
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 1987 Proceedings International Conference on Information Systems
(ICIS)

1987

DESIGN OF AN INFORMATION SYSTEM
USING A HISTORICAL DATABASE
MANAGEMENT SYSTEM*
N. L. Sarda
University of New Brunswick

Follow this and additional works at: http://aisel.aisnet.org/icis1987

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 1987 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Sarda, N. L., "DESIGN OF AN INFORMATION SYSTEM USING A HISTORICAL DATABASE MANAGEMENT SYSTEM*"
(1987). ICIS 1987 Proceedings. 30.
http://aisel.aisnet.org/icis1987/30

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis1987/30?utm_source=aisel.aisnet.org%2Ficis1987%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

DESIGN OF AN INFORMATION SYSTEM USING
A HISTORICAL DATABASE MANAGEMENT SYSTEM*

N. L. Sarda
Division of Maths, Engineering and Computer Science

University of New Brunswick

ABSTRACT

A historical database management system (HDBMS) provides facilities for modelling of time
and storage and retrieval of history data (i.e., past status). Past research on HDBMS has
considered various but individual aspects of the problem and suggested many alternatives.
In this paper, we first outline our approach, identifying facilities that are both adequate
and practical, and then consider design of a realistic application using those facilities. The
application design consists of design of the database schema, storage structures and
processing tasks (both query and database maintenance types). The salient features of our
approach include schema design with only "current state" perspective, same schema for
accessing current and history data, efficient storage structures for history data, and simple
extensions to the popular query language SQL.

*This research was supported by a grant from the Natural Sciences and Engineering
Research Council

1. INTRODUCTION In our earlier paper (Sarda 1987), we identified main
issues which need to be answered satisfactorily. We

Time is an important dimension in all human outlined our approach to HDBMS characterized by:
activities. Events and actions occur continuously
over time, modifying current status and generating i) concept of "state" of an entity/relationship;
history. If databases are to model the real world, a state prevails over a period of time,
database management system (DBMS) must provide
concepts and facilities to model time and manage ii) real-world time measure (certainly more
history data. We refer to such a DBMS as an important than system time as the computer
Historical DBMS (HDBMS). system is merely used as a tool),

Realizing this need, many recent research efforts iii) separation of history data from current data
have been directed towards studying various aspects for efficient storage and retrieval; the
of time modelling in database systems. They separation is mostly transparent to the
include formulation of a semantic model (Clifford database users. An added advantage is that
and Warren 1983) based on "state" concepts, the database designer needs to model
definition of relational algebra operations (Clifford application requirements based only on
and Tansel 1985) where attributes are stamped with "current" perspective,
time instants or periods, and techniques for
efficient storage and retrieval of data from database iv) selectable time granularity, and
containing time information. Snodgrass and Ahn
(1985, 1986) made a clear distinction between two v) extension of established query languages such
time measures: real-world time and (computer) as SQL (Chamberlin et al. 1976) for defin-
system time. They identified four classes of DBMS ition, manipulation and control of data.
based on which (including both) time measure is
incorporated in HDBMS. Our approach, which is a direct extension of the

standard relational data model, is presented more
formally elsewhere (Sarda 1987).

86

The literature pertaining to this area of research is ii) The same book hail price $20 from Jan '86 up
devoted mainly to individual aspects and identifica- to March '87 (HISTORY data).
tion of approaches. As yet, no documented effort
has been made to consider a real-life application iii) Its price will be (revised to) $30 from Jan '88
and model it in all completeness using proposed (FUTURE data).
facilities of HDBMS. Our objective in this paper is
to consider practical requirements of a real The database in HDBMS is segmented into three
application and use HDBMS to model those require- parts. The current status data are stored in the
ments. Thus, the focus of this paper is on a case CURRENT database, the past status data are stored
study. The primary motivation for this exercise is in the HISTORY database, and the data to become
to identify basic but adequate HDBMS support that effective at some future time are stored in the
is efficient and easy to implement. FUTURE database. Same schema describes each

