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LOGICAL AkYD PHYSICAL TEMPORAL-DATABASE DESIGN

Arie Segev
School of Business Administration

The University of California, Berkeley

ABSTRACT

This paper examines problems and approaches to logical and physical temporal-database design.
The logical model is used to determine the functionality required of the physical design. Due to
the special nature of temporal data, existing database structures are inadequate. The nature of
physical design problems are examined and some solutions proposed. A multi-dimensional file
partitioning algorithm is proposed; this algorithm is appropriate for certain temporal-database
environments.

1. INTRODUCTION is obvious that in business applications temporal
data is also essential. Many business applications

Recently there has been a significant increase in keep a complete history of transactions over the
the amount of research in the area of temporal database. This is quite obvious in most business
databases. For a survey of the role of time in applications, such as banking, sales, inventory
information processing, see Bolour et al. (1982), and control, and reservation systems. Furthermore, this
for a research list see Snodgrass (1986). The history often needs to be statistically analyzed for
importance of incorporating the time dimension into decision making purposes. Other applications where
database systems has long been recognized. The the time domain is inherent include engineering
relational model (Codd 1970), for example, represe- databases, econometrics, surveys, policy analysis,
nts data as a collection of relations, with no music, etc. (for time-series analysis).
support for time-varying attributes. Each relation
reflects the most recent snapshot ("current ver- Our approach to modeling temporal information was
sion"), and all past information is either lost or to start with the understanding and specification of
available only through recovery logs or the user's the semantics of temporal data independent of any
own maintenance. The dramatic decrease in the specific logical data model (such as the relational
cost/performance ratio of hardware components as model, the entity-relationship model, the CODASYL
well as the development of new technologies (such network model, etc.). This differs from many other
as the optical disk, Copeland 1982) have made it works whose starting point is a given model which
feasible to support the time dimension online is extended to support temporal data. Examples of
provided that efficient storage methods and access works that extend the relational model are Ariav
algorithms are developed. (1986), Clifford and Tansel (1985), Gadia (1986), and

Lum et al. (1984): examples of works that extend
This paper examines the case of historical temporal the Entity-Relationship model are Klopproge (1981)
databases. Such databases are often characterized and Adiba and Quang (1986). We believe that our
by their static nature and the importance of the approach leads to precise characterization of the
time domain. Our initial motivation for temporal properties of temporal data and operators over them
data comes from applications in scientific and without being influenced by traditional models which
statistical databases (SSDBs), where physical were not specifically designed to model temporal
experiments, measurements, simulations, and data. Once such characterization is achieved, we
collected statistics are usually in the time domain. can attempt to represent these structures and
Unlike many business applications that deal only operations in specific logical models. Typically, this
with current data, SSDB applications are inherently will require extensions or changes of the logical
time dependent, and in most cases the concept of a models, or perhaps will point out that some models
"current version" does not even exist. However, it are inadequate for temporal modeling. A discussion
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of the logical temporal model (Segev and Shoshani In Section 3, we explain the partitioning concept
1987) is included here because of its relationship to and discuss the parameters relevant to the decision
the functional capabilities required of the physical on how to partition the file. Section 4 details a
model. partitioning algorithm. This algorithm is ap-

