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ABSTRACT
/2 I

A sound information systems (IS) curriculum should equip its students with both technical and or-
ganizational skills in communications (both oral and written), analysis, design, programming, testing,
documentation, and management because most of the entry-level jobs opened for college IS graduates
require these skills. A review of the current IS curriculum models reveals that specific pedagogical
guidelines are available for most of these skills except software testing. Software testing is an impor-
tant part the of IS development process. To achieve effectiveness in software testing, the participating
IS professionals must apply software testing techniques. This paper discusses the importance of
software testing to IS development and maintenance, reviews the existing software testing techniques,
and provides a pedagogical guideline for instructing software testing techniques in IS curricula.

1. INTRODUCTION quality is an essential function of an IS department and
the program of software quality assurance (SQA) is vital

Information systems (IS) curricula have undergone seve- to the success of IS development and maintenance (Pfau
rat changes in the past two decades. Each change was 1978; Stamm 1981; Gustafson and Kerr 1982). Typically,
invariably due to the changing demand of the IS job mar- an SQA program contains many processes, e.g., configur-
ket. It is generally agreed in today's computer industry ation management, testing, corrective action, documenta-
that the demand for personnel having a combination of tion, reviews and audits, among others (Knight 1977).
technical and organizational skills is much greater than Among these SQA processes, software testing is the most
the demand for having either type of skills alone, and that technical process--a topic over which most IS profes-
the shortage of personnel with balanced skills is acute sionals are not enthusiastic--whose main purpose is to not
(Nunamaker 1981). Due to this shortage, more and more to improve the quality of a software product but to detect
computer science (CS) degree programs encourage their the needs for improvement in a software product. The
students to equip themselves with organizational skills by effort of software testing usually accounts for 30 to 60
taking more management courses (Ardis 1987; Freeman percent of the total project effort depending on the size
1987). One CS degree program--software engineering of the software project. Therefore, software testing is a
(SE)--has been shaped in particular to meet the current critical process in an IS software project.
job demand (IEEE 1982). Today, SE and IS curricula
typically share such topics as system life cycle manage-
ment, system development project, requirement analysis, From the programmer's productivity standpoint, software
systems design, structured programming, management testing and software coding should go hand-in-hand.
and communication sciences. Nevertheless, the former That is, one who performs software coding should test
curricula emphasize technical, computer-related skills his/her own code before someone else does it. This prin-
while the latter emphasize organizational, system-related ciple of practice in effect encourages programmers to
skills. As the SE students equip themselves with more design their programs for testability and in turn increases
and more organizational skills, our IS graduates will be their productivity. In addition to the programmers, other
facing intense competition on the job market. Now is the IS personnel such as systems analysts, information anal-
time for us to increase the competition leverage of our IS ysts, and project managers who participate in the project
students by familiarizing them with a set of effective must also participate in different levels of software testing
testing techniques. activities--such as integration tests, system test, and accep-

