code block because there are no further
sections to obtain an alternative representation of this opportunities to simplify any code within that section.

80



100
A

200 --
-- B
SET SW 1 = "ON"
GO TO 300

400

C
--

SET SW 1 = "OFF"
; ' IF (CONDITION-1) THEN 100

D
300

E
IF SW 1 = "ON" THEN 400
IF (CONDITION-2) THEN 200

-- T
IF (CONDITION-3  THEN 500

-G
GOTO 600

500 IF (CONDITION-4)THEN 700

GOTO 600
700 -

600 --

IF (CONDITION-5) THEN 200

-K

Figure 7

Spaghetti Code Program With Code Blocks Identified

81



100
A

200 -

B
---

: IF (CONDITION-1) THEN 100

IF (CONDITION-2) THEN 200

-U

IF (CONDITION-3)THEN 500

Z E
GOTO 600

500 IF (CONDITION-4) THEN 700

F
GOTO 600

700 --
-4

600 --- -
'---

---

IF (CONDITION-5) THEN 200

Z 1

Figure 8

Code Block E Duplicated in Proper Sequential Position

82



Therefore, the second version of the problem in Figure the programmer simply uses these techniques with a pri-
9 has compressed all of that code into a single code block mary goal of understanding the code to support mainten-
and relabled the blocks. This leaves the problem ready ance changes. In the most formal case, the maintenance
for treatment of the looping constructs. Clearly, there are programmer actually uses the simplified solution to re-
three loops in this code, all of them intersecting. write the section of code of interest. Between these two

extremes, there are other alternatives. First, the simpli-
Since the first two steps of the loop restructuring process fied representation may be added to the program docu-
have already taken place (isolating the code and labeling mentation package to support future maintenance efforts.
the code blocks), we are now ready to represent the pro- Second, the pseudocode may be added in comments just
gram as a simplified flowchart which shows only the prior to the affected code segment. This saves the results
looping structures. That flowchart is illustrated in Figure of the understanding effort in the most usable location
10. Also in Figure 10, the parallel representation of the and makes them easily available to future maintenance
problem in pseudocode is shown. Obviously, the pseudo- personnel.
code solution is much longer and appears to be more
complex than the flowchart. This is because ofthe limited The maintenance programmer who uses these techniques
representational ability of pseudocode. Because only and then saves the results, either by rewriting code or by
sequence, selection, and iteration may be used, the com- formalizing the simplified solution into the documenta-
plexity of the flowchart solution must be handled through tion, benefits in two ways. First, the understanding of the
an expanded use of a limited set of structures. However, existing program will take significantly less time with
opportunities for simplification exist in this pseudocode these methods. Second, if the results are saved, the
solution. understanding component will be reduced for all future

maintenance efforts on that code section.
In Figure 10, two large code blocks exist. These blocks
are exact duplicates of each other. Furthermore, the first
block is performed and then the second block is immedi-
ately performed inside of a DOWHILE loop. The con-
version of this structure into a DOUNTIL reduces the Summary
amount of pseudocode by approximately one-half. This
reduction is shown in Figure 11. There, another set of There is no argitment as to the scope and importance of
common code blocks exist. Again, the blocks are dupli- maintenance expenditures. Also, there is little doubt that
cates with one performed just prior to the performance of much of the maintenance effort is spent on the under-
the other inside of a DOWHILE. The second portion of standing of codd prior to debugging and modifying pro-
Figure 11 shows the further reduction of the code which grams. Clearly, the understanding component of main-
is possible as a result of this second set of duplicate tenance is a major target of opportunity for those seeking
blocks. to reduce or control maintenance expenditures.