propriate for totally static data and is independent
We are mainly interested in capturing the semantics of a traditional data model. In Section 5, we
of ordered sequences of data values in the time discuss the physical design issues associated with a
domain, as well as operators over them. Conse- generalized temporal database (including an extended
quently, we defined the concept of a Time Sequence relational model). The paper is concluded with a
(Segev and Shoshani 1987; Shoshani and Kawagoe summary in Section 6.
1986), which is basically the sequence of values in
the time domain for a single entity instance, such 2. A LOGICAL DATA MODEL
as the salary history of an individual or the
measurements taken by a particular detector in an In this section we summarize the semantic proper-
experiment. The semantics of time sequences are ties of temporal data and the intuition for the data
described in Section 2. This paper addresses the constructs we have chosen. The logical data model
problem of how to organize time sequences on is detailed in Segev and Shoshani (1987).
secondary storage devices. Preliminary ideas on
various forms of two-level storage intended to 2.1 Time Sequences
support relational temporal databases were intro-
duced in Ahn (1986). The motivation is that due to In order to capture the semantics of temporal data,
the differing access demands on current and we start with some basic concepts. A temporal data
historical data, each can be organized and stored in value is defined for some object (e.g., a person), at
a different manner. The applicability of each a certain time point (for example, March of 1986),
schema to attribute and tuple versioning was also for some attributes of that object (e.g., salary).
discussed. It is our view that, in many instances, a Thus, a temporal data value is a triplet <s,t,a),
multidimensional partitioning of the file is the where s is the surrogate for the object, t is the
appropriate approach to organizing temporal data time, and a is the attribute value. Note that for a
due to the inherent ordering of the time dimension. non-temporal data value t is considered the
In traditional databases, the problem of multidimen- "current" value, and therefore omitted.
sional file partitioning (MDFP) arises in many
applications where it is required to store files An important semantic feature of temporal data is
which are indexed by one or more search attributes that for a given surrogate the temporal data values
to disk pages such that the mapping from the key are totally ordered in time: that is, they form an
space to the physical address space is order- ordered sequence. For example, the salary history
preserving. Such an order-preserving mapping is of John forms an ordered sequence in the time
important in an environment where the frequency of domain. We call such a sequence a time sequence
range queries and sequential access by key values is (TS). TSs are basic structures that can be
high. addressed in two ways. Operators over them can be

expressed not only in terms of the values (such as
In a given application environment, data files are "salary greater than 3OK"), but also in terms of
classified as static or dynamic depending on the temporal properties of the sequence (such as "the
rate of insertion and deletion transactions. In salary for the last ten months" or the "revenues for
recent years, most of the research has focused on every Saturday"). The result of such operators is
dynamic files, resulting in several file organization also a TS whose elements are the temporal values
methods, e.g., the grid file method (Nievergelt, that qualified.
Hinterberger and Sevcik 1984). Some work has also
been done on static MDFP (Merret 1984). For the Since all the temporal values in a TS have the same
temporal databases considered in this paper, a static surrogate value, they can be represented as
algorithm is more appropriate especially when the <s,(t,a)*>, that is a sequence of pairs (t,a) for a
database contains historical data for the purpose of given surrogate. It is convenient to view TSs
analysis and decision making. graphically as shown in Figure 1. Imagine that

Figure 1 a shows a daily balance of a checking
account. Note that in this case the pairs in the TS
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have the values (1,10), (6,3), (8,7), (14,5), (17,11), We note here that non-temporal values can be
(19,8), but that these values extend to other time represented as a special case of the TSC. A non-
points of the sequence as shown. We label such temporal attribute has a single time point (usually
behavior of the TS "step-wise constant: In "current time"), and therefore its TSC will be
contrast, Figure 1 b shows a TS of the number of reduced to a single column structure.
copies sold per day for a particular book. Here the
temporal values apply only to the days for which 3. MULTIDIMENSIONAL PARTITIONINGS AND
they are specified. We call this property of the TS TEMPORAL DATABASES
"discrete." A further example is shown in
Figure 1 c, which represents measurements of a We now explain the concept of multidimensional file
magnetic field by a particular detector taken at partitioning (MDFP) and show how it relates to
regular intervals (say, every second). In this case, temporal databases. Examples of MDFP schemes are
one can interpret the TS as being "continuous" in the Grid Files of different types and the file
the sense that values in between the measured structures described in Merret (1978, 1984) and
points can be interpolated if need be. Merret and Otoo (1982). In all of these methods

the possible range of values for each attribute is
These examples illustrate that while a TS is defined partitioned into segments; the intersection of these
structurally as an ordered sequence of temporal segments define hyper-rectangles or cells. Each
values, its semantic behavior can differ according to logical record is associated with a cell based on the
the application involved. The following properties segments to which its attribute values belong. An
are used to characterize the behavior of a TS: MDFP structure is a three level hierarchical

structure. The first level is a relatively small file
1. Type: determines the interpolation rules for the with information about the partitioning points and