tance test. Although they may not actually conduct allViewed in another perspective, computer software is one the tests in which they participate, they need to know how
of the major components of information systems (IS) in to test them. It is clear that unless our IS graduates al-
an organization. Its quality has a direct impact on the ways stay in positions which do not require software
quality of the information systems containing it and, in coding at all--a situation which is very unlikely--software
turn, on the performance of the organization operating testing will be an important skill of our IS graduates
the information systems. Therefore, assuring software throughout their IS career.
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It is then apparent that software testing should be an in- time (Myers 1979, pp. 45-50). 1
dispensable topic in the current IS curricula. A review of
the current ACM (Nunamaker, Couger and Davis 1982) • Boundary Coverage requires that the' input conditions
and DPMA (1986) curriculum models reveals that soft- on and adjacent to the boundary of tihe input equiva-
ware testing activities such as walkthrough and review, lence class be tested and that the re:;ult spdce (i.e.,
unit and integration testing, regression testing, and test the normal-end and the abnormal-end output equiva-
cases/data design are recommended as the required lence classes) be considered and te<ted as well
topics in the systems development courses such as IS8 of (Myers 1979, pp. 50-55; Howden 1981). :'his method
the ACM and CIS/86-3 and CIS/86-4 of the DPMA cur- is very useful in generating test data for · each test
riculum model. However, neither model provides ade- case. 1
quate references for further reading, nor do they indicate
what techniques of software testing should be imparted to • Cause-Effect Graphing requires that the specifib·a.
the IS students. This paper rectifies these deficiencies by tions be divided into smaller workable pieces, that]   .
providing a guideline for instructing software testing tech- the valid and the invalid input conditions (causes) as -
niques in IS curricula. The existing software testing tech- well as the normal-end and the abnormal-end output .
niques are reviewed and a set of effective techniques conditions (effects) be identified for each workable
identified. This set of techniques is then applied to a piece, and that the semantic content of the specifica-
programming assignment to demonstrate a structured tions be analyzed and transformed into a Boolean
process of software testing. This structured process can graph linking the causes and the effects. The graph
serve as a pedagogical guideline for classroom instruction. is then converted into a limited-entry decision table

that meets all environmental constraints, and each
column in the table represents a test case (Elmendorf

2. SOFTWARE TESTING TECHNIQUES 1973, 1974; Myers 1979, pp. 56-57). Cause-effect
graphing explores all combinations of input condi-

Conventionally, software testing techniques are classified tions within a workable piece of the specifications
into "black-box" and "white-box" techniques based on their while boundary coverage and equivalence partitioning
methods of deriving test cases (Myers 1979, pp. 8-9). The do not.
black-box techniques derive the test cases from the re-
quirements definition or the external (design) specifica- • Error Guessing requires that a list of possible errors
tion, while the white-box techniques derive them from the or error-prone situations be enumerated and that test
program logic in the source code or internal design speci- cases be derived based on the list (Myers 1979, pp.
fication. The former techniques focus on the functions of 73-75). Unlike the boundary coverage technique, er-
the program/system being tested while the latter focus on ror guessing is largely an intuitive (Miller 1977) and
the structure. Therefore they are also known respectively ad hoc process. It relies heavily on the tester's expe-
as the functional and the structural techniques (Adrien, rience. Many test cases derived from this technique
Branstad and Cherniavsky 1982). The test-case design are found to overlap those from equivalence parti-
methods of these two groups of techniques are briefly tioning and boundary coverage (Adrion, Branstad and
described below. Other techniques, such as proof of cor- Cherniavsky 1982).
rectness, simulation, symbolic execution, and flow analy-
sis, are excluded from our discussion because they are not
directly related to test-case derivation, nor are they com-
monty used by the IS professionals. 2.2 White-Box Testing Techniques

• Statement Coverage requires that every statement in
2.1 Black-Box Testing Techniques the program be executed at least once (Miller 1977;

Myers 1979, p. 38).
• Equivalence Partitioning requires that the input con-

ditions of the base document (either the require- • Decision Coverage also called "branch coverage," re-
ments definition or the external specification) be par- quires that every true/false branch be traversed at
titioned into one or more valid and invalid equiva- least once and that every statement be executed at
lence classes in which every possible value of input least once (Myers 1979, p. 38; Miller 1977). Ap-
produces exactly the same type of output. When de- parently, if a program has single entry and single exit,
riving test cases, it requires that all valid input classes covering every branch implies that every statement
be covered before covering any invalid class. When will be executed at least once.
covering the valid input classes, each test case should
be derived to cover as many uncovered valid classes • Condition Coverage requires that every condition in a
as possible. Once all the valid input classes have decision take on its true and false outcomes at least
been covered, each test case should be derived to once and that every statement be executed at least
cover only one uncovered invalid input classes at a once (Myers 1979, p. 40).
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• Decision/Condition Coverage is the potpourri of the ques have failed, error guessing may come to be the only
above three techniques. It requires that every condi- viable technique.
tion in a decision take on its true and false outcomes
at least once, that each decision take on every pos- Between the remaining two black-box techniques, cause-
sible true/false branch at least once, and that every effect graphing is superior to equivalence partitioning be-
statement be executed at least once (Myers 1979, p. cause the former further explores different combinations
41). of input conditions from the equivalence classes. How-