database. This segmentation of database is largely
The paper is organized as follows: In Section 2, we transparent to database users. HDBMS selects
outline the facilities of a proposed HDBMS; Section appropriate segment(s) from the time specification
3 gives an overview of requirements for a real- given in the user's query. However, if required and
world order-processing system. These requirements whenever known, users can select a segment for
are analyzed and used to define database schema in relation BOOK by specifying CURRENT (BOOK),
Section 4. It also identifies storage structures HISTORY (BOOK), or FUTURE (BOOK).
maintained by HDBMS and access paths desired by
the designer. In Section 5, we consider important HDBMS maintains a clock of fine granularity.
data processing tasks for the order-processing Every "tick" of this clock represents a time instant.
example and show how they can be programmed The value of time instant has the form:
using the extended query language. These tasks
bring out use of both the current and history data <date> <hour> <minutes> <seconds>
using HDBMS facilities. Finally, Section 6 contains
a summary as well as advantages of our approach. where <date> itself is represented as <day> <month>

<year> (e.g., Feb. 1, 1987 as 010287). The current
time is denoted by NOW, which can be thought as a

2. OVERVIEW OF HDBMS FACILITIES "moving" time variable (as in Clifford and Warren
1983).

2.1 Time Modelling
The designer selects a granularity depending on the

Our HDBMS (Sarda 1987) is based on the relational needs of application. The granularity may be
data model where a relation scheme defines a real- different for different relations in the database.
world entity or relationship type, and where a tuple The chosen granularity is indicated by specifying
contains data about one entity or relationship one or more factors from the above format of time
(including the unique identifier or key). In HDBMS, instant; for example, granularity <date> may be
a tuple represents state of an entity/relationship selected for relation R and {<date> <hour>} for S.
during a certain period of time. The time as well
as state transitions are automatically managed by A period is represented by its two boundary
HDBMS. instants as tl··t: where tl<t: (note: the set of all

time instants is linearly ordered).
For example, consider the following relation:

A tuple in the HISTORY database is associated with
BOOK (ISBN, TITLE, PRICE). a period tl··t:, where t2<NOW. It represents a past

state of the tuple which prevailed (i.e. was current)
With HDBMS, the BOOK relation can contain data during period tl··t2· There may be many history
of the following kind: states (thus, tuples) for an entity/relationship; they

all have the same key value.
i) The book titled "COBOL PROGRAMMING"

with ISBN 07-010125-4 has price $25 since A tuple in the FUTURE database has an instant t
March '87 (CURRENT data). (>NOW) associated with it. It gives the time when

the tuple should be made effective by HDBMS.

87

Making future data effective corresponds to either ii) inclusion of many time-related functions and
the INSERT or UPDATE operation. Each tuple in operations for use in queries, and
the FUTURE database can be treated as defining a
trigger to be activated at a given time by HDBMS. iii) a clause by which history can be suppressed

during database maintenance operations
Usually, only the current database is updated by (update, delete) and the clause by which time
database transactions. Update and delete operations contexts can be given for database operations.
produce new history tuples. Insertion (with a new
key value) does not affect the history database. The other facilities of SQL can be used without

change. For example, the facilities for access
HDBMS provides ways for suppressing history, control, view definitions and physical storage
because every change may not be of interest to the structures (called images and links) can be used for
application. The designer may specify maintenance relations in both the CURRENT and HISTORY
of history (and also future data) for selected databases.
relations only. Also, generation of history may be
suppressed during certain transactions by adding a Some extensions are of very simple form. Their
SUPPRESS HISTORY clause to UPDATE and DELETE formats as given in Table 1 are self-explanatory.
commands (e.g., orders cancelled before any action
is taken on them may be DELETEd with SUPPRESS Extended-SQL includes many time-related functions
HISTORY). and operations. In the following list, r stands for

