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OONA, MAX AND THE WYWWYWI PRINCIPLE:
GENERALIZED HYPERTEXT AND MODEL MANAGEMENT

IN A SYMBOLIC PROGRAMMING ENVIRONMENT
Hemant Bhargava

Michael Bieber
Steven 0. Kimbrough

Department of Decision Sciences
University of Pennsylvania

1. INTRODUCTION checks for any potential scenario and performs automatic
generation, solution, and interpretation for mathematical

Progress in decision support systems comes in a variety of models. It is used by General Motors and has resulted in
forms. These include increased understanding of the or- savings in excess of $1 billion (Breitman 1987). Commer-ganizational consequences of machine-mediated decision cial model management systems are, however, non-existent.making, improved knowledge regarding how to implement
DSSs (decision support systems), advances in techniques We have explored hypertext and model management infor managing and maintaining DSSs, and improvements in the context of DSS and have implemented two prototypeDSS technology that result in enhanced functionality or systems (Max and Oona) currently in use by the U.S. Coast
reductions in the cost of building particular DSSs. The Guard. The purpose of this paper is to report on andprogress in DSS reported here falls under the latter cate- discuss our findings. In section 2, we begin by presenting
gory. The research motivation for this work may, briefly, background material and briefly discussing the centralbe described as follows. technical ideas (generalized hypertext and model manage-

ment) for these systems.
A DSS is a software tool that facilitates working with data
and models. It is widely agreed that building particular
DSSs can be done faster and more economically if general-
purpose, reusable software is available for performing 2. BACKGROUND
standard DSS functions (Sprague and Carlson 1982; Kim-
brough 1986). Economies arise both from reusing existing During the next ten years, the U.S. Coast Guard will in-software and from working in a familiar, standardized vest more than a billion dollars in acquiring replacementenvironment. For certain of the DSS functions or com- assets (ships, airplanes, helicopters, etc.) for its present,ponents (e.g., business graphics, report writing, database aging fleet. The cost of operating and maintaining thesemanagement) design principles and implementation techni- assets will be several times the acquisition cost. Becauseques are well advanced and commercial products of high of the importance and complexity of the capital asset ac-quality are on the market. For other DSS components quisition problem, the Coast Guard has initiated a project
(e.g., model management systems, hypertext systems) there ;limed, in part, at systematically developing software for
is broad agreement that they are needed and valuable, yet support of acquisition decisions. The goal is to produce acomparatively little is known about what functionality the series of specific decision support systems (also called
components should have or how that functionality should knowledge-based decision support systems, or KSSs) inbe implemented. support of particular acquisition projects, but based on

generic and highly reusable system software. The workIn the case of hypertext, a few systems are on the market reported here was done as part of the Coast Guard's KSSbut requirements and capabilities for DSS hypertext inter- project.
faces are far from being fully worked out and understood.
Research on these systems is only beginning. In the case Early on in the project, the decision was taken to build aof model management, there has been extensive research general environment--or shell--for building and runningbut it has not yielded consensus as to exactly what model particular KSSs. The concept of a KSS shell is similar in
management is or what features a model management some ways to that of a DSS generator (Sprague and Carl-system should have. Research model management systems son 1982, p. 11). The idea is that the shell is a powerful,of limited scope have been implemented. For example, general-purpose software system that facilities the con-WHIMS (Wharton Interactive Modeling System) manages struction of particular DSSs (or KSSs) and provides amicroanalytic simulation models (Katz and Miller 1986). variety of features. Because the technology employedPLANETS (ProductionLocationAnalysisNetworkSystem) (symbolic programming) and the feature set implementedallows analysts to define a business environment and spe- (hypertext, expert systems inference engines, extensivecific business assumptions. It provides automatic feasibility model management facilities) in our KSS shell design
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greatly subsumes that of traditional products that go by reports; and decision-makers, who may browse through
the name of DSS generators (Express, IFPS, Empire), it the reports and make decisions based on these analyses.
seemed appropriate to use the term shell to describe the They are responsible for these decisions and must be able
focus of our efforts. (See Kimbrough [1986] for a related to justify them. Decision-justification, often omitted in
discussion of the idea.) models of decision-making, is an important function of a

DSS and must be supported by its model management
There are three essential modules in our DSS (or KSS) component. In fact, we take the stronger view that the
shells. First, there is a high-level process that makes in- main purpose of a DSS is to assist users in constructing
ferences and provides control over the entire DSS. As and evaluating arguments for courses of action (Kim-
currently implemented in both Max and Oona, this pro- brough 1987).
cess is in the form of a Prolog meta-interpreter (Sterling
and Shapiro 1986) and as such resembles an inference The above discussion leads to the following two metapho-
engine for a conventional rule-based expert system. Be- rical statements about model management systems: an
cause space is limited and because our current implemen- MMS is like an operating system for models, Le., it
tations (Max and Oona) are not innovative in this regard, handles models in general, as an operating system
we will not discuss further the high-level control. The handles files, irrespective of their content or application;
second essential module is a model management system. and an MMS is like an expert system for modeling: it
(In the existing prototypes, written in Prolog, data is attempts, through intelligent-seeming behavior, to fill the
treated as a special type of model, so the model base position of an human expert in modeling. This contrasts
management system manages both data and models.) We somewhat with the view, taken in previous literature, in
discuss design concepts and principles for model base which a model management system has been likened to a
management in section 3. Finally, the third essential mo- data base management system ("models, like data, need
dule is a user interface, or display, (sub)system. Our de- to be stored, retrieved, shared" [Elam, Henderson and
sign and implementations have been much influenced by Miller 1980; Liang 1986]), and described as "a structured
hypertext concepts, although we have added features not milieu for storing, manipulating, and retrieving models"
found in other systems. We discuss these in section 4. (Dolk and Konsynski 1984). The analogy with DBMSs,

though not inappropriate, does not sufficiently describe
the functionality of a model management system. We