This completes the simplification of the pseudocode. This paper strongly suggests that the understanding effort
Furthermore, no further restructuring of the program is can be significantly reduced through the formalization of
necessary. The original code has been simplified, re- techniques which may be used in that effort. The ap-
structured, and clarified through the processes discussed proaches discussed here have been used successfully by
in earlier sections. To clearly show the differences in the a number of organizations in the public and private sec-
two versions, Figure 12 contains the original program, tors with great success. The key to this approach lies in
along with the final version. Note that the complexity of its ability to reduce the complexity of a code section
the original version is 10, while the complexity of the through the creation of predictable code structures. Fur-
simplified version is reduced to 6. thermore, the method can be applied to localized code

sections when automated restructuring is unavailable or
not desired.

USING THE RESTRUCTURED
SOLUTION In summary, complex code may be understood best by

concentrating first on the sequential aspects of the pro-
The previous sections have detailed methods for under- gram. Next, the selection constructs may be examined,
standing complex, unstructured code by restructuring it particularly if the selection structures are implemented
into structured pseudocode. The primary direction of the with conditional and unconditional branches instead of
presentation has been to provide an aid to understanding the IF-ELSE-ENDIF structures. Finally, the looping
code in the maintenance environment. constructs may' be simplified. With this set of proce-

dures, each step yields reductions in control flow com-
Once the code is re-represented, one must decide what to plexity and makes it possible for the next set of logical
do with the simplified solution. In the most informal case, structures to be isolated and simplified.

83



100 100
A A

200 --- 200
-8 -8

------

IF (CONDITION-1) THEN 100 IF (CONDITION-1) THEN 100
------

I-- C E C
IF (CONDITION-2) THEN 200 IF (CONDITION-2) THEN 200

---

--- D -- D
--- ---

IF (COF CO T OD   N_4) -
IF (CONDITION-3) THEN 200

-E
G -

ELSE

V
ENDIF

ELSE

E
ENDIF
---

-H
---

IF (CONDITION-5) THEN 200

Figure 9

Selection Construct Structured and Blocked

84



A DO A
DO B
DOWHILE Cl

DO A
DO B

B ENDDO
DO C
DOWHILE C2

DO B
DOWHILE C 1

Cl DO A
DO B

ENDDO
DOC

' ENDDO
C DOD

DOWHILE C5
DO B
DOWHILE Cl

DO A
C2 DO B

ENDDO
DO C
DOWHILE C2

DO B
D DOWHILE Cl

DO A
DO B

ENDDO
i DO C

C3 ENDDO
DO D

ENDDO

1  DOE

E

Figure 10

Flowchart Representation and Pseudocode Translation of Loops

85



DO A DO A
DOUNTIL NOT C5 DOUNTIL NOT C5

DO B DOUNTIL NOT C2
DOWHILE Cl DO B

DO A DOWHILE Cl
DO B DO A

ENDDO * DO BDO C ENDDO
DOWHILE C2 DO C

DO B ENDDO
DOWHILE Cl DO D

DO A ENDDO
DO B DO E

ENDDO
DO C

ENDDO
DO D

ENDDO
DO E

Figure 11

Final Contraction of the Structured Logic From the Spaghetti Code

86



100

200 DOUNTIL NOT CONDITION-5
DOUNTIL NOT CONDITION-2

SET SW 1 = "ON"
GO TO 300

400 DOWHILE CONDITION-1

5ET SW 1 = "OFF" ENDDO
IF (CONDITION-1) THEN 100

ENDDO
300 '

IF SW 1 = "ON" THEN 400   IF CONDITION-3
IF (CONDITION-2) THEN 200 ' IF CONDITION-4

---

IF (CONDITION-3) THEN 500 ELSE

---

GOTO 600 ENDIF
500 IF (CONDITION-4) THEN 700 , ELSE

---

GOTO 600 ENDIF
700

600 ENDDO

---

IF (CONDITION-5) THEN 200

Figure 12

Original Spaghetti Code versus Restructured Version

87



REFERENCES Elshoff, J.L., and Marcotty, M., "On the Use of the
Cyclomatic Number to Measure Program Complex-