tuple variable, p's for periods, and t's for time
HDBMS provides facilities for retrospective changes instants.
(used mostly for error corrections), although they
should be used with caution. A retrospective PERIOD(r) : gives the pair of time-instants
change may modify the current and many history representing the period value in
tuples. An algorithm for retrospective change was r.
outlined in Sarda (1987). It should be noted that a
retrospective change overwrites earlier history. START(r) : gives starting time instant of

period in r.
2.2 Query Language

END(r) : gives ending time instant of
We basically extend SQL (Chamberlin et al. 1976) to period in r.
permit specifications for time-related aspects.
Specifically, the extensions pertain to level- 1(t) : level- 1 is a time granularity level

such as DATE, MONTH, HOUR,
i) specification of granularity and of relations etc. This function extracts the

for which history or future data are to be value of corresponding level from
maintained; these extensions are used in time instant t.
schema definition,

Table 1. Extensions of Simple Form

TIME GRANULARITY IS instant-type FOR. ALL
relation-name-list J

KEEP 4 HISTORY FOR ALL l FUTURE J relation-name-list

The phrase SUPPRESS HISTORY may be used with the UPDATE and DELETE command.

The phrase FROMTIME instantl ITO instant2] may be used with any SQL database operation (i.e., query as
well as database maintenance). In query operations, projects involved relations to a given period. It may
also be used to supply future data or make a retrospective insertion/change.

88

level-2(tl,t:): this function is used to obtain 3. REQUIREMENTS ANALYSIS
elapsed time in units given by
level-2 between time instants tl We have chosen the order processing system for a
and t2· Level-2 may be DAYS, large book publishing company as an example.
MONTHS, etc. Orders are received from customers, giving quan-

tities for one or more required books. Orders may
t WITHIN p : is true if time instant t falls be prepaid partially or fully. There may be one or

within period p. more dispatches per order (depending on availabi-
lity). One invoice is prepared for each dispatch.

Pl OVERLAPS Pz: is true if pl and P: have some The company permits payments in installments (thus,
common time instants. there may be one or more payments per invoice).

A discount of 10% is given for payments received
pl INCLUDES pw: is true if period P2 is wholly within 30 days of dispatch. However, interest at

contained in period Pi· 18% is charged for payments pending over 60 days.
Orders may be cancelled in part or full (provided
dispatches have not been made or have been

Besides these, we can also use the conventional returned with cancellations). Books damaged in
comparison operators (=,<,>, etc.) on time instants. transit may be returned (payments refunded, if

necessary) or replaced.
In addition to the above extensions, we provide for
a modified projection operation that is embodied in The company holds prices for a period of one
the SELECT clause, and the concurrent Cartesian quarter. Prices may be revised on the first day of
product operation that is specified through the each quarter (starting January 1). Customers are
extended FROM clause of SQL. These extensions charged by prices prevailing on the day of dispatch.
are elaborated below.

We have to analyze the above requirements scenario
i) The SELECT clause of standard SQL specifies to identify data of "current operational interest" at

projection on attributes given in SELECT. In any point in time. This "current view" will be used
extended-SQL, time-periods are automatically by the database designer to define the database
projected. The resulting tuples are compacted schema. Since every historical fact may not be of
on time before removing duplicates. The interest to the company, the designer should also
compaction is carried out by merging periods identify historical data of interest and those
of those tuples which have the same attribute transactions which produce history data. Attention
values but overlapping or consecutive time also needs to be given to the nature of "future'
periods. data that might be of importance to this applica-

tion. Finally, the designer has to select time
ii) In standard SQL, a Cartesian product is granularity.