3. MODEL MANAGEMENT attempt to develop a list of features by looking at the
steps in a modeling life cycle and the user roles that an

Decision Support Systems employ, as do human decision- MMS should support. We will develop these using the
makers, a variety of models to solve problems and re- following example.
commend courses of action. A model is simply an ap-
proximation of some real-world phenomenon, or a set of
assumptions (e.g., architects construct models of the
buildings they plan to build, management scientists model Example 1(A)
service departments as queue systems, etc.; here we are
concerned with computer-executable models). The model We consider here a part of the Vessel Acquisition pro-
management system must manage the tasks involved in cess in the U.S. Coast Guard. The process includes mea-
making, evaluating, and explaining the consequences of suring various attributes of different vessels and eval-
these assumptions. uating costs over their estimated life. Assume that we

are interested in a set of Vessel characteristics, Life Cycle
Hence a model management system must facilitate ex- Cost, Designer, and Builder of the Vessel. Also assume
pression of knowledge about models, exercising this that the total Life Cycle Cost (LCC) is computed using a
knowledge, and explaining the results obtained from using simple mathematical model that sums various costs, in
these models. It may be argued that such functionality this case, Acquisition Cost (AC), Maintenance Cost
could be included in any DSS by writing procedures to do (MC), and Personnel Cost (PC), i.e., LCC = AC + MC
each of those tasks; that would be to miss the point. The + PC.
idea of an MMS is to provide this functionality in a gene-
ral-purpose form (or as general as possible) which can be Each of these components is computed using a mathema-
applied to a wide class of applications or sets of models. tical model. For example, the Maintenance Cost over the

vessel's life is computed by adding the discounted values
Broadly speaking, we recognize three user roles for an for Maintenance Costs, for each year in the vessel's life.
MMS, corresponding to the three activities mentioned in The maintenance cost for year j, MCj, is calculated by
the previous paragraph: model builders, who construct inflating a Base Cost by an inflation factor and then dis-
the models and provide the domain knowledge that en- counting it to get the present value. Hence, if b is the
ables the MMS to perform in that domain; model users Base Cost, i is the percent annual increase in main-
and analysts, who exercise these models or solve and ana- tenance cost, r is the discount rate, and N is the vessel's
lyze actual problems by providing the data and create life span, we have
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N cost for vessel 2 may be an expected value of some
MC = E MC. /(1+ (r/100))  estimated costs, whereas for vessel 3, life cycle cost

j=1 J may be computed at a further level of detail, i.e., by
computing the various components. Again, the MMS
should be able to explain various models and compo-Letting pv(T,RA) be a function that returns the present
nents of models to the users.value of a cash flow A, that occurs T periods from now,

with a discount rate R, we have
(c) Decision makers: Finally, assume certain reports

N have been created that contain outputs from models,
based on which decisions have to be made. The user

MC = E pv(i,r,MC ), where MC = b*/(1+ (i/100))J may want to know how certain results were com-
j=1 puted, what models were used, where the data was

obtained, etc. Most of these queries would be adN hoc; hence, the MMS must have a general capability
MC = E pvO,r, b*(1+ (i/100))J). to provide this information based on its knowledge

J=1 about the models. For example, an interaction bet-
ween the user and the system may be to the following

Further assume that the discount rate r varies over the effect:
life span, and that the rate for each year is computed
using a model Ml that uses forecasts by OMB and by User: Why was vessel l selected?
RAND Corporation. For the moment we will ignore
other details of this example. We now examine what an System: It had the minimum Life Cycle Cost ($1000
MMS should do in terms of the three user roles dis- m).
cussed earlier, using the above example for illustration.

User: How was this number computed?
(a) Model builders: A model builder would construct

the various models to support the Vessel evaluation System: Life cycle cost = Acquisition cost + Main-
and comparison process. In the above description, tenance cost + Personnel cost; for vessel 1,
we decomposed the entire problem into smaller Acquisition cost = $200 m, Maintenance cost
problems. For example, the total life cycle cost is = $300 m, Personnel cost = $500 m. Hence
computed as a simple summation of its components, Life cycle cost = $10()0 m.
though there are more complicated models under-
lying each component. The MMS must similarly sup- User: What is Maintenance cost and how is that
port building of complex models from simpler ones, computed?
either by composing models or modifying them. This
is important since the sub-models may have indepen- Below, we briefly describe a set of features that need to
dent existence and multiple use. In order for the be present in a model management system. In sections 5
builder to know about existing models (e.g., present and 6, we describe how these are addressed in two imple-
value model), the MMS should be able to describe mentations, Oona and Max. This discussion refers to
these models in terms of their essential characteris- data models, mathematical models, and deductive models.
tics (e.g., the parameters and formula for the present A data model is simply a vector of the type [Mi,M2,···MJ,
value model). The modeler should be able to ex- where the Mi  are themselves arbitrary models. A math-
press mathematical relationships in a natural mathe- ematical model M is a symbol that assigns a value V to a
matical form without having to program the compu- tuple T = (ti, t2,...tj according to some rule. A deduc-
tation. tive model, in the present context, is like a set of IF-

THEN condition pairs and stipulates a set of conclusions
(b) Model users: Model users or analysts would be inte- corresponding to a set of premises being satisfied.