ever, drawing the cause-effect graph for a small problem
• Multiple-Condition Coverage is an extension of the might be easy but it quickly becomes unwieldy as the pro-

decision/condition coverage. It further requires that blem size grows (Ould and Unwin 1986). For cause-
every possible combination of condition outcomes effect graphing to be effective, it must be automated.
within each decision be invoked at least once (Myers Since currently there is no commercial tool available for
1979, p. 42). Obviously, this method is superior to cause-effect graphing today (Elmendorf 1973), we do not
the above four techniques. recommend the inclusion of cause-effect graphing in the

IS curriculum. Examples of cause-effect graphing can be
· Complexity-Based Coverage, developed by McCabe found in Elmendorf (1973, 1974) and Myers (1979, pp.

(1983), uses the "cyclomatic number" in the literature 57-73).
of graph theory (Harary 1969; Berge 1973; Deo 1974)
to determine the minimal set of required test cases
and provides a structured procedure for deriving the As regards the white-box testing techniques, the com-
test cases directly from the control-flow graph of the plexity-based coverage is the best of all, because it en-
intended program. The cyclomatic number of a pro- compasses the other five white-box techniques and further
gram equals one plus the number of conditions in the covers possible combinations of condition outcomes be-
program (McCabe 1976). The program under test tween any two consecutive decisions. Besides being easy
must have a single entry and a single exit. The de- to apply, complexity-based coverage can also enforce the
rived test cases functionally meet the criteria required structured programming principle that any program
by the multiple-condition coverage. Complexity- module (be it large or small) must have a single entry
based coverage is superior to the multiple-condition and a single exit (Mills 1972).
coverage because the former further explores pos-
sible combinations of condition outcomes between In summary, three out of ten existing software testing
any two consecutive decisions. techniques are recommended for an instruction in an IS

curriculum--most likely in the systems development
courses. They are equivalence partitioning, boundary
coverage, and complexity-based coverage techniques. All

3. SELECTING PRACTICAL SOFTWARE TESTING three techniques can be applied to a program/system of
TECHNIQUES any size (be it large or small) and to manual testing such

as walkthroughs (Waldstein 1974), desk checking, reviews
Among the four black-box techniques, error guessing and (Freedman and Weinberg 1982), and inspections (Larson
boundary coverage are the two most commonly practiced 1975; Ascoly, et al. 1976) as well as to computer-based
techniques. Both techniques can help identify input con- testing such as unit tests, integration tests, system test,
ditions (valid or invalid) during equivalence partitioning, regression tests, conversion tests, installation tests, and
cause-effect graphing, or even walkthrough and review acceptance tests. Since each technique has its own weak-
processes. Therefore, they should be used as supple- nesses, they should not be used in isolation, but rather
mental techniques to all other test-case design techniques. they should supplement one another.
Boundary coverage provides a structured guideline to
fully test the boundary of each input condition in a pro-
gram and thus is suitable for classroom training. In con-
trast, error guessing is not so; it does not provide any 4. AN EXAMPLE
guideline for deriving test cases. Instead, it tests a pro-
gram against a comprehensive checklist which was In order to demonstrate how to apply software testing
created by the tester or each individual programmer (or techniques to program testing from an IS professional's
designer) based on his/her experience. This checklist perspective, an example will be walked through in detail.
typically focuses on the weaknesses of the individual in- The example was adopted from Myers (1979, p. 1) with
volved (Ould and Unwin 1986) and is different from one the exception of the last sentence, which was added to
person to another. If the one's checklist is continuously facilitate discussion. To some experienced IS profes-
updated, it may become a very powerful and easy-to-use sionals, the chosen example may seem trivial. Yet it al-
technique. As noted by Adrion, Branstad and Cherniav- lows us to have a complete and effective treatment of the
sky (1982), "guessing carries no guarantee for success, but recommended testing techniques and to get its basic prin-
neither does it carry any penalty." When all other techni- ciples across to the IS students.
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Now, let's assume that an IS professional has been as- The input keywords are accept, three intege,s, keyboard,
signed a software project with the following requirements lengths of sides (of a triangle), triangle, repeated, and quit.
definition: The output keywords are ptint, message, tnangle, scalene,

