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Multilevel Modeling

Toward a New Paradigm of Conceptual Modeling
and Information Systems Design

The paper presents a novel approach to conceptual modeling that serves to address
a fundamental conflict inherent in designing languages and information systems. It not only
promises to improve the economics of developing and using models and respective
software systems, but also to foster the empowerment of users by providing them with
specific languages that correspond directly to the perspective on a domain they are used to.
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1 Introduction

It is widely accepted that the construction
of information systems calls for the de-
velopment of conceptual models. How-
ever, the prospects of conceptual mod-
els (for an elaborate discussion of foun-

dational terms such as model, conceptual
model, modeling language, etcetera, see
Mahr 2009; Frank 2011b) are offset by
a number of challenges that compromise
their beneficial use in practice.

Remarkable Effort The construction of
comprehensive conceptual models re-
quires a quantity of resources and time
beyond the capability of many organiza-
tions.

Quality The utility of a conceptual
model is dependent on its quality. How-
ever, developing high quality models re-
quires a level of expertise and experience
that is not available in many organiza-
tions.

Poor Protection of Investment Often, the
use of conceptual models is restricted to
the analysis and design phases of soft-
ware systems. Subsequent modifications
are frequently restricted to code and ne-
glect to synchronize the affected concep-
tual models, with the consequence that
models are devalued.

Widely Restricted to Experts Conceptual
models are intended to foster commu-
nication among various groups of stake-
holders, including those lacking specific
training in modeling. However, non-
experts are often not keen to look into
conceptual models, nor are they capable
of designing them on their own.

Various research activities have sought
ways to address these problems. They in-
clude the construction and reuse of refer-
ence models (e.g., Fettke and Loos 2007),
the use of models at runtime (e.g., Morin
et al. 2009), and guidelines to promote
model quality (e.g., Schütte 1998). With

respect to the problems outlined above,
one recent development is of particu-
lar relevance. Domain-specific modeling
languages (DSMLs) are characterized not
only by their claim to substantially im-
prove the productivity of both modeling
and software implementation, but also to
promote model quality and user involve-
ment. However, DSMLs are not the sil-
ver bullet for developing and maintain-
ing information systems. Like conceptual
modeling in general, DSMLs in particu-
lar face a fundamental conflict of system
design that counters the benefit they can
bring.

A thorough analysis of the challenges
of system design provides a foundation
on which the current research builds
to offer a novel approach to creating
DSMLs and their respective tools. That
approach enables a substantial diminish-
ing of the fundamental design conflict
and has the potential to get more peo-
ple actively involved in modeling. This
approach took some time to evolve. On
the one hand, it required a paradigm
shift in the sense of conceding, or at
least relaxing, the interpretation of cer-
tain principles that we have believed in
and propagated for many years. On the
other hand, it seemed at first to be im-
possible to implement the required tools
in a satisfactory way due to the inherent
limitations of prevalent programming
languages.

This paper is structured as follows:
first, the problem that motivated the pro-
posed approach is elucidated by con-
sidering benefits, challenges, and con-
flicts related to the design of DSMLs.
Then, the prospects for and challenges
of multilevel modeling are elucidated,
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Fig. 1 Illustrating the
benefits of DSMLs over
GPMLs

and based on that information, its atten-
dant requirements are described. Against
this background, a recursive language ar-
chitecture and the conceptual founda-
tion for the corresponding (meta) mod-
eling environment are introduced. Subse-
quently, the benefits of the approach are
demonstrated with an exemplary use sce-
nario followed by a critical evaluation of
the presented approach and concluding
remarks.

2 Domain-Specific Modeling
Languages

Language is a constituent of the con-
struction of information systems. Lan-
guage is however not only crucial for im-
plementing software, but is also essen-
tial for designing and using software. The
only way we can make sense of soft-
ware, whether during the build or run
time, is through human language, not
through machine language. Therefore,
not only the construction of a system but
also the interaction with a running sys-
tem depends on the linguistic represen-
tation of the system. However, not every
language is appropriate for representing
these artifacts.

2.1 Promises

Many system designers will regard a
general-purpose modeling language
(GPML), such as the UML, to be the
instrument of choice for developing con-
ceptual models. However, in everyday
life we would regard it as entirely un-
reasonable if we were told to restrict our
communication to a language with just
a few primitive concepts such as class or
attribute. Instead, we expect a language
to provide concepts that support elabo-
rate communication without forcing us
to explain everything from scratch.