rested in analyzing or evaluating particular vessels by
providing values for different attributes of each vcs-
sci. The MMS should identify and report on the Feature Categories of a Model Management System
kind of data required for this evaluation and at a
level of detail that is at the user's discretion (For a (a) Construct new models, and integrate with existing
vessel, we need its life cycle cost and other charac- ones: this involves adding models, as well as know-
teristics; for the life cycle cost, we may need to know ledge about the models, to the model base (e.g., to
the acquisition cost, maintenance cost, and personnel add a knapsack model to a mathematical program-
cost; and so on.) It should also facilitate the declara- ming knowledge base, one would need to set up the
tion or acquisition of this data in a flexible form. For general form of the model, declare information about
example, for vessel 1, the life cycle cost could simply solution algorithms and progr·ams, and relate it to
be a multiple of the life cycle cost of vessel 2, and the other integer programming paradigms). A new
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model may be created from scratch or be set up by (j) Analyze changes: this includes computing the effects
combining or modifying other existing models. of changes in parameter values, either numerically or

analytically (c.g., the rate of change by taking first
(b) Identify and formulate problems into known models: derivatives).

formulate a model to determine the optimal product
mix (Bradley, Hax and Magnanti 1977) as a linear (k) Manage the model base: the system needs to man-
program by defining the decision variables, objective age the storage, retrieval, access (perhaps concurrent
function and constraints. and shared) and updating of models, and integrity

and consistency of the model base.
(c) Describe models, parameters, other related models:

the system must be able to describe what it knows This list is not meant to be definitive. Various re-
(e.g., before using a product mix model, a user may searchers have proposed different feature sets (Liang
want a description about it, how to interpret its re- 1986; Geoffrion 1987; Applegate, Konsynski and Nuna-
sults, related concepts like the simplex method, or maker 1986), and it is not yet absolutely clear exactly
where to look for aditional documentation). what features must be supported in modeling systems.

The above model management activities correspond to
(d) Identify data requirements: the system should figure different phases in a modeling life cycle and are meant to

out what data is required to execute a model (e.g., serve the three categories of users mentioned earlier.
for the product mix model, it would need a list of raw For example, the end-users in categories (b) and (c)
materials with availabilities, final products with unit would benefit most from activities (b),(c),(d),(e) and
profits, and activity coefficients). (i), whereas model base developers would benefit from a

high-level implementation of (a), (f) and (h), as well as a
(e) Data extraction: very often the data to run a model facility to build in the knowledge required for the other

would be available elsewhere in the database and activities.
could be obtained automatically by a set of projec-
tions from different relations in the database. The
above two are important steps in integrating models Model Management Implementation
with data, or more precisely, integrating mathemati-
cal models with data models, while retaining the in- Given the above set of features for a model management
dependence between them. They have received some system, we identify four specific issues as being central to
attention in research on expert database systems the implementation of such a system: model representa-
(Kershberg 1986; Jarke and Vassiliou 1984), but not tion, model base organization, a modeling language to
much in modeling systems. express knowledge about models to derive this represen-

tation, and rules to process and manipulate this represen-
(f) Verify model validity: it may be possible to perform tation.

certain automatic checks for model validity (e.g.,
there is probably an error if a new model being set The issue of model representation has been addressed
up adds the outputs of two models, one of which out- from the viewpoints of database systems, artificial intel-
put is a character string). Iigence, and decision support systems (Bonczek, Hols-

apple and Whinston 1982; Konsynski 1980; Blanning
(g) Verify data validity: the system should recognize an 1986). Three main techniques have been used for model

error if, in the present value model, the value for the representation: models as subroutines, models as data,
interest rate has dimension feet. and models as statements in a modeling, language

(Sprague and Carlson 1982; Dolk and Konsynski 1984;
(h) Solve/execute models: the system would need to de- Blanning 1986). Our implementation approach is to re-

termine an appropriate program or solution techni- present models symbolically, as symbols that represent
que to solve a model, instantiate the model, and various concepts related to a model. Knowledge about
execute it. Execution includes rewriting a model in models is represented as statements in a modeling lan-
an equivalent form, re-expressing it after certain sub- guage. Due to the lack of distinction between programs
stitutions, computing the output as a number, com- and data in a symbolic language, model-independent
puting an analytic solution, or drawing certain conclu- manipulation rules can directly manipulate this knowledge
sions. ("Thought consists of the manipulation of sentences in the

language of thought" [Pollock 1986, p. 163]), and we can
view models both as statements and as data. Our philo-

(i) Explain model results/outputs: this involves an inter- sophical approach to model representation is that models
pretation of the results, how the results were com- are (complex) individuals, about which predication may
puted, parameters and their values, source and reli- be applied. The model individuals are named (using sym-
abililty of data, and other factors required to justify a bols) in the model declaration language. Properties of
decision made using these results. these individuals may be declared or inferred using the
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declarations in the model declaration language (and in- 1956). When faced with complex problems, people will
ference engines for inferred properties). These declara- decompose them into increasingly smaller subproblems
tions may be logically quite complex, including such fea- until they are of a manageable size (Shneiderman 1987).
tures and quantification across sentence operators if need Different people will choose to break problems down in
be. Given this logical point of view, Prolog is a natural different ways and by different cognitive methods. A DSS
choice for a programming language to implement the mo- should help us to understand and work in a complex do-
del management system, but it is hardly necessary. Any main and should aid us in the decomposition of a large
symbolic computing environment will do. problem into manageable chunks. In implementing this

we must ask: Can we provide an interface that allows a
user to regulate the amount of information visible at any

4. THE DISPLAY SYSTEM given time while retaining access to all other knowledge
concerning the problem domain? Can we provide an in-

Meeting the following requirements is, we believe, largely terface that gives a user the ability to format both the
the responsibility of the user interface (or display) viewing environment and the knowledge displayed within
module for a generalized DSS shell. it? Generalized hypertext (an extension of traditional

hypertext) enables the implementation of WYWWYWI
1. Users (and system builders) should have access to for an affirmative answer to these concerns.

any system entity (e.g., data, models, meta-knowledge
about data and models) consistent with security and
integrity requirements.