implied between the relations given in the
FROM clause. In extended SQL, the word 3.1 Current Data
CONCURRENT may optionally be given in the
FROM clause as follows: The customer orders which are pending, partially

dispatched or partially paid would be considered to
FROM CONCURRENT relation-list be current. Payments and invoices are current if

the corresponding order is current. The current
The concurrent product between relations R and data about a book includes its title, author, price,
S i s defined as follows: a tuple r e R i s com- quantity-in-stock and ISBN. The books already
bined with s i S only if time periods of r and s published are current (but not the discontinued
overlap. In that case, the resulting tuple titles). The current data about customers includes
contains a period which is common to both r and name, address, etc.
s. The concurrent product is a very useful
operation as it allows us to relate data from 3.2 History Data
different relations on the basis of their currency
in time. History data contains data about orders fully

processed and paid. Data about dispatches and

89

payments for all completed orders are of interest to The relational schema for the current database is
the company (for, say, a period of one previous easily obtained from the E-R diagram in Figure 1.
year; history older than that can be "purged"-- It contains the following relations:
this aspect is not dealt with any further). The
books discontinued are also of historical interest. ORDER (0#, C#).
Price changes must be noted (necessary for CUSTOMER (C#, ADDRESS)
calculation of refunds or returns, etc.). However, BOOK (ISBN'...,PRICE, QOH)
changes in stock levels are rapid and are not of DISPATCH (INV#, 0#,COST,...)
interest to the company. Similarly, changes to ORBK (0#,ISBN,ORQNT)
customer data, such as change of address, are also DSBK (INV#, ISBN, DSQNT)
of no historical interest. PAYMENT (INV#, AMOUNT, CODE, ...)

ORQNT and DSQNT give ordered and dispatched
3.3 Future Data quantities, respectively. CODE in PAYMENT will be

used to show refunds made to the customer for
Prices of books for subsequent quarter(s) are often books returned.
decided in advance. This data must be accepted
and enforced by the computerized system. Also, the Granularity specification is made by a suitable
company announces new titles in advance and may statement such as
receive orders for them. The orders must be
processed as soon as the stocks are available. The TIME GRANULARITY IS DATE FOR ALL
system should handle these future data. The
concept of "future' is not applicable to customer The relations for which history should be main-
data for this company. tained are identified by the following simple

specification:
3.4 Time Granularity

KEEP HISTORY FOR ORDER, BOOK, DISPATCH,
All operational data is timed on the basis of dates. ORBK, DSBK, PAYMENT
Thus, date (day/month/year) is the required time
granularity. Finally, we indicate to HDBMS the relations for

which future data needs to be recorded:
The E-R (entity-relationship model) diagram
depicting the current data and their inter-relation- KEEP FUTURE FOR ORDER, BOOK
ships is given in Figure 1.

It may recalled from Section 3 that future data for
BOOK will contain planned price revisions and

4. MODELLING USING HDBMS future titles. Future data for ORDER are orders
for future titles.

4.1 Schema Design
HDBMS processes the above specifications to define

To design the application using HDBMS facilities, additional attributes (for storing time stamps) and
we specify relations (for storing history and future data).

Here, six relations for storing history and two for
i) the database schema for the current database, storing future data would be defined by HDBMS.

HDBMS permits us to access these relations by
ii) time granularity (which may be the same for generic reference: history of R as HISTORY(R) and

all relations or different for different FUTURE of R as FUTURE(R).
relations),

4.2 Storage Structures
iii) relations for which history is to be main-

tained, and For any application, HDBMS maintains the current
history and future data in three independent

iv) relations for which future data needs to be segments. It is possible to define independent
stored. storage structures for relations in each segment so

90

ORDS
0# ---1, 1NV #

- m 1 0 m DISPATCH
m 1

CUSTOR

ORQNT ORBK
DSBK ' DSPAY

DSQI\IT
1/ m m

CUSTOMER BOOK PAYMENT

.C# ADDRESS ISBN TITLE PRICE QCH AMOUNT

Figure 1. The E-R Diagram for Order Processing System. Relationship-types
(1-m, m-m; many-to-many) are also indicated. Only main

attributes are shown.