TS. is kept in fast storage. The second level Ba
directory with a single entry for each cell of the

2. Granularity: determines the granularity of the partitioning. This entry contains a pointer to the
time points; e.g., days, hours, minutes. data page which contains the logical records

associated with this cell. The last level is the
3. Life Span: determines the ending points of the actual file where the data records are stored.

TS. We are mainly interested in three cases: Typically the last two levels are resident on disk
fixed start and end times; fixed start with end because of their size. A query against this
equal to current time; and end equal to current structure is answered as follows: Using the
time with start being a fixed distance from end attribute values specified by the query, the informa-
time (a "moving window"). tion kept in fast storage is used to compute the

disk address of the relevant directory entry or
4. Regularity: a regular TS implies that there entries on disk, these in turn contain pointers to

exists a data point for each underlying time the data pages where the logical records which form
point. the answer to the query are stored.

2.2 Time Sequence Collections (TSCs) As explained above, all of the logical records
associated with the same cell of the partitioning are

A TSC is the collection of TSs for the objects stored on the same disk page. An overflow occurs
belonging to the same class; for example, the when the number of tuples associated with a given
collection of all the price histories of products in cell exceeds the capacity of a disk page. We
the database. A TSC can be described as a triple assume that there is a single common overflow area.
(S,LA) where S, T, and A are the surrogate, time This paper deals with the case of two search
and attributel domains, respectively. A TSC can attributes (one of which is the time dimension), but
thus be viewed as the collection of all the temporal the analysis can be easily generalized to more than
values of a single attribute for all the surrogates of two dimensions. We will refer to an algorithm that
a class. It is convenient to think of a TSC in a determines the partitioning of the attribute space as
two-dimensional space as shown in Figure 2. In a "partitioning algorithm." The parameters that
this representation, each row corresponds to a TS determine the best partitioning are the size of the
for a particular surrogate. The dots represent primary data area (in number of pages) -- K; the
points where temporal values exist. page capacity (in number of tuples) -- c; the

99



to 1 L7 5  8
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a} Account balance: step.wise constant

1 1 11 1
b) Books sold: discrete

--- -4---- -- - ..
--- -- ..*--- --

c) Magnetic field: continuous

Figure 1. Example of Time Sequences

t---1, tj

SI · · ·4  TS 1
1 .. 1

.j .4- TS2
4 . .

4---- TSn

Figure 2. A Two-Dimentional Representation of a Time Sequence Collection

100



storage utilization (or load factor) -- a; the number
of unique values in the search attribute (to simplify
the exposition, and without loss of generality, we
assume that this number is the same for each
search attribute) -- n; and the frequency matrix
F = {f..1- where f·. is the number of tuples having  Vi' U 1 2 4 O 0values i and j in the first and second search
attributes, respectively. It should be noted that the 111 1 0
matrix F is different from the TSC of Figure 2; in

2 1 1 1 4< -F, we store in position (i,j) the value fij which
represents the number of data tuples with values ti 11112

and sj in the time and surrogate attributes respec-
tively. For example 4 3 - 5 means that there are 1 1 2 1 1
five transactions for sdrrogate ss at time unit t:.
The details of each such transaction is a record
which will be kept on a data page. Note that all Figure 4. An Example of an Asymetric Partitioning
five records (and possibly others associated with which Further Reduces the Overflow.
that cell) will reside on the same disk page. That
is, the matrix F serves as a basis for the allocation
of data tuples to disk pages and the creation of an is partitioned vertically and horizontally by grid
index to the data file; that is, F is the input to a lines. The figure illustrates that the overflow can
partitioning algorithm that determines which tuples be reduced by changing the partitioning. Al-
will fall into the same cell and therefore will reside gorithms for asymmetric partitioning are presented
in the same disk page. in Rotem and Segev (1986). Figure 4 presents an