Hypertext
2. Access to system entities should be facilitated by con-

text. For example, a component of a model would be Traditional hypertext is the concept of linking related in-
a system entity. Access to this component might be formation entities or nodes and facilitating the rapid com-
had noncontextually by allowing the user to requcst a puterized transfer between them. Any computer program
standard report on the component at any time. Con- that supports this informational structure can be called a
text-based access could occur, by having the user dis- hypertext system. For example, in a hypertext encyclope-
play the model, point to the model component, pull dia article, a user could specify a reference and the sys-
down a window menu of available options, and tem could automatically transfer him/her to the article
choose the option that generates the standard report ireferred to in the reference. A mechanized version of
on the component currently pointed to. Besides faci- hypertext was first proposed in Bush's Memex system
litating such context-dependent access to information, (Bush 1945). The first computerized hypertext system
the system should provide material assistance to a was implemented by Engelbart more than twenty years
user in traversing (navigating through) various con- ago (Engelbart and English 1968). Heretofore, con-
texts and returning to the desired point in the sys- strained by the availability of abundant and inexpensive
tem's context space. computer processing and memory, hypertext has only re-

cently enjoyed widespread implementation and use. (For
Together, these two requirements generate what we call a discussion of hypertext design issues see (Akscyn, Mc-
the WYWWYWI ("what you want, when you want it," Cracken and Yoder [1987]. For a detailed survey of the
pronounced "weeweewee") principle for DSS interface field see Conklin [1987].)
design. Implementing them, and supporting communica-
tions to the model management system, is the job of the Hypertext encourages (but does not restrict the user to)
user interface. It is difficult to overemphasize the impor- the display of information in small portions. Nodes
tance of a good interface. should ideally represent a single concept and the links

should implicitly or explicitly convey the relationship bet-
Understanding model behavior may de- ween two or more nodes. Hypertext systems enable
pend less on the actual models than on people to communicate in a non-sequential, multi-path
how the models are packaged....The user fashion. Information is not restricted to a single thread
interface should facilitate and not hinder of text with one start and one end point as in a normal
the editing process....Developing insight text document and users are free to follow links and ex-
on model behavior is ultimately a pro- plore information nodes in any order they wish. Thus a
cess of discovery, of finding trends, sur- central distinction of a hypertext system is that it is speci-
prising behaviors and comparing the be- fically designed to allow users to browse through volumes
havior of the model to what is expected of information (Marchionini and Shneiderman 1988).
or observed. [Jones 1987] The user and builder should be able easily to check what

further information is available at any time, and then
transfer to that new knowledge. Of course, it is impor-

It is well established that people can only cognitively tant to implement this in a manner that will not over-
handle small amounts of information at one time (Miller whelm the user of the system.
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Generalized Hypertext Many systems allow these referential links to be typed.
For example, Textnet, a system for authoring and criti-

Generalized hypertext will give both the builders and quing documents, has 54 link types such as "refutation,"
users of applications and models access to hypertext fea- "explanation," and "generalization." These link types are
tures in all functions and parts of the DSS shell and its important in establishing a structure for the node network
applications. It is the mechanism for implementing the and can guide a user in visualizing the relationship bet-
WYWWYWI concept in which the user is able to regu- ween a series of nodes.
late the amount and format of information visible at any
given time at alllevels of the DSS process, including DSS In a traditional hypertext system, implicit links can be
construction, analysis and control. generated by the system when it performs a keyword

search. Normally, the user browses the information base
by explicitly traversing established links among nodes.

Nodes and Buttons However, when a user searches for an arbitrary keyword,
the system will often create internal links to move the

The concept and implementation of nodes varies from user from his present position to a node representing the
one hypertext system to the next. In traditional systems, search outcome (Conklin 1987).
a node is the origin or destination of a link. Sometimes it
will be a point (e.g., a word); more often it is one or Links may have associated weights or other characteristics
more paragraphs of text. Many systems fix the size of a to direct the linking process or they may have procedures
destination node (Conklin 1987). We have generalized attached that are invoked when the link is traversed. Al-
the concept of the node to that of a generalized hypertext ternatively, they may simply contain or represent pointers
button. A button is simply any entity known to the sys- between nodes.
tem. Any button may be linked to any other button.
This means that any system entity (DSS application, One of the main differences between text found in a DSS
model, datum, document, key word, link, etc.) can be and that in a more standard hypertext system is the type
linked to any other entity. Alternatively, a button could of information represented. Traditionally, hypertext sys-
be logically connected only to the knowledge reasoned tems represent ideas recorded by authors. Most links
about it. As part of our research, we are developing a tend to be explicit because the system is generally unable
formal framework for generalized hypertext buttons. to comprehend the meaning of text and determine rela-

tionships between common ideas or topics. Some hyper-
text researchers are currently addressing this issue of con-

Linking tent analysis (Hammwdhner and Thiel 1987) and others
are looking into other ways to establish relationships bet-