isosceles, equitateral, repeated, and quit. Eachkeyword is
The program accepts three integer values from either function-related or data-related, or both. While
the keyboard. The three values are interpreted the keywords accept, keyboard, and print are strictly func-
as representing the lengths of the sides of a tri- tion-related, three integers, lengths of the sides, and mes-
angle. The program prints a message that states sage are data-related. The rest of the keywords, t,iangle,
whether the triangle is scalene, isosceles, or equi- scatene, isosceles, equitateral, repeated, and quit are both
lateral. The process is repeated until the user function-related and data-related. Our focus is on the
decides to quit. five keywords which are either data-related or both: three

integers, lengths of sides, Diangle, repeated, and quit. The
To accomplish the project, the IS professional should per- first keyword indicates that there are three integers to be
form the following steps based on the requirements defi- processed; the second indicates that these three integers
nition: are the lengths of sides of a triangle and thus must be

great than zero; the third implies that the sum of the
(1) derive a set of test cases using the equivalence par- lengths of any two sides of a triangle is greater than that

titioning technique, of the third side. The fourth and the fifth keywords, re-
peated and quit, indicate a loop condition exists which has

(2) develop a program internal (logic) specification using two possible outcomes, to repeat or to quit, depending on
pseudocode, the input condition. Based on these keywords, the pos-

sible valid and invalid input conditions and their corres-
(3) draw a control-flow graph to represent the entire ponding expected output conditions are enumerated in

program, Table 1. Each combination of input condition represents
a unique test case for the intended program.

(4) derive a set of test cases using the complexity-based
coverage technique,

Table 1. Test Cases Derived from Equivalence Partitioning

(5) consolidate the test cases obtained in Steps (1) and
rest Cas. I D. (Input Equivalece

Inpuc Equivilica Classis Cl/si„ Being Covirid in Parencheses)

(6) design test data for each test case using the boundary Valid:

coverage technique, Three Integers:

1. A is an integer 1. a triangle (1-9,11)*

(D translate the pseudocode into program source code, 2. 8 i, an integer

3. C is an integer

(8) conduct actual testing one test-case item at a time Lengths of Sid•s:

using the test data, 4
5.
6.

(9) repeated the above procedure if necessary until all Triangli:

the test results are identical to the expected results. 7. A.ax
8. A+C>B
9. B+C>ADue to the scope of this paper, we shall demonstrate only

the first six steps. Loop'

10. ..plat 2. r.piat thi process {10)

11. quit

Step 1: Apply the equivalence partitioning technique to Ing,LLil.

the requirements definition to derive the test cases. To 12. A<1 6 Ali an incepr 3. invilid intiger A (12,11)*

begin, the keywords of the requirements definition which 13 8<1 6 3 1, an intigir 4. invalid int*gor B (13,11)*

14. C<16 C LI In integir 5. invalid integer C (14.11)*relate to the input or output of the program were under-
lined as follows: 15. A is not an intoger 6. non-integer A (15,11)*

16. 8 1. not In int.gir 7. Ion-lic,ger 8 (16,11)*
17. C ts not an intopr 8. non.intogor C (17,11)*