asymmetric partitioning of the same matrix. In this
We consider two types of partitioning -- symmetric case, we partition F vertically by grid lines, and
and asymmetric. Figure 3 presents two examples of each vertical segment (the submatrix between two
a symmetric partitioning. The matrix F may adjacent grid lines) is partitioned horizontally. As
represent daily sales transactions of a group of can be seen from Figure 4, the asymmetric
products. In this case, the first row of F in Figure partitioning helps to further reduce the amount of
3(a) has the following interpretation: the number of overflow.
transaction records for products 1,2,3,4,5 in day 1 is
1,2,4,0,0 respectively. The second row represents The asymmetric partitioning is appropriate in many
the number of sales records in the second day, and instances of temporal data, where the dominant
so on. As can be seen from Figure 3, the matrix F interest is in the attribute of an entity or a group

of entities as a function of time, e.g., what were
the sales of an item during a certain time period?

1 4. AN ASYMMETRIC PARTITIONING
ALGORITHM1 2 4 0 0

111' 10

2 4 0 0

111 1 0 This section describes the asymmetric algorithm for
2 1 1 1 4< - 2 1 1 1 4< - placing the horizontal and vertical lines so that a

minimum overflow partitioning is achieved subject to
11112 1 1 1 1 2 the constraint on the number of pages in the
1 1 2 1 1 1 1 2 1 1 primary area. As mentioned before, an asymmetric

partitioning generalizes the symmetric one because
(a) (b) it is less constrained in the way in which it

partitions the attribute value space. Specifically, in
the case of a temporal database we may partition

Figure 3. Two Examples of a Symmetric Partition- the values of the surrogate into segments represen-
ing with c==3 and K=16. In (a), total overflow ting groups of surrogates and then perform a
is 5 whereas in (b) it is 3. The arrows point different horizontal partitioning for each such

to cells where overflow has occurred. segment. The horizontal partitioning required for
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each segment may contain a different number of way: The vector C(F) = <elic:„ .,Cn> is obtained
cells due to the different activity rates of surrogate from F by setting
groups. For example, in an inventory system some
parts will be moved in and out of the warehouse at n
a much faster rate than others and therefore more Ck = E fik for 1 s k i n,
transactions will be generated for these parts. This i=1
in turn will require allocating more horizontal lines
to the segment which contains these parts.

i.e., each component c  is the sum of the elements
The reason for partitioning the surrogate values of the k h column of F. Similarly,
into segments (rather than the time values) is that
we expect that most queries will specify a surrogate R(F) = <rl.r2,...,rr,
value (or a small range) and try to access the
records corresponding to this surrogate within a
specified time range or obtain the whole time is the vector obtained by letting r  be the sum of
sequence for that surrogate. We would like to have elements in the ith row of F. Let {V,k,c} denote a
an efficient data structure with respect to such one dimensional partitioning problem of the vector
queries while still supporting queries which specify F into k pages each with capacity c. The same
a time range and then access transactions which notation will be used for the case of a two
refer to all or some subset of the surrogates. dimensional problem except for the following: F will

denote an n by n matrix and k will be replaced by
An algorithm for solving this problem must perform two factors. For each pair nl' n: in P, we solve a
the following: pair of one dimensional problems {R(F),nt,n:Xc) and

{C(F),n:,niXc}. Let gnl and gn: be the optimal
a. Determine the number of vertical lines and their solutions obtained for these two problems. By

exact placement. This will partition the space combining the horizontal and vertical line positions
into vertical segments. computed by the solutions gni and gn2' we obtain a

solution y( nl' n2) to {F,nl,n2,c}.
b. For each vertical segment determined in (a), find

how many pages should be allocated to it so that Algorithm 2 works as follows. It inspects all the
the total number of pages allocated to all permissible factor pairs (ni,nw) in P (as in Step 1
segments is equal to the constraint K. Assume of Algorithm 1) and takes the second component n:
that k  pages are allocated to the i h segment. as a value for the number of vertical segments.