that access to them is efficient. Before deciding Moreover, each current tuple contains a
access paths, the designer should know that the pointer to its latest history tuple. HDBMS,
following internal structures exist by default: thus, has a path from current database to

history database. This path does not,
i) The history data by its very nature is ordered however, exist for tuples deleted from the

chronologically. Every tuple in a history current database. HDBMS keeps a separate
relation carries a time-stamp giving START index for deleted keys for easy access to
and END time-instants of the period in which their histories. This index also serves
the tuple data was current. The tuples are HDBMS in ensuring that key values remain
ordered automatically in increasing sequence unique over the entire life-time of the
of END values. HDBMS uses this built-in application.
order to efficiently locate tuples for a parti-
cular period (e.g., binary search method). The following additional access mechanisms may be
Because of the inherent sequencing and defined by the designer, keeping in mind predomin-
permanent nature of history data, it is cost- ant usage of database. They are specified in SQL-
effective to maintain multi-level sparse index like form (Chamberlin et al. 1976):
on time.

CREATE IMAGE I 1 ON BOOK (ISBN);
ii) All history tuples pertaining to the same /* index to BOOK on ISBN */

entity or relationship are automatically linked CREATE IMAGE I2 ON CUSTOMER (C#);
by HDBMS in the reverse chronological /* index to CUSTOMER on C# */
sequence. Thus, it is easier for HDBMS to CREATE CLUSTERING LINK Ll FROM ORDER
locate all historical states of a given tuple. (0#) TO DISPATCH (0#);

91

T
Image 11 /

bl /

bl _ bl b2

; f "
/1 ../, I

1 bl :
index on index for
ISBN b2 / deleted

books

CURRENT(BOOK) HISTORY (BOOK)

Figure 2. Schematic for Storage of Relations. Broken arrows
represent links maintained by HDBMS.

CREATE LINK L2 FROM DISPATCH (INV#) TO v) obtain monthly turnover statistics, and
DSBK (INV#);

vi) enter future data for price revisions and
(Note: links basically facilitate the join operation.) forthcoming books.

These access paths are created for relations in the We assume that SQL-like stand-alone as well as
current database. Similar statements can be given higher-level language (e.g., PL/I embedded) interface
for creating access paths on history and future is provided by HDBMS. However, we will give only
relations where relations are specified as HIS- database interactions in extended SQL for the above
TORY(R) or FUTURE(R). transactions.

Figure 2 shows a schematic of database storage for
the BOOK relation. Note that index Il also acts as i) Prepare Dispatch
the index to history data because of links main-
tained by HDBMS. Further, the index on deleted To prepare a dispatch for an order, we will need
books is defined by HDBMS itself. to list books ordered along with availability data

so that decisions can be made regarding quan-
5. PROCESSING TASKS FOR THE APPLICATION tities to be dispatched. Only the current

database needs to be accessed as follows:
Having defined schema and access structures, we
now consider both the database maintenance and SELECT X.ISBN, ORQNT, QOH
information retrieval type of transactions for our
order processing example. Specifically, we consider FROM CURRENT (ORBK) X,
the following set of transactions as they exercise CURRENT (BOOK) Y
various aspects of HDBMS facilities:

WHERE
i) prepare a dispatch for a given order, X.0# = GIVEN and

X.ISBN = Y.ISBN
ii) process a payment received from a customer,

(Note: X and Y are tuple variables.)
iii) process a replacement for books returned in

damaged condition, Based on this data, the dispatch clerk decides on
quantities for dispatch and enters data into the

iv) list partially-completed and more than one database by executing
month old orders,

92

INSERT INTO DSBK: <INVNO, ISBN, SELQNT> new tuple for new dispatch. It is quite straight
after giving a suitable invoice number to the forward to the program for these requirements.
dispatch. A tuple should also be added to the Note that UPDATE is applied to the current
DISPATCH relation. These SQL commands can database by default.
be embedded in a suitably-designed PL/I program.
The only additional role played by HDBMS in iv) Partia/-orders Listing
this transaction is to time-stamp inserted tuples.