The program accepts three integer values from the 18. A+*c 9. not 8 triangle (18,11)*

keyboard. The three values are interpreted as re- 19. AIC# 10. not a triangle (19.11)*
20, B+C<A 11. not a triangli (20.11)*

presenting the lengths of the sides of a biang/e.
The program prints a message that states
whether the triangle is scalene, isosceies, or equi-

l'his test is executed without any repetition.lateral. The process is repeated until the user de-
cides to quit.
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Step 2 One possible set of pseudocode for this program
IC) Accipl Infigir, A,8,C

is listed below. Note that pseudocoding in the program's
internal specification emphasizes not the e#iciency (stru-

4/13 11 *)O & 8)0 & C)Octure) but the *ctiveness (functions) of the desired pro- / /7.4
gram. The pseudocode presented here may not be effi-
cient, bift it is effective enough to perform the intended . 2 If A+B)Ca A+C)8 6 B+C}Aa/ //l t>
functions.

IF A+B>C AND A+C>BAND B+C>ATHEN

<T> 1, A.8
4-14

PROGRAM TRIANGLE(A,B,C): /, N
Loop: ·ACCEPT integers A,B,C from the keyboard. .

IF A>0 AND B>0 AND C>0 THEN

.IFA=BTHEN
IF B-C THEN PRINT "equiiateral,-
ELSE PRINT "isosceles,"

C I'l'

ELSE IF B=C THEN PRINT"isosceles,"
ELSE IF A=C THEN PRINT "isosceles,"

- ELSE PRINT "scoiene, 6 Eq",tqi./,1
ELSE PRINT 'hot a Diangle," Sce *n. HA.•1•• /'

ELSE PRINT 'invalid input."
ACCEPT the value of the repetition flag (R).
REPEAT Loop UNTIL R=FALSE.
ENDofprog,am.

Y
7 Repoot another loit (R=Y)Iq
N

Step 3: The above pseudocode can be represented by a
, control-flow graph. A control-flow graph. is a directed End

graph having each of its vertices represent a code seg-
ment in The program (i.e., a sequence of consecutive Figure 1. Control-Flow Graph for the Triangle Program ·
statements with a single entry and a single exit) and each
edge represent a possible transfer of control from one
segment to another. Figure 1 shows the control-flow (2) Identify the second path by locating the first decision
graph representing the program pseudocode. The graph on the baseline and flipping its outcome while simul-
is drawn with McCabe's (1983) convention which uses taneously holding the maximum number of the origi-
multiple branches to represent the true/false outcomes of nal baseline decisions unchanged. If the decision has
a compound decision (i.e., a decision with AND or OR multiple conditions, each condition should be flipped
operators). To facilitate identifying test paths, each deci- one at a time. This process is likely to produce a
sion branch in Figure 1 is labeled with an alphabet second path which is minimally different from the
starting at "a" and each decision node with an integer baseline path. The result yields three paths: - la74
starting at "1." -lb7r, and -lc7r. We use the symbol "-" to indi-

cate that the decision behind the symbol has been
Step 4: This step is to develop a set of test cases using flipped.
the complexity-based coverage technique introduced by
McCibe (1983) which allows the tester to find all inde- (3) Set back the first decision to its original value before
pendent paths directly from the control-flow graph of a the flipping identify the second decision in the base-
program. Each path found represents a test case for line path, and flip its outcome while holding all other
testing the program. The procedure of complexity-based decisions to their baseline values. This process, like-
coverage as it applies to the control-flow graph in Figure wise, should produce a third path which is minimally
1 is described below, different than the baseline path. The result yields

another three paths: ld-2674 Id-47>,and ld-2g7r.
(1) Pick a functional baseline path through the program