Once the number of vertical lines is chosen, the
c. Find an optimal partitioning for the i h segment exact placement of these lines is determined by

into ki pages. In terms of our previous solving a one-dimensional partitioning problem on
algorithm, this requires placing ki-1 horizontal C(F), the column sum vector of the matrix F (an
lines in the i h segment. optimal algorithm is given in Rotem and Segev

1986). From now on, let us assume that step a) of
An algorithm for optimally solving this problem has Algorithm 1 is completed and we have a fixed
to inspect a large number of choices for step (a). vertical partitioning f with n: vertical segments.
We devised a heuristics algorithm which takes
advantage of some steps of a symmetric partitioning Let us denote by FL(i,j) the overflow incurred by
algorithm'. We start by summarizing the logic of optimally partitioning the i h segment into j pages.
Algorithm 1. Given a pair of integers nl and n:, We note that under the fixed partitioning L finding
they are called permissible factors of K if niXnv=K the value of FL(i,j) is a standard one dimensional
and ni s n for i = 1,2. Let P be the set of all dynamic program (Horowitz and Sahni 1978) for
permissible factor pairs of K. We can partition the every value of i and j. Let TFU,1) denote the
matrix F into K cells by partitioning the rows into overflow incurred by the optimal partitioning of the
nl segments and the columns into n: segments. first j segments into a total of / pages. We have
This is done by placing nt- 1 horizontal lines the following recursive equation:
between the rows of F and n:- 1 vertical lines
between the columns of F. Let C(F) and R(F) be TF(j,1) = Min(TFU-\,m +FLU.1-m)).
the two vectors obtained from F in the following m
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This equation expresses the fact that the optimal benefiting from the consistency and integrity of
partitioning of the first j segments into 1 pages is abstract relational structures while tailoring the
achieved by choosing some m where m<l, and physical organization and design of access methods
optimally partitioning the first j-l segments into m in order to benefit from the unique nature of
pages and then partitioning the jth segment into l- historical data.
m pages. The boundary condition is

The third strategy requires a completely new design,
TF(l,l) = FL(1,/) for every /. where we can adopt the most appropriate logical as

well as physical structures for the representation
A dynamic programming approach is used to find TSCs. The difficulty with this approach is the
the value of m which minimizes the above equation. inability to take advantage of the body of theory
We have to compute TF(ni,K) for each n: in P and available to the relational model and its implemen-
then choose as our optimal solution the vertical tation. On the other hand, we need not restrict
partitioning which produces the smallest value of ourselves to the tuple based record structure
TF(npK). inherent to the relational model.

5. A GENERALIZED TEMPORAL
DATABASE DESIGN 5.2 Properties of TSs

There are many parameters that effect the physical The properties of the TSs affect the physical design
design of a temporal database. We consider here considerations. In particular, we are interested in
three groups of parameters -- the underlying data the life span property. We can characterize it
model; the properties of the TSs; and the access according to t,· le and tc: the starting and ending
requirements -- and then discuss their effect on the points of the TS and the current point in time
database design. respectively. Then, the life spans discussed in

Section 2 can be stated as: (a) [4,4] are fixed,
(b) t, is fixed and te = tc, and (c) te = 4, and ts