To list orders not fully processed and to also
ii) Payment Processing obtain their "age" and outstanding qualities, we

may query the current database as follows:
The primary information required for processing
a payment is to determine the number of elapsed a) as there may be many dispatches for the
days between dispatch and payment (and thereby same order, we first obtain total dis-
determine whether it qualifies for a discount or patches made:
interest charges). The invoice number is known
from payment. The following SQL query can be ASSIGN TO TEMP(0#, ISBN,Q)
embedded in the payment processing program: SELECT 0#,Y.ISBN,SUM(DSQNT)

FROM CURRENT(DISPATOH)
SELECT COST, DAYS(START(X),NOW) CURRENT(DSBK) Y
FROM CURRENT(DISPATCH) X WHERE
WHERE X.INV# = GIVEN X.INV# = Y.INV#

GROUP BY 0#,ISBN
An index on INV# could be defined to make the
above query more efficient. The program should b) subtract dispatched quantities from ordered
next compute interest/rebate and determine quantities (in relation ORBK) to find
outstanding amount, if any. It may delete order, outstanding quantities (SQL query is
dispatch and payment tuples if the order is straightforward for this step), and
completely processed.

c) to list orders more than one month old,
iii) Replacement Processing we can query as follows

A dispatch (its INV# known) may be partially or SELECT 0#
fully returned as damaged. Quantities in original FROM CURRENT(ORDER) X
dispatch must be modified (without history) and WHERE
a new dispatch should be prepared. We will DAYS(START(X),NOW) > 30
need to execute the following command in
replacement processing program: S Turnover Listing

UPDATE DSBK To list monthly turnover from Jan. 1985 onwards,
SET DSQNT = DSQNT-RETURNEDQNT we use data in DISPATCH (both current and
WHERE history) as follows:

INV# = GIVEN and
ISBN = RETURNEDBOOK SELECT MONTH(START(X)),SUM(COST)

WITHOUT HISTORY FROM DISPATCH X
WHERE

The history of returned books is of no interest START(X) > 010185
to the publisher. However, in realistic design, GROUP BY
we will need to provide for "writing off« MONTH(START(X))
damaged lots.

vi) Entering Future Data
If the order was pre-paid, the payment should be
carried over to the next dispatch by altering old a) Price of a book (ISBN known) is to change
payment data (without history) and inserting a from July 1, 1987: in extended-SQL, we

specify

93

FROMTIME 010787 FROMTIME010187 TO NOW
INSERT INTO BOOK: SELECT X.ISBN, SUM(DSQNT'PRICE)

<KNOWN-ISBN„,NEWPRICE,..> FROM CONCURRENT BOOK X,
DSBK Y

Unspecified fields are taken to mean that WHERE
their values would not change. HDBMS sets a X.ISBN = Y.ISBN and
trigger to be activated on July 1, 1987. X.ISBN in (SELECT ISBN FROM

CURRENT(BOOK))
b) Release of a new title (new ISBN value) in GROUP BY X.ISBN

August 1987: We add a tuple to the HAVING SUM(DSQNT*PRICE) < 10000
future BOOK relation using

Query basically joins tuples of BOOK and
FROMTIME 010887 DSBK on ISBN and matching time periods; the
INSERT INTO BOOK: <new-book-data> joined result is grouped on ISBN and the cost

of dispatch is computed.
It is processed by HDBMS in a similar fashion
as above. 6. DISCUSSION AND CONCLUSIONS

vii) Miscellaneous Queries The time dimension is important in all human
endeavors. Our objective in this paper has been to