Traditionally, hypertext systems have been intended to ween nodes through the structure of node hierarchies,
deal with the presentation of ideas. Builders of hypertext typed nodes and typed links automatically (Trigg 1983;
nodes are generally authors expressing their thoughts or Conklin 1987). Because its elements (e.g., data and
research in a nonlinear fashion, representative of the models) can be thought of as entities whose names and
structure of their ideas. Users are readers who initially components are recognizable expressions (i.e., nodes), a
may follow the links established by authors, but are able DSS lends itself to the automation of hypertext linking.
to create additional links and make on-the-spot annota- An intelligent knowledge-based system can use these ex-
tions at will. pressions automatically to establish direct and indirect

connections among the various entities known to it. One
In most hypertext systems, links are (usually) explicitly of our contributions has been to greatly extend the do-
established by an author or user, although occasionally main of implicit, system-generated links. In both Max
they are implicitly generated by a system action. Gene- and Oona, most of the links among nodes are automati-
rally two types of explicit links are supported, o,yaniza- cally generated by the system. We believe that a general
tiond links and r€ferential links. theory of system-generated linking is possible, but discus-

sion of that is beyond the ambitions of this paper.
Organizational links exist in systems supporting a struc-
tured node hierarchy similar to a semantic net. Textnet
(Trigg 1983), for example, has toc (table of content) Disorientation
nodes that contain an outline of the underlying text struc-
ture for a given relation. Organizational links connect the An important issue in the design of any hypertext system
parent toc node with its corresponding children, either is "managing the hyperspace." The representation and
lower level toc nodes or chunk nodes containing the ac- execution of buttons and links will affect how a user navi-
tual text. gates through the system knowledge, application and do-

cument base. It is easy to become disoriented while navi-
Referential links are links employed by the author or user gating the myriad of links and nodes in an environment
to establish a connection between two arbitrary nodes. that encourages one to transfer among a plethora of dis-
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tinct pieces of information (Bernstein 1987). We are ex- (Kimbrough, et al. 1986). The user interface is menu-
ploring methods of enabling the user to maintain his or and (primarily) command-driven. Once a model is de-
her orientation at all times (e.g., by providing a computed clared and known to the system, generic commands are
"Where am I?" function), but at present we rely on a sys- available for displaying the model in symbolic form and
tem log that can be recalled and used to move to a pre- for further (recursive) exploring of the constituent sym-
viously-occupied node. At the very least, we hope to add bols in the displayed model. To illustrate, three models
a graphical view of the current system status. are integrated via a multiattribute utility function. There

are two performance models (SAR, performance on
Meta-Level Control search and rescue, and ELT, performance on enforce-

ment of laws and treaties), both written in FORTRAN.
To allow for a truly flexible system with applications be- The model declaration language associates symbols with
yond the intentions of the shell designers, all aspects of these routines. The third model is a cost model (CASH-
the system should be customizable. The user should be WHARS) and is written in the system's modeling lan-
able to create new button types and append to or replace guage. At the top level, a user could see the utility model
any shell or application routine. Alternatively, the user expressing the overall value of a given ship:
should be able to insert a "demon" (a procedure which
monitors the system, performing an action only when an u(shipl) =

activating condition takes place) (Gevarter 1987). Such k(1)'u(l,sar(shipl)) + k(2)'u(2,elt(shipl)) + k(3)'u(3,cost(shipl))
changes, moreover, should be capable of being made un-
der program control (rather than merely by editing). Our At this point, generic commands are available for ex-
existing prototypes lack any significant form of meta-level ploring shipl, k(2), u(3,*), or any symbol declared in the
control, as do all present hypertext systems of which we model declaration language and known to the system.

These generic commands work on any such symbol, andare aware.
so are reused from one particular DSS to another. To

5. OONA emphasize the point, the generic commands effectively
produce automatic linking of declared objects (and their

Oona is a prototype DSS employing the shell, the model parts) in the model base, which objects become (virtual)
management, and (to a degree) the hypertext concepts

hypertext nodes. (For an earlier implementation of some

discussed above. Oona is written in Prolog and runs in of the user interface ideas in Oona, see Chesapeake De-
the VAX VMS environment, using VT240 and above cision Sciences [1986]) As in any DSS, users may inter-

(mouseless graphics) terminals. The model (and data) actively run models and retrieve data; they may alter in-
management system is central to the shell and includes put data and, to a degree, the models themselves, and see
two key elements. The first is a series of conventions for the consequences of changed assumptions. In addition,
declaring models (and data) and for declaring properties with Oona users may interactively explore the logical reta-

of models (and data), including such information as the tionships among model elements and may ask, what the
type of model (e.g., external FORTRAN; internal, written source of gasoline price was and where this parameter is
in the system's modeling language; interactive, requiring used in the models known to the system.
user inputs - a unidimensional utility function elicitation

6. MAXprogram is included) as well as other information about
the model (e.g., source, reliability, location of documenta-
tion). These conventions may aptly be described as a Max (Macintosh KSS) is a general-purpose, reusable en-

model declaration language. The second key element to
vironment for creating and working with Knowledge-

the model management system is an evaluator. This eval- based Decision Support Systems (KSS). It is a tool to

uator is able to match models to appropriate data sets. help KSS builders and users and is implemented in Pro-