5.1 The Underlying Data Model - te - k, where k is some constant.

There are three main strategies to mapping the Four cases of life spans should be considered. The
conceptual temporal data model (see Section 2) into first case is when tc>te' and both ta and te are
an internal architecture: (1) building a temporal fixed. We have complete information pertaining to
interface to a traditional relational database the number of data points within the fixed interval.
management system, (2) building an interface to a This situation arises when we have reached the end
modified relational database management system, and of a type (a) life span, terminate life spans of types
(3) direct implementation of the temporal data (b) and (c), or create TSCs for the sole purpose of
model. historical analysis. The latter is common in

scientific and other research work.
In the first strategy, we map the three-dimensional
TSC into flat relational tables. This will then The second case is when te>t  and t  is fixed.
permit us to exploit the established internal Although information on future database activities
architecture of the relational model. This approach may be uncertain, the maximum number of data
can be viewed as adding a temporal interface above points is equal to the number of time points within
that of the relational model within the logical level the interval. For example, it may be decided on
of the ANSI/SPARC architecture. The file, data 5/1/87 that the percentage of defective production
structures, and access methods will be those used output should be monitored dating from 1/1/87 until
by the traditional database management system. 12/31/87.
The advantage of this strategy is its relative ease
of implementation. In the third case, te = 4, which means that the

number of data points is indeterminate. Thus the
In the second strategy, the temporal data constructs allocation of storage space will be more difficult
are mapped onto the relational model, but we allow and there is a higher likelihood of overflows. This
for modifications of the physical relational architec- life span would correspond to TSCs that model
ture. The advantage of this approach is in ongoing entities.
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The fourth case is a life span of type (c) (a The second issue relates to data operators: will they
"moving window"). Moving windows dynamically be mapped onto some relational calculus equivalent,
change the range over the stored values correspon- or will they be maintained separately? Mapping
ding to insertions/deletions of data, and/or time them into the relational operators would mean not
itself, depending upon the way the time granularity just modifying or augmenting them, but also the
was defined. An example is the requirement of addition of operators such as accumulation and
maintaining data for continually updated five-year composition (Segev and Shoshani 1987). We then
trend analysis. have to guarantee that extended relational calculus

is closed. Moreover, the relations must satisfy
5.3 Access Requirements notions of normal forms that are appropriate for

temporal data.
This group of parameters can be classified as
follows: The third factor pertains to query optimization.

The use of relational operators allows access to the
1. Read only: This relates to query retrievals. query optimizer of the database management system.

Carrying out the operations directly on the TSCs
2. Read and append: Relevant for append-only still requires a way to translate query strategies

databases, where no deletions are allowed. Thus into access path selection plans for the stored
errors are retained and corrections appended as tuples. Otherwise all tuples corresponding to each
new records. Further, all non-valid historical TSC specified in the query would have to be
transactions are also retained. retrieved.

3. Read, append and delete: Unlike the above, The fourth issue is performance of the design.
deletions are also allowed. This means that With few changes in the file structures and access
when a record has become invalidated, it can be methods, serious performance problems may result.
removed from the database. Nonetheless, all Moreover, the impact of selected data structures on
updates (replacement of field value(s) of existing query retrievals pertaining to current (snapshot)
records) are not allowed. information has to be measured. As far as the

other two design criteria are concerned, they have
4. Read, append, delete and update: This allows limited applicability.

the full range of operations that one finds in a
conventional database management system. Note Case Two
that an update constitutes a delete followed by
an insert, except that the new record overwrites In this case, we can consider both the logical and
the old, unless this is disallowed due to the physical levels of the database design. Thus we
existence of pinned records. will look into the characteristics of temporal data

as defined by the life spans and associated opera-
5.4 Parameter's Effect on the Design tions on them and investigate ways in which they

can be organized.
There are three major cases to be considered,
corresponding to the underlying data model. For completed static lifespans, the prime concern is

with read only transactions, since data is used
Case One mainly for query retrievals. The only appends,