We consider more examples to illustrate use identify basic but useful support to be provided by
of the history data. a database management system for handling of the

time dimension and history data in business
a) Obtain price of a given book on a applications. Instead of being theoretical or

given date; history may have to be excessively ambitious we wish that the support be
accessed if there was a price change. without excessive penalty in storage and access
The query can be formulated as costs. We have considered a fairly realistic example

to identify the kind of support needed. A number
SELECT X.PRICE of useful ideas and techniques have emerged as a
FROM BOOK X result of this exercise:
WHERE X.ISBN = GIVENISBN and

GIVEN DATE WITHIN PERIOD(X) i) System time (maintained by HDBMS) matches
real time in most cases when transactions are

Note that this query is efficiently processed processed on-line. When they do not, real-
due to the selected access mechanisms. time is supplied as part of transaction

data/query (e.g., the FROMTIME phrase in
b) List titles of 1986 which have now been the beginning of INSERT or UPDATE

discontinued: statements). Thus, it is sufficient to keep
only one time measure.

SELECT ISBN,TITLE
FROM HISTORY(BOOK) X ii) The state concept seems natural and efficient
WHERE for history purposes instead of the attribute

PERIOD(X) OVERLAPS <010186..311286> stamping (Clifford and Tansel 1985) approach
and ISBN NOT IN which makes tuples unnormalized and of

(SELECT ISBN varying (and growing) lengths. It is difficult
FROM CURRENT(BOOK)) to manage storage and create access paths for

such data.
c) List current books of 1987 having total

dispatches less than $10,000. iii) Not every change would be of interest to an
organization. Controlled generation of history

We have to calculate the value of a dispatch data must be provided by HDBMS. This can
by using prices prevailing at that time. We be achieved at two levels: identify relations
need to access both the current and history for which history should be maintained and
data of BOOK and DSBK relations. provide an optional clause to suppress

94

generation of history in data manipulation To change price to $45 retrospectively from Feb.
commands. 1,1986, we execute

iv) Separation of data into current and history FROMTIME 010286
databases is an important design decision. UPDATE BOOK
First, since the same schema describes both SET PRICE = 45
databases, the designer needs to formulate WHERE ISBN = bl
database schema only for the current view of
data and relationships. The current view
does not include history. This approach could When HDBMS executes this, the tuples are affected
reduce schema complexity (Sarda 1984; Sarda as follows:
1987). Second, the separation enables us to
define independent access mechanisms for current <bl'..,45,010286.-NOW>
history and current data so that their history: <bl'..,25,010985.-010186>
different usage patterns can be taken into <bl,··,40,010186..010286>
account.

This change is effected automatically and per-
v) Certain access structures for history data manently (old history is lost). But this change is

have been identified. Reverse chronological not sufficient by itself. We must consider conseq-
linked lists can be easily maintained; more uences of this update in the real world: we must
over, access paths to current data also change invoice values for dispatches and even "open
facilitate access to their history. up" completed orders. A carefully designed program

has to establish these consequences. Such a
vi) Conventional query languages can be easily program should also record "old history," if

extended for access to history (as well as necessary. The alternative (called "Temporal"
future) data. We need a few time-oriented database in Snodgrass and Ahn 1986) seems too
functions and operations. The reference to costly for practical design.
history data by the specification HISTORY(R)
is primarily intended to narrow down the Having identified practical the support required and
search quickly when the user is aware of the efficient techniques to provide that, some extensions
location of required data. can be incorporated as suggested below.

vii) Out-of-sequence (or retrospective) changes i) The designer may specify certain relations to
would be rare and mostly for error correc- be of the -EVENT' type. Events have a
tion. A need for facilitating this is pointed single time instant of interest (i.e., time of
out in Snodgrass and Ahn (1985, 1986). In "arrival"). For such relations, HDBMS can
our approach, where only one time scale is make START and END times equal when their
maintained, a retrospective change overwrites tuples are put into history.
earlier status. We consider this a particularly
satisfactory approach because a retrospective ii) HDBMS may maintain some control informa-
change in real-life is never an isolated event. tion in history tuples to indicate fields
Its processing needs careful thought and changed, terminal/user identifier etc.
possible changes to many related data. It is
not sufficient to let HDBMS merely record In this paper, we have presented a case study in
the retrospective change. To illustrate, the design of an application system using the
consider book bl with current price $35 given facilities of an HDBMS. Our HDBMS is based on a
by the current tuple state-oriented historical relational data model that