In recent years, this thought has led
to the development of modeling lan-
guages designed for specific domains.
A DSML is a modeling language that is
intended to be used in a certain domain
of discourse. It is based on concepts that
were reconstructed from technical terms
used in the respective domain. DSMLs
promise various advantages over GPMLs
(see the illustration in Fig. 1). First, they
promote modeling productivity by free-
ing modelers from the need to recon-
struct domain-level concepts from se-
mantic primitives. At the same time, they
foster system integrity, since inappropri-
ate use of domain-specific language con-
cepts is prevented to a certain degree by
the abstract syntax and semantics of a
DSML. Furthermore, DSMLs promise to
provide a better medium for communi-
cating with prospective users: On the one
hand, their concepts are directly related
to the technical terms prospective users
are familiar with. On the other hand,
they feature a specific concrete syntax
– usually, but not necessarily, a graphi-
cal notation – that also fosters compre-
hensibility of models. In recent years,
the same rationale driving the develop-
ment of DSMLs has led to the con-
struction of domain-specific program-
ming languages (DSPLs). DSPLs pro-
vide programmers with domain-specific
concepts, thereby increasing productiv-
ity and fostering software integrity. In an
ideal case, models specified in a DSML
are mapped to the code of a correspond-
ing DSPL.

2.2 Challenges

The conflict between the benefits and
drawbacks of semantics constitutes a fun-
damental challenge for information sys-
tems design in general. It is not espe-
cially relevant to the design of GPMLs,

since they are by definition characterized
by concepts on a low level of semantics
that leave room for broad interpretation.
However, the semantics challenge does
affect the design of a DSML. The more
specific its concepts, i.e. the more seman-
tics they include, the higher the potential
productivity gain in those cases where it
fits. On the other hand, the more generic
the concepts of a DSML are, the wider its
range of reuse and, hence, its economies
of scale. While it is hardly possible to cal-
culate the optimal level of semantics a
DSML should have, it is nevertheless re-
quired to make corresponding decisions,
specifically to determine whether or not
to develop a DSML for a certain domain
and how the scope of the domain should
be defined. Some authors suggest avoid-
ing the issue by focusing on just one
particular organization, and typically use
one or more of three arguments to jus-
tify that recommendation. First, there is
the quasi ontological hypothesis that ev-
ery organization is characterized by id-
iosyncratic peculiarities that hinder the
reuse of concepts from other organiza-
tions. The second argument relates to
competitiveness: If a DSML is regarded
as an asset that generates competitive ad-
vantage, it makes sense not to make it
available to competitors (Kelly and Tolva-
nen 2008). Third, there may be no need
for cross-organizational reuse if using a
DSML in only one organization offers
clear economic benefits. Kelly and Tolva-
nen strongly support the third argument
(Kelly and Tolvanen 2008, p. xiii), and
others adopt a similar position (Völter
2013; Fowler 2011). Without further dif-
ferentiation, such as of an organization’s
mission, the qualifications of its employ-
ees, and its specific experience with mod-
eling tools, it seems rash to uncondition-
ally support those statements. All three
arguments that support the restriction of
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Fig. 2 Illustration of exemplary language hierarchies

a DSML to one organization can be coun-
tered. While the ontological assumption
certainly seems plausible, there are two
reasons why it should not be taken at
face value. First, there is remarkable ev-
idence that the action systems of an en-
tire range of organizations can success-
fully use the same concepts, and exam-
ples can be seen in the widespread use of
ERP systems and office applications. Sec-
ond, the actual inter-organizational vari-
ance in the use of concepts may be sub-
stantially the result of an evolution that is
characterized by contingency and chance.
Hence, variance is not an inevitable onto-
logical phenomenon. Third, it is conceiv-
able that various organizations, whether
competitors or not, can use a common
DSML without compromising their com-
petitiveness. Again, the dissemination of
so-called standard ERP systems offers
strong evidence for this argument.

3 A Multilevel Approach
to Conceptual Modeling:
Prospects and Requirements

The approach that this paper proposes to
promote the construction of more ver-
satile DSMLs is based on the introduc-
tion of multiple modeling levels. It is pre-
sented in three steps. First, the general

idea is demonstrated. Second, require-
ments and challenges related to realizing
multilevel modeling are analyzed. Third,
the language architecture that facilitates
multilevel modeling is presented.