which represents a legitimate function and not just an (4) Repeat the above procedure until one has gone
error exit. The key is to pick a path that performs through every decision on the baseline and has
the major full function provided in the program and flipped it from the baseline value while holding the
intersects a ma)fimal number of decisions in the other decisions to their original baseline values. Af-
graph, as opposed to an error path that results in an ter flipping the third decision, we have the path
error message or recovery procedure. For example, ld2h -3j5m7r. Flipping the fourth decision yields the
path ld2h3i4k6p7, is a possible baseline. Note that path ld2h3i-417,·, the sixth decisioh yields the path
our path expression is somewhat different than that ld2h314k-607,; the seventh decision yields
of McCabe (1983) in which the decision number does ld2h3,4k*(-7qld#70. The parenthesized segment
not appear. on the last path represents the boundary and the in-
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terior decisions of the loop. Since McCabe did not test cases covering non-integer input conditions. On the
provide any guideline for selecting the path inside the contrary, equivalence partitioning did identify the test
loop, we have decided to take the functional path cases covering non-integer input conditions, but it did not
-7qld# which is equivalent to the test case 10 in derive the test cases examining different types of triangles
Table 1. as the complexity-based coverage did. Since our objective

is to derive and use test cases as complete as possible, we
(5) Repeat the above procedure for any unflipped deci- shall consolidate the two set of test cases and use all the

sion which is not on the baseline. Once all the deci- 15 test cases listed in Table 2 to derive test data. One
sions have been flipped, the process is then com- word of caution is that for the complexity-based method
pleted. In our case, we must flip the fifth decision to be effective, the target program or pseudocode must
encountered in Step (4) before we stop. Flipping the be coded according to the structured-programming prin-
fifth decision yields the path ld2h -3/-5,7r. ciples such as 1) single entry and exit, 2) no unconditional

GOTO branch, 3) the use of structured constructs, 4)
Table 2 shows the 12 paths derived by the complexity- modularization, etc. (Bohm and Jacopini 1966; Dijkstra
based coverage technique and their corresponding test- 1968; 1970; Mills 1972). Moreover, the cyclomatic num-
case numbers from Table 1. Notice that the number of ber of a program should have an upper bound of 10, as
test cases derived from this procedure (which is 12) al- suggested by McCabe (1976). Otherwise, the number of
ways equals the cyclomatic number of the program which possible test paths could become unmanageable.
is one plus the number of decision conditions in the pro-
gram (which is 11).

Step 6: Equivalence partitioning and complexity-based
coverage techniques are best for deriving possible test

Table 1 Test Cases Derived from the Complexity·Based Coverage cases, but when it comes down to generating test data,
both techniques must be supplemented by the boundary

Case Test Paths (Cases) Derived from Test Case I.D. coverage technique. For example, one of our valid input
I.D. the Complexity-Based Coverage in Table 1 equivalence classes is delineated by "A>0 & A is an in-

1. 152hJi4k6plr (Baseline) 1* teger," the lower boundary values of this input condition
2. -la7r 3 are A=l, A=1+e and A=l-e, where e is the minimum
3 -lblr 4 significant unit of measure which is "1." Therefore, we
4. -lc7r 5 generate A=l, A= 2, and A= O one at a time as the test
5. id-2.7r g data. If the A is a real number, we generate A= 1,
6. id-Wr 10 A- 1.001, and A-,999. On the other hand, the upper
7. ld-2g7r 11 boundary is a very large integer number, say A=999.

8. Id2hAJ507r 1* The invalid input equivalence class of A being an integer
is then "AsO & A is an integer." The upper boundary

9. ld2h3i-417r 1* values of this invalid class are A = 0, A = 1, and A= -1,
10. 15 3141:-60/r 1* while the lower boundary value is A= -999. However, the

11. ld2h3i4k6p{-7qld2f7r) 1**,2,10 value A = -999 is redundant since any negative values of
integer A will be rejected by the program/system and the

12. ld2h-3j-5nlr 1*
value A= -1 already covered this case. The value A= -1 is

13. *** 6*** preferred to A=-999 because the former is near the
14. *** 7*** boundary between the valid and invalid input classes.
15. *** 8*** The boundary values of the input integer A are indicated

in Figure 2. By the same token, the test-data values of B
• Unlikz the equNatence partitioning technique, the pseudocode as well as the control-

now graph considered the input conditions for different types (it., outcomes) of and C are similarly assigned.
triangle. nerefore, this test case co sponds to many complexi -bascd test paths.