In the event that the model is expressed in the system, log on the Macintosh. Max manages the common tasksS

modeling language, the evaluator is able to evaluate the in problem-solving, model management, and user-
model and produce the result. If the model is, an exter- machine interaction that are independent of any particu-

nal FORTRAN model, the evaluator is able to direct ap- lar application, freeing the builder to focus on the appli-
propriate calls to the operating system and to report back cation knowledge. It consists of three main modules: a
the results of running the model. If the model is written user interface module, a model (and data) management

in Prolog, but not in the system's modeling language, the
module, and a control module. A specific KSS is ob-

evaluator is able to call the appropriate Prolog routine tained by combining Max with a specific knowledge base

and to report back. Finally, the evaluator keeps track (in written in the modeling language of Max.
conjunction with other elements of the system) of model
results that are already known so that requests for model

Model Management in Max

outputs will not needlessly result in model execution.
Model Representation

Control of the system is via a high-level meta-interpreter
that results in a cascading model graph architecture In Max, models are represented as statements in a

modeling language that represent various concepts related
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to a model. A conceptual model is defined as a collec- fined and these correspond to new arc types in the graph.
tion of symbols and relations between symbols, or sets of An example is the relation "solves" for a pair (Al, AD,
symbols, on which a variety of actions can be performed. where At is a technique to solve problems in the class A2·
An action is a process that manipulates symbols and sym- This organization is the knowledge representation link to
bol-relation sets. A symbol is different from its name; it hypertext and facilitates easy and meaningful navigation
stands for concepts and information about it. For exam- in the knowledge base. For example, the set of objects
ple, the symbol e stands among other things), for con- reachable from an object A under a transitive relationship
cepts such as lim(x->®,e /x!) = ®. A symbol can be a R is the transitive closure of A under R and can be com-
simple object like Cost or Name or a compound object puted recursively.
like Linear Program.

Modeling Language
Each symbol has an associated symbol structure. In Max, '
the basic building blocks or primitives for symbol struc- We earlier emphasized the need for a symbolic represen-
tures are atoms, lists, and tuples. An atom is a unit: a tation for models. The knowledge to be represented is
number, alphabet, or word. A list has an arbitrary num- normally available from domain experts and users of the
ber of objects of the same type and the order is irrelevant system. A modeling language is a vehicle to express this
(i. e., is treated as irrelevant by the system). A tuple has a knowledge and, hence, must provide features to declare
fixed ordering of a given number of objects of arbitrary the information necessary to perform the functionality
types. Thus, a symbol has one of the following structures: listed above (in Features of a Model Management Sys-
a) atomic, b) list of the form [B], where w is a symbol tem). Secondly, a specific DSS requires the creation of
structure, or c) tuple of the form (Bl, #D···#n, where #i is a an application knowledge base by users in categories b)
symbol structure for i = 1,... n (21). The notation L#i is and c); hence, the language should be usable by domain
used to refer to the i h element of a symbol L of structure experts and end-users who may be non-programmers. It
list. Similarly T@X is the value corresponding to ele- has also been argued that the language should be com-
ment X in tuple T. Note that the definition is recursive, puter-executable as well as suitable for communication
since the B and *,s, in b) and c) respectively, may be non- (Geoffrion 1987; Fourer 1983; Meeraus 1983) and this
atomic, and is sufficient in the sense that any object of essentially clinches the case for algebraic notation and a
any arbitrary structure as defined above can be classified symbolic modeling language, which is better suited for
as above. user-machine communication, modification, and docu-

mentation.

Model Base Organization In Max, this is achieved via a Model Declaration Lan-
guage (MoDeL) that consists of several statements to

The entire model base is organized as an attributed acyc- declare various properties about models and is meant to
lic graph of definitional dependencies. There is indepen- be used primarily by model base developers. These state-
dence between the general structure of a model and the ments include a brief textual definition of the concept,
detailed data for instances of it. For example, the various declaration of definitional dependencies, classification of
instances of a model to determine the optimal product the object, any mathematical equations, dimensions, as-
mix would share properties of the general product mix sumptions, and relations to other objects. Mathematical
model. Thus, models are partitioned into classes, where equations are stated in an algebraic form that is close to
all instances of a class share certain common properties. a natural mathematical representation. The language is
The classes are themselves organized into an is a gene- declarative so that order of the statements is irrelevant.
ralization hierarchy to form a taxonomy of models that It also includes special structures to represent frequently
permits further inheritance of properties and also relates occurring data types in modeling real-world problems.
a model to other models. A model is definitionally de- For instance, in various classes of models, there is a need
pendent on its attributes and can be viewed as an aggre- to represent data objects which have a variable number of
gation of these attributes, which can themselves be non- values of the same type (e.g., series of cash flows in a
primitive models. Such organization principles are often financial model). The notation listof(X) is used to repre-
used in knowledge representation Uones 1985; Brodie, sent a variable number of occurrences of type X and cor-
Mylopoulos and Schmidt 1983) and modeling (Geoffrion responds to a vector having elements of type X. (A simi-
1987; Mannino, Greenberg and Hong 1988) since they lar strategy is used in Oona, except for model hier-
encourage modularity and stepwise specification as well archies.)
as aggregating models from smaller ones, and support
both top-down and bottom-up design.