3.1 Background: The Common (Re-)Use
of Technical Languages

Exploiting the potential of DSMLs re-
quires diminishing the design conflict
that we considered above. This is possible
by developing languages that enable both
a wide range of reuse and specific sup-
port for particular cases. The actual use
of technical languages offers clues as to
how this demand could be satisfied. It is a
major characteristic of modern societies
that they are built on a large variety of
technical languages. These technical lan-
guages often form hierarchies. At the top,
there are reference languages that address
entire domains independent of the pe-
culiarities of particular use cases. These
are typically used in textbooks, and as a
result the textbook terms are intention-
ally kept at a relatively high level of ab-
straction, allowing for a certain range of
interpretations. Reference technical lan-
guages are adapted to specific domains,
that is, to the domain of a certain in-
dustry or a large organization. More spe-

cific technical languages can be intro-
duced at multiple levels, so a technical
language might be applied industry-wide
or it might be organization specific or at a
lower level, the technical language might
be the jargon used within particular units
or projects. The simplified examples in
Fig. 2 illustrate this kind of language hi-
erarchy. The example on the left repre-
sents concepts of languages for describ-
ing organizational structures. The exam-
ple on the right shows concepts used to
describe products on different levels of
abstraction.

The shades of gray serve to indicate
how concepts are refined on a lower level.
The term Organizational Unit, for in-
stance, is refined into Department, Team,
etcetera, while Department may be fur-
ther refined to Marketing Department.
Hence, a concept on a certain level is
reused on all lower levels that refine it.
Therefore, these hierarchies of technical
languages promote both economies of
scale, through extensive reuse of “text-
book” level concepts, and productivity,
by offering more specific concepts on
the level of “local dialects.” Using them
as a model for creating hierarchies of
DSMLs would suggest that common text-
book level or reference DSMLs should
be designed by experts who possess deep
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Fig. 3 Illustration of multilevel modeling with two DSMLs

knowledge about the general domain
and have rich experience with designing
DSMLs. More specific or “local” DSMLs
could be designed by local domain ex-
perts using the common DSML. The
more specific a DSML, the less exper-
tise is required to design it. Figure 3 il-
lustrates this idea of multilevel DSMLs,
and multilevel modeling in general, us-
ing an example with three levels of clas-
sification. Each editor above M0 not only
enables the design of (meta) models, but
also facilitates the creation of more spe-
cific editors, for example, by generating
corresponding code.

In order to diminish the essential con-
flict inherent in designing DSMLs, and
hence to allow for both a wide range of
reuse and high productivity gains in par-
ticular cases, a multilevel modeling ap-
proach has to aim to minimize concep-
tual redundancy across all levels of ab-
straction. To achieve this, the following
proposition has to hold for all levels i
for i ≥ 1: Every concept that is shared by
all intended application domains on level
i should already be specified on i + 1.
Otherwise, the same specification would
have to be repeated for all more specific
language definitions, resulting in redun-

dancy or, in other words, unsatisfactory
reuse. Note that this is a formal orienta-
tion only. It does not solve the problem
of appropriately tailoring domains, nor
does it allow determination of the ade-
quate number of classification levels (see
Sect. 7).

3.2 Requirements

Applying the idea of multilevel techni-
cal languages to the construction and
use of DSMLs as outlined in Fig. 2
seems to diminish the conflict inherent
in designing DSMLs. However, the ex-
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amples in Fig. 3 reveal that the realiza-
tion of a multilevel modeling environ-
ment is a far from trivial matter. Do-
ing so means tackling serious obstacles
that relate to established principles both
of conceptual modeling and of prevalent
programming languages. Therefore, de-
signing a multilevel modeling system re-
quires nothing less than challenging the
dominant paradigm. Our analysis of the
corresponding requirements that evolved
from our long-standing investigation of
DSMLs and respective tools is structured
as follows. First, we will focus on re-
quirements related to principles of con-
ceptual modeling and to respective lan-
guage architectures (RLA). Second, we
will look at requirements related to the
limitations of traditional programming
languages, because the economic real-
ization of multilevel modeling depends
on the implementation of corresponding
tools (RI). Finally, we will focus on re-
quirements aiming to bridge the gap be-
tween the prevalent paradigm and the
proposed approach (RB).

RLA-1: Flexible Number of Classification
Levels There is a need for a language
architecture that allows for an arbitrary
number of classification levels. The ratio-
nale for that is illustrated by the exam-
ples in Fig. 2 indicating that the number
of language levels seems to be variable.
While three levels are sometimes suffi-
cient, in other cases four or more lev-
els may be more appropriate. Traditional
language architectures such as the MOF
(Object Management Group 2006) are
not satisfactory in this respect, since they
are characterized by a fixed number of
classification levels.