*  Case 1 does not cover the  repeat' action here but rather it covers the 'quit' one.

This test case does not have a corresponding test path because the pseudocode as well
as the control-flow graph mumes that the input will be of integer format and that the
format will bechedked bythe  tem. In contmst, the requirements definitionmakes Volld Values of Int,gir A
no such assumption.

1 2 999

(-) 4 1 1 1 1 1
Step 5: The cross-reference in Table 2 reveals that the -999 -1 0
test paths/cases derived by the complexity-based coverage
technique may not perfectly match those derived by the Invalid Values of Int,gir A

equivalence partitioning. Because the pseudocode was
written based on the assumption that the system will
check the input format and only accept integer input, the
complexity-based coverage technique did not identify the Figure 1 The Boundaiy Values of the Input Integer A
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Table 3. Final Test Cases and Test Data Generated by the Boundary Coverage

Test Test Paths Derived Case Test Data Derived by
Item by the Complexity- I.D. in Expected Test Boundary Coverage for

I.D. Based Method Table 1 Outcomes Each Test Case*

1 -lalr 3 Invalid A A- 0 B- ** C- ** R-N
2 A- -1 B- ** C- ** R-N

3 -lb7r 4 Invalid B A- 1 B- 0 C- ** R-N
4 A- 1 B- -1 C- ** R-N

5 -Ic7r 5 Invalid C A- 1 B- 1 C- 0 R-N
6 A- 1 B- 1 C- -1 R-N

7 *** 6 Non-integer A A-1.01 3- ** C- ** R-N
8 A-.999 B- ** C- ** R-N

9 *** 7 Non-integer B A- 1 B-1.01 C- ** R-N

10 A- 1 B-.999 C- ** R-N

11 *** 8 Non-integer C A- 1 B- 1 C-1.01 R-N
12 A- 1 B- 1 C-,999 R-N

13 ld-2e7r 9 Non-triangle A- 1 B- 1 C- 2 R-N

14 A-l B-1 C-999 R-N

15 ld-2f7r 10 Non-triangle A- 1 B- 2 C- 1 R-N
16 A- 1 B-999 C- 1 R-N

17 ld-2g7r 11 Non-triangle A- 2 8- 1 C- 1 R-N

18 A-999 B- 1 C- 1 R-N

19 ld2h3i4k6p7r 1 Isosceles A- 2 B- 1 C- 2 R-N

20 1d2h-3J5m7r 1 Isosceles A-999 B-999 C- 1 R-N

21 ld2h31-41/r 1 Isosceles A- 1 8-999 C-999 R-N

22 ld2h314k-6o7r 1 Scalene A- 2 B•- 3 C-4 R-N

23 ld2!1314k6p(-7qld2flr) 1,2,10 Isosceles & A-999 B- 1 C-999 R-Y
repeat then
non-triangle A- 2 8- 4 0- 2 R-N

24 1d2h-3J-5n7r 1 Equilateral A- 1 B- 1 C- 1 R-N

* Without boundag-value analysis, the data may not be the same and the second set of test data for each invalid input condition may not be
generated.

- This ently can be of any value.

"* No corresponding test path is generated because the integer format is assumed to be checked by the system.

coverage (see column 2 of Table 3). The test data for
The other input condition is A+ B>C which has two in- each test case along with its expected test outcome arc
valid boundary conditions: A+B=C and A+B<C. enumerated on the last two columns of Table 3. These
Therefore, we create two sets of test data: {A = 1, B = 1, test data completely cover the boundaries of the output
C=2} and {A=1, B=1, C=3}. The test data for the in- space.
put conditions A+C>B and B+C>A are derived as ex-
pected. Note that the use of the boundary coverage method is