deletes or updates that matter are those related to
The major design problem here is the construction possible errors in recording. These are too
of an interface between the temporal and relational irregular to require special consideration. It is
data models. There are four major issues involved likely that TSCs with this life span will contain
in the design. The first concerns techniques for large amounts of data and have high access
the relational representation of temporal data. frequencies, e.g., scientific or economic data. The
Aside from considering the efficiency of the partitioning methods discussed in Section 3 and 4
mapping algorithms, we need to ensure that the enable data to be retrieved by time or surrogate
resulting relations maintain all the properties of the values, or both, and maintains the ordering along
original TSCs. each dimension.
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For the incomplete static lifespan, operations of Nonetheless, there are great disadvantages to this
types (2) to (4) are relevant according to the architecture, since most aspects of database design
nature of the database and also for insertions of have to be redefined or assessed carefully. For
new data. The above partitioning technique could example, by redefining the basic unit of storage,
be extended here, where we allocate additional cells the validity of conventional concurrency and
to surrogates, to be filled within the interval recovery methods of database management systems
Itc,tel The rest of the life span can be treated as must be evaluated.
completed, since probably only read operations are
needed. A major consideration is the regularity of
the TSC, since it would be much simpler to 6. SUMMARY
efficiently allocate empty cells when we can
estimate the number of data tuples that would be We have introduced a temporal data model which is
inserted in the future. In many instances, one can independent of any specific traditional data model,
expect a great deal of updates within the incom- such as the relational model. We have defined a
plete span, since much research oriented work will logical temporal data structure that supports
have this type of span. If the database is append sequences of temporal values naturally. The TSC
only, then the problem of optimal organization is structure has to be mapped into a physical struc-
even more difficult. ture, and we have detailed a multi-dimensional file

partitioning scheme to achieve that. Two alterna-
In the case of a dynamic life span, while we can tives were examined for multidimensional partition-
also reorganize data along the interval [t ,tc] as a ing of temporal databases. It seems that the unique
static structure, the allocation of appropriate structure of these databases requires different data
storage and indexing may be more difficult for structures than simple grid files which perform very
future data, since the terminal point is unknown. well for regular databases. The reason for this
On the other hand, since most ordinary database difference is that there is an inherent asymmetry of
entities exhibit this behavior and are often predic- the time attribute with respect to the other
table or infrequent in their update and query attributes which requires special treatment. The
patterns, simple methods such as reverse chaining structures proposed here are static in the sense
may be adequate. We may also allow all possible that all data or at least the distribution of the
operations on these structures. tuples over the attribute values must be known

before a partitioning algorithm can be utilized.
As for a moving window, we are able to delete
invalidated data, i.e., data where the corresponding The main objective functions that we were trying to
time attribute is less than te - -kor archive them. minimize were the total amount of overflow subject
If data updates are periodic and uniformly dis- to a constraint on the number of pages K. The
tributed, such techniques as stacked versions and same techniques can be used for different objective
cellular chaining (Ahn 1986) may be applicable. functions. For example, we can minimize K subject
Moving windows are regularly used to provide such to a zero overflow constraint or try to maximize
information as aggregates, thus the ability to have storage utilization. Another important advantage of
random access may be unimportant. our scheme is that we can solve the dynamic

program subject to constraints on where the
Case Three partitioning lines must be placed. For example, we

can specify that surrogates sl, 52 and s3 must
We will briefly discuss the issues associated with a belong to the same segment. The reason for this
non-relational architecture. Physical design can constraint is that a very common query type
exploit the advantages inherent in temporal data, specifies all three surrogates. In other words, we
and especially TSCs. Thus the physical record need can adapt our partitioning scheme to the query
not correspond to a tuple. There are many ways of pattern as well as the data.
efficiently compressing and factoring out redundant
information, such as repetitive time and surrogate Finally, we have examined the parameters that
values. In relational based schemes, the tuples have affect the physical design of a generalized temporal
to be reconstructed before further processing, if database. The important parameters have to do
compressed or partial information has been stored in with the underlying data model, the properties of
their place. the time sequences, and the access requirements.
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As in the case of traditional database design, there Horowitz, E., and Sahni, S. Fundamentals of
is no one design that can satisfy all requirements, Computer Algorithms. Computer Science Press, Inc.,
but the given taxonomy can serve as a guide to the Rockville, MD, 1978.
right design.
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