is presented more formally elsewhere (Sarda 1987).
35, 010486..NOW> Our objective in this paper has been to demonstrate

naturalness and effectiveness of the proposed
Assume that bl has following 2 history tuples: facilities through a complete and realistic example,

as the literature on time modelling lacks such a
25, 010985..010186> study. Although a detailed comparison is out of

<bl:., 40,010186.010486> scope, we conclude this paper by comparing our

95

historical data model with those proposed by other Clifford, J. and Tansel, A. V. "On an Algebra for
researchers. Historical Relational Databases: Two Views:

Proceedings of ACM SIGMOD, 1985, pp. 241-165.
A state-oriented approach with a rigorous semantic
basis based on intentional-logic was proposed by Clifford, J. and Warren, D. S. "Formal Semantics
Clifford and Warren (1976). The model, however, for Time in Databases." ACM Transactions on
lacked practical considerations. A different Database Systems, Vol. 6, No. 2, 1983, pp. 214-254.
formalism, along with a new relational algebra, was
defined later by Clifford and Tansel (1985). In the Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor,
two views presented by Clifford and Tansel, P., Walch, G., Werner, H., and Woodfill, J. "Design-
attributes are time-stamped and a large number of ing DBMS Support for the Temporal Dimensions."
concepts and operations are defined. Snodgrass and Proceedings of ACM SIGMOD, 1984, op. 115-130.
Ahn (1985, 1986) define two measures of time and
four types of databases using a "cubic" view in Sarda, N. L. "Handling of Time in Database
which time is added as a third dimension to the flat Systems: Proceedings of the International Com-
(conventional) relation. They also suggest a few puter Symposium, Taiwan (ROC), 1984, pp. 603-610.
(basically of the "time-slicing" kind) extensions to
the query language, QUEL. The cube-oriented Sarda, N. L. "Modelling of Time and History Data

conceptualization is also proposed by Ariav (1986). in Database Systems." Proceedings of the CIPS
The projection and selection operations are provid- Congress '87, Winnipeg, May 12-14, 1987, pp. 15-20.
ed. Some of the extensions do not fit into the
simple product-select-project framework of SQL, Sarda, N. L. "Algebra and Query Language for a
and, hence, are difficult to comprehend. Historical Data Model." Submitted to The Computer

Journal, 1987.
The model we proposed elsewhere (Sarda 1987)
maintains conformity with the standard relational Snodgrass, R. and Ahn, I. "A Taxonomy of Time in
model and our extensions to SQL retain its simple Databases." Proceedings of ACM SIGMOD, 1985, pp.
framework. Also, as the present case study 236-246.
demonstrates, the proposed facilities are effective
and efficient. Snodgrass, R. and Ahn, I. "Temporal Databases."

IEEE Computer, September 1986, pp. 35-42.

REFERENCES

Ariav, G. "A Temporally-Oriented Data Model."
ACM Transactions on Database Systems,Vo\. 11, No.
4, December 1986, pp. 499-527.

Chamberlin, D. D., Asdrahan, M. M., Eswaran, K. P.,
Griffiths, P. P., Lorie, R. A., Mehl, J. W., Reisner,
P., and Wade, B. W. "SEQUEL 2: A Unified
Approach to Data Definition, Manipulation and
Control: IBM Journal of Research and Develop-
ment, Vol. 20, No. 6, 1976, pp. 560-575.

96

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1987

	DESIGN OF AN INFORMATION SYSTEM USING A HISTORICAL DATABASE MANAGEMENT SYSTEM*
	N. L. Sarda
	Recommended Citation

	tmp.1422292835.pdf.Do4Ih