Example 1(B)
The model base is viewed as a graph with models as
nodes, and typed arcs corresponding to the kind of reta- We will use some of the models from Example 1(A) to
tion between the participating nodes. In addition to the illustrate the model declaration language in Max. For the
above three types of relations, other relations may be de- sake of brevity, we will omit details of other parts and
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present only one level of detail. We use the abbreviations an instance of it. We will illustrate a part of this process.
LCC, AC, MC, and PC for Life Cycle Cost, Acquisition Suppose the system is prompting the user for a value for
Cost, Maintenance Cost, and Personnel Cost respectively. Maintenance Cost (Figure 1). The user can specify the
Assume we have predefined models to compute present value in a number of ways:
value (pv) of a cash flow, and expected value of a series
of probabilistic outcomes. i) Enter a number, e.g., 1000, or a non-numerical value,

e.g.,"mc."
pv: [amount, interest rate, time]
pv(a,r,t) = a/((1 + r/100)-t). ii) Select to specify the value at a further level of detail;
expected value: [listof(Outcomes), listof(Probabilities)]. the system then responds with prompts for the Base
expected value(X,P) = E(i,1,length(X),X#i * P#i). Cost, Inflation factor and the number of years over

which the cost is to be computed (Figure 2).

iii) Specify the cost by reference to some other knownModel Declaration Language Statements
value, e.g., 2*(Vessell@LCC@MC).

Vessel: [Vessel Characteristics, LCC, designer, ship
iv) Select some other model to determine the value. Forbuilder]; "A vessel is a marine vehicle owned by

the U.S. Coast Guard." example, if it estimated that the cost is 1500 with pro-
bability 0.6 and 1000 with probability 0.4, the user

Vessel Characteristics: [Displacement, Speed, Length, may enter "expected value([1500,1000], [0.6,0.4])".
Propulsion]

v) enter an expression which is some combination of the
above, e.g., 2*Vessell@LCC@MC + expectedvalueLCC: [AC, MC, PC]; "The life cycle costs for a vessel

are determined by adding the present values of ([1600,Vesse]3@LCC@MC],[0.6,0.4]).
various cost categories over the vessel's estimated
life." At various stages the user may also obtain help or infor-

mation about the models in question, e.g., the user may
LCC(AC, MC, PC) = AC + MC + PC. want to know about maintenance cost.

LCC is a Discounted Cost.

MC: [Base Cost (b), Inflation factor (f), No of years :01- JCreate New Instence of Vessel P 1
(N); "The maintenance cost for a vessel is...."

Ln,tanc8 Noie:  Ue,Sel #4
Attribute Stock (Top Level -Current Attribute)

MC(BC,If,N,D) = E(i,1,N, pv(b*(1 + f/100)1,'Ml'#i,i). Life Cgde Cost
Maintenance Cost

MC is a Discounted Cost. Current Attribute:Maintenance Cost
List Poiltion

The second category of users who create knowledge are Constrainti: none
analysts who are mainly concerned with instantiating and Value: I I
executing models. Hence, an important feature of the ®fictue, Ualue

0 Symbolic Ualue- Uorkup
modeling language is how it deals with data declaration I EnterDame ][%=7- I»"'BIL_j  Efor model parameters. In MoDeL, the data values for r
various parameters may be entered directly by the user,
be retrieved by a database reference, or be the output of
another model. For example, a value for a parameter
"interest rate" may be a number (e.g., 7.50), the output of
a deductive model (e.g, interest rate = 7.0 if Conditionl, Figure 1. Further Depth Gives You Maintenance Cost's Components
8.0 if Condition2) or the output of a mathematical model (Figure 2)
(e.g., expected value([(8.5,0.4), (8.0,0.3), (7.5,0.3)])).
This allows the user a high level of flexibility and encou- For existing instances, users may query about or modify
rages non-redundancy through use of logical references. data values, or they may ask for explanations for com-

puted values. Data may also be transfered into reports or
Example 1(C) documents. For computed values, the system displays the

result but maintains knowledge about how the value was
Suppose that a user wants to evaluate a certain vessel computed so that an explanation may later be generated.
(say, Vessel#4) that is a candidatate for acquisition. The Hence, if some of the parameter values happen to be
system will then determine from statements about the changed after the report was created, the report will
model Vessel the kind of information required to create automatically show the new output. Figures 3 and 5 show
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the result of a command to explain the Maintenance cost
of Vessel#4 which appears in a document (Figure 4). IOM,mm vessel Costs summary Document -9'm'e=,SE
This explanation is computed dynamically by a general !!tunt L i f. Cu£11-9111
rule to explain data values. The user may also ask for

Category Vessel '4explanations at a deeper level of detail; e.g., how the Base Rrquieition Ce,t $72Om

Cost was computed. Maintenance Cost :53,1492
Personnel Cost $38960 '<Genereted Value/Link>

Button Information Window
Total LI'e Cycle Cost *924712 Butto. Short Description

Button Linkl
106..........d Create New Instance 01 Uessel 1 1

Instance No-:  De.el #4 | ,
Attribute Stack (Top Level --*Current Attribute):
LIre Cgcle Coit {generated value}
Maintenance Co£t This value was retrieved directly from the KSS Information Base.
[Bose Cod','% Annual increase·,'No M geors] It is the retneved value ot-

<Vessel 04 @Life Cycle Cost @ Maintenance Cost>.
Current Attribute:Bese Cost
List Position: 1
Constraintl: none

U.lue:  $10,000,000 j
® Actuel Ualue 0 Symbolic value Figure 4. Selecting $534449 (the Maintenance Cost for Vessel #4)

causes a 'pop-up menu' to appear with valid operations for
r Enter No More 1 [ ':Gr ] I ,"pla," 1 E bminei
l vaiue J I Uolues

the selection. Note that key words are underlined in the do·
cument, generated values are boldface and links are itali·
cized.