only limited by one's imagination. For example, it can be
With respect to the boundary of the output space, it was applied to the following cases:
found that the expected output space in our example is
not completely covered by the input equivalence classes. 1. A program processes several arrays. Test both the
Not every expected unique type of triangle (see column 4 upper and the lower boundary subscripts of each ar-
of Table 3) has a matching input equivalence class (see ray (Kernighan and Plauger 1974).
column 3 of Table 3). However, this problem was over-
come by consolidating the test cases derived from equiva- 2. A program updates a file. Process the file without
lence partitioning with those from the complexity-based any change, then with a change of the first record,
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then a change of the last record, finally, a change of leased to its users. In .this sense, software testing be-
a record which does not exist in the file. comes a mandatory process in the life cycle of a software

project. Any IS graduate who participates in a software
3. A main program which calls four independent project must be ready to participate in not only the high-

modules, displays a menu of module numbers, level testing activities (such as the requirements-definition
names, and functional descriptions, and prompts for walkthrough, external system design, test planning, black-
the user's selection of one of the module numbers, 1 box test-case design, system testing, and acceptance
through 4. Test the main program by selecting 0, 1, testing) but also the low-level testing activities (such as
4, and 5. internal system design specifications walkthrough, code

review, white-box test-case design, and numerous test ex-
4. A program contains a DO loop with an exit condit. ecutions). In order to perform software testing effec-

ion. Test the loop with 0 entry (skip the loop), ex- lively, an IS graduate is required to have knowledge of
actly 1 entry (no iteration), and 2 or more entries software testing techniques.
(some iterations). This coverage method is known as
the "boundary-interior" path testing procedure This paper reviews the existing software testing techni-
(Howden 1975). ques and recommends a set of effective techniques which

are essential to the IS professionals in testing their IS
Steps 7,8, and 9: Finally, the IS professional will trans- software. The techniques recommended include equiva-
late the pseudocode into program source code, and then lence panitioning, boundaiy coverage, andcomplexity-based
test the source code by executing it with one set of test coverage. These three testing techniques provide struc-
data at a time. To complete the testing of source code, tured approaches to designing test cases and data for
all 24 test-case items listed in Table 3 must be executed. testing the quality of a software product. Therefore, they
If any major error was found during the testing process, are of vital importance to every practicing IS professional,
the error should be removed before the process is re- similar to such structured techniques as structured anal-
peated. This testing process should be terminated only ysis, structured design, and structured programming.
when all test results are identical to the expected results.
Note that the test paths derived by the complexity-based It is important to note that software testing is by no
coverage varies as the programming style or logic flow means the only process that can assure the quality of a
changes. In contrast, equivalence partitioning does not software product. Assuring software quality is a collective
require the test-case designer to know any program code effort of all the processes in an SQA program, i.e., con-
and thus is independent of programming style and logic figuration management, corrective action, documentation,
flow. reviews, and audits must be performed besides software

testing. In fact, the ultimate level of quality is not deter-
mined by the testing process but by the development pro-
cess itself. The probability of success (quality) at accep-

5. A PEDAGOGICAL EXPERIENCE tance time is a function of the tools, standards, practices,
and procedures used by the development organization

The process demonstrated above is highly structured and augmented by the SQA processes at built-in quality check
straightforward. Therefore, it is pedagogically feasible for points in the development process (Knight 1977). All the
classroom instruction and practices. We have imparted required tools and methods must be defined at the outset
this process to our students in the system design and im- of the software project to allow software quality be objec-
plementation course and received overwhelmingly positive tively measured at the planned check points. Since most
feedback. Our experience indicates that, before learning software errors (60 to 80 percent) were found to be as-
the three recommended testing techniques, most students sociated with the requirements definition (Boar 1984),
who did not have training in software testing were exclu- some of these check points should be placed at the early
sively using the error guessing technique--which is more a phases of the software project. To quote an old sage,
form of cynicism than a technique--to derive test cases "Quality is built in, not added on." Software testing should
and data. After practicing the above testing process for start as soon as the software project begins and software
two or three exercises, all of them eventually became ef- quality should be closely designed, measured, and main-
fective test-case designers. tained throughout the entire project life cycle.
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