In traditional language architectures,
instantiation and specialization are mu-
tually exclusive (Frank 2012a): If class A
is an instance of metaclass B, then A can-
not be a subclass of B at the same time.
The examples in Fig. 2 illustrate the well-
known fact that in natural languages it is
often not obvious whether we are deal-
ing with an instantiation or a specializa-
tion relationship. We might ask, for ex-
ample, whether a particular brand of beer
is an instance or a specialization of Beer.
However, we cannot be certain that even
the most systematic examination of the
two concepts will permit a clear decision
to be made. To offer another example,
the metaclass Organizational Unit on the
textbook level may include attributes such
as number of employees or performance.
A class such as Department on the level

below should have the same attributes.
Specializing Department from Organiza-
tional Unit would produce exactly this ef-
fect. At the same time, the Organizational
Unit may comprise attributes such as
name or is permanent, which are intended
to be instantiated on the level below.
This perspective would recommend an
instantiation relationship, which would
be in clear conflict with the previous
choice. These considerations lead to the
following requirement:

RLA-2: Relaxing the Rigid Instantia-
tion/Specialization Dichotomy There is
a need for concepts that allow the reuse
enabled by instantiation to be combined
with that promoted by specialization, but
without jeopardizing a system’s integrity.
The rationale is that the postulate of eco-
nomic specification implies a need to
specify properties of concepts that are as-
signed to a certain level on a higher level
already, regardless of whether they are
reused through instantiation or special-
ization. As the above Organizational Unit
example shows, a combination of special-
ization and instantiation works in natural
language.

In contrast to traditional language ar-
chitectures, the example in Fig. 2 indi-
cates that a certain language level is not
restricted to classes on the same clas-
sification level. For example, in addi-
tion to concepts such as Organizational
Unit or Position, a textbook may include
a concept such as Employee. While Or-
ganizational Unit could be represented
by a metaclass on M2, Employee may
correspond to a class on M1.

RLA-3: No Strict Separation of Language
Levels Multilevel modeling requires a
versatile conception of (meta) models
that allow classes on different classifica-
tion levels to be part of one model. The
rationale behind that is that hierarchies
of natural technical languages indicate
that concepts of a particular language in
a hierarchy are not necessarily restricted
to a certain classification level. In other
words, in technical discourses there are
useful sentences that contain concepts
on different classification levels. For ex-
ample, “Cross Racer R3 is one of our
most successful products.” While “Cross
Racer R3” may represent a concept on
M1, Product may represent a concept on a
clearly higher level of abstraction (see the
scenario in Sect. 5).

A tool environment is of crucial rel-
evance for a multilevel modeling ap-
proach. This is not only because mod-
eling tools foster the economic creation,
analysis and maintenance of models. In
addition to that, tools are required to
generate editors from the specification of
DSMLs.

RI-1: Straightforward Representation of
Language Architecture The hierarchy of
DSMLs that is enabled by the outlined ar-
chitecture of modeling languages needs
to be mapped somehow to the internal
representation of corresponding tools.
This includes not only mapping classes,
attributes and the like but also classes
on arbitrary classification levels, and con-
cepts that address RLA-2 and RLA-3.
Ideally, the language used to implement
model editors includes concepts that are
semantically equivalent to those defined
by the respective (meta) modeling lan-
guages. The rationale for this is that
the reconstruction of modeling concepts
with programming languages demands
substantial effort and threatens integrity.

If it is not possible to represent the en-
tire language hierarchy in the tool en-
vironment, a model hierarchy needs to
be distributed to editors that operate on
a particular part of the language hier-
archy only. In this case, the following
two requirements have to be taken into
account.

RI-2: Cross-Level Integrity The tool en-
vironment needs to effectively support
the integrity of a hierarchy of DSMLs.
As a consequence, the modification of a
model on level n has to be consistently
propagated to all affected models on all
levels m for m < n. Rationale: The appro-
priate use of a model requires accounting
for updates of modeling concepts.

RI-3: Cross-Level Navigation An envi-
ronment for multilevel modeling should
allow navigation through a hierarchy of
(meta) models. Rationale: On the one
hand, the use of a local DSML may cre-
ate the need for an explanation of a con-
cept of a higher level DSML. On the
other hand, studying a metamodel may
generate a desire to inspect examples of
corresponding models.

RI-4: Support for the Convenient Creation
of Model Editors A reference DSML
may be the root of a large tree of
more specific DSMLs. Specific DSMLs
are specified by local domain experts. The
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efficient use of a more specific DSML
depends on corresponding model edi-
tors that can be created with little ef-
fort. Ideally, a meta-modeling environ-
ment should allow the generation of a
model editor to a wide extent from a
metamodel of a DSML and an additional
specification of the concrete syntax. Ra-
tionale: Users who may be able to spec-
ify a local DSML cannot be expected to
implement a corresponding editor.

Satisfying the above requirements re-
quires overcoming the current paradigm
of conceptual