Ashcroft, E., and Manna, Z., "The Translation of ity", SIGPLAN Notices, Volume 13, Number 12
'GOTO' Programs to 'WHILE' Programs", Pro- (December 1978), pp 29-40.
ceedings of the 1971 IFIP Congress. 1.jub\jana, Elshoff, J.L., and Marcotty, M., "Improving Computer
Yugoslavia, August 1971, pp 250-255. Program Readability to Aid Modification", Com-

Bartol, K.M., "Turnover among DP personnel: a causal munications of the ACM, Volume 25, Number 8
analysis", Conimunications of the ACM, Volume (August 1982), pp 512-521.
26, Number 10 (October 1983), pp 807-811. Gremillion, L.L,, "Determinants of Program Repair

Berns, G.M., "Assessing Software Maintainability", Maintenance Requirements", Communications of
Communications ofthe ACM, Volume 27, Number the ACM, Volume 27, Number 8 (August 1984), pp
1 (January 1984), pp 14-23. 826-832.

Boehm, B.W. Sotware Engineering Economics, Pren- Guimaraes, T., "Managing Application Program Main-
tice-Hall, Inc., Englewood Cliffs, New Jersey, tenance Expenditures", Communications of the
1981. ACM, Volume 26, Number 10 (October 1983), pp

Colter, M.A., and Couger, J.D., "Management and 739-746.
Employee Perceptions of the Maintenance Activ- Harrison, W., Magel, K., Kluczny, R., and DeKock,
ity", Proceedings of the Software Maintenance A., "Applying Software Complexity Metrics to Pro-
Workshop, IEEE Computer Society Press; Silver gram Maintenance", /EEE Computer, Volume 15,
Springs, Maryland, 1984, p 86. Number 9 (September 1982), pp 65-79.

Couger, J.D., and Colter, M.A., "The Effects of Main- Lientz, B.P., Swanson, E.B., and Tompkins, G.E.,
tenance Assignments on Goal Congruence for Pro- "Characteristics of Application Software Mainte-
grammers and Analysts", Proceedings of the Fifth nance", Communications of the ACM, Volume 21,
International Conference on Information Systems, Number 6 Uuly 1978) pp 466-471.
Tucson, Arizona, (November 1984), pp 83-100. .Lientz, B.P.,and Swanson, E.B., So#ware Maintenance

Couger, J.D., and Colter, M.A., Maintenance Program- ·- Management, Addison-Wesley, Reading, Mass.,
ming: Improved Productivity Through Motivation, 1980.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Lientz, B.P., and Swanson, E.B., "Problems in Applica-
1985. tion Software Maintenance", Communications of

Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., the ACM, Volume 24, Number 11 (November
and Love, T., "Measuring the Psychological Com- 1981), pp 763-769.
plexity of Software Maintenance Tasks with the Hal- Parikh, G., and Zvegintzov, N., Tutorial on So#ware
stead and McCabe Metrics", IEEE Transactions on Maintenance, IEEE Computer Society Press, Silver
Software Engineen'ng, SE-5,2 (March 1979), pp Spring, Maryland, 1983.
96-104. Vessy, I. and Weber, R., "Some Factors Affecting Pro-

Elshoff, J.L., "An Analysis of Some Commercial PL/I gram Repair Maintenance: An Empirical Study",
Programs-, IEEE Transactions on Software Engi- Communications ofthe ACM, Volume 26, Number
neering, SE-2,2 (June 1976), pp 113-120. 2 (February 1983), pp 128-134.

Elshoff, J. L., "The Influence of Structured Program- Weiser, M., "Programmers Use Slices When De-
ming on PL/I Program Profiles", IEEE Trans- bugging", Communications Of the ACM, Volume
actions on Sojiware Engineen'ng, SE-3,5 (Septem- 25, Number 7 (July 1982), pp 446-452.
ber 1977), pp 364-368.

88


	Association for Information Systems
	AIS Electronic Library (AISeL)
	1985

	Techniques for Understanding Unstructured Code
	Mel A. Colter
	Recommended Citation


	tmp.1422244057.pdf.4mi9H