Figure 5. Choosing "Button Short Description" calls up the [Defi-
nition] window shown hereFigure 1 Entering a Value for Base Cost, a Component of

Maintenance Cost
The rule-based action processing subsystem is the infe-
renee engine of the modeling system. It captures user
commands, determines and obtains a set of information
to execute the command, and triggers off rules for model
manipulation with this information as arguments or data.

<Malntenance Cost : 534449 540743> For example, if a user asks for an explanation for the
Here's how . number 534449, the system determines that it is the
{ATTRIBUTE.VALUE} PAIRS: Maintenance Cost for Vessel#4 and triggers the rule ex-
I{Base Cost, 10000000},{% Annual increase.5),{No of Wears.20}] plain(X), with X = Vessel#4@Life Cycle Cost@Mainte-
FORMULA 2(1.1.No of years.pv(Il.USCG rates'i.Base Cost*(I+I Annual
Increase )11)) nance Cost. The rules manipulate higher-order concepts

RESULTING VALUE: 5344449 540743 (such as is_a, listof, E). For example, for any relation R,
R(Y), X is_a Y -+ R(X); or if R is transitive, R(A,B),
R(B,C) -+ R(A,C).

Figure 3. Explanation for Maintenance Cost As in most DSSS, there are sets of rules to process
various actions on models: retrieve data transform data,
query and modify, describe concepts, explain data values,

Model Manipulation Rules analyze changes, create new class instances, etc. For ex-
ample, to execute any model, the system determines the

The symbolic representation for models is derived from data required and obtains it from the database or from
statements in the model declaration language. These the user, transforms the data for the appropriate model,
statements are also treated as data and can be manipu- and executes the model. The rule to describe a model
lated to perform the features described in Section 3. Ac- generates an initial description about a model (which is
tions are processes to manipulate symbolic expressions not a pre-defined "help-text"), and provides the user with
based on the representation of the model. The manipu- a set of related concepts which the user may choose to
lation rules are based on model structure, rather than pursue for further information.
models themselves, and are therefore general-purpose
and domain-independent. In spite of the generalizations,
we need a mechanism to handle exceptions. This is done Maxi: Implementation of a Hypertext User Interface
by letting the specific rules, if any, for any action, over-
ride the general rules for that action. In the current im- Maxi is the user interface subsystem of Max. It is bi-
plementation, there are rules to support features (c), (d), modal in that it can both access the knowledge base
(e), (h), and (i), and partially support features (a),(g), (i) directly and control a user workspace, called a document,
and (k), and we illustrate some of these in Example 1(C). into which text and model results may be placed. Docu-
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ments are integrated workspaces combining such objects (5) Adding Knowledge:
as standard text, business graphics, and spreadsheets.
These objects can be stored, queried and linked just as (a) A user can permanently record comments about
any other system entity. The discretionary display of in- any system entity at any time, thus adding to the
formation (WYWWYWI) is implemented in several ways. organization's knowledge base.
First, Maxi will recognize and process several types of
generalized hypertext buttons: (b) A user can add new data instances of models

(scenanos) and new documents at any time.
(1) Keywords: character strings registered in the know-

ledge base. (These include the names of all system (c) The KSS builder will be able to add new models
entities: models, data, documents, links and other at any time.
genralized hypertext buttons.)

(6) Suspending Operations: Whenever an operation
(2) Generated Values: retrievable results from the know- passes control to the user (for example, while waiting

ledge base. (These include both data that my be for user input in a model execution), the user will be
looked up and model results that must be calculated.) able to stop working on this operation and start any

other (including halting the session). Later the link
(3) Link Elements: both implicit system-generated and paths can be used to return to where the work left

explicit user-specified logical connections between off.
any two system entities

(4) Exchanges: document sections that can be hidden Customizing the Interface
from view or replaced by an alternative document
section. Maxi allows the user to customize most aspects of the

interface. For example, one may have several different
(5) User-defined: users may specify new button types style modes for any given document. All text and busi-

and provide instructions for how the system should ness graphic buttons may be highlighted or just certain
react to their selection. button types displayed; there may be a formal presenta-

tion mode, and a casual revision mode. One may swap
Max provides several meta-level functions operating on between modes by specifying a mode index. In the fu-
these buttons: ture, the user will be able to activate and deactivate links

with the same mode index, which will also be used to in-
(1) Location: Maxi will determine which button(s) on stall one's choice of exchange button sections. Finally,

the computer screen have been selected and will offer the user may choose among several methods of high-
a list of options available. (See Figure 4 for an ex- lighting. (See Figure 4 for some examples.)
ample.)

(2) Descriptions: Maxi can generate a description of any 7. CONCLUSION
registered entity, telling what it is, how it was created,
or by whom it was entered, and what is directly re- Generalized hypertext and model management for DSS
lated to it. In doing so, it makes use of whatever are well-established concepts. That they are here to stay
model managment system is installed. is obvious. What forms they will take--what features they

will have, how they will be implemented--is yet far from
(3) Explanations: For generated values, Maxi can deter- clear. The main results to date of our research and re-

mine which model, function and data instance were flection on the problem of designing these DSS subsys-
used to create it. (See Figure 5 for an example.) tems are reported above. Two prototype systems, Max

and Oona, have been implemented for the U.S. Coast
(4) Linking: Two link paths logging the actions of the Guard. Initial reaction from users has been enthusiastic.

user are maintained at all times. A user can, at any Research and development will continue and will be the
time, initiate a knowledge search (or infonnation de- subject of future reports.
tour) following explicit user-specified or implicit sys-
tem-generated links. The user can return to any
point along the link paths. For example, while exe- 8. ACKNOWLEDGEMENTS
cuting a present value model, the user could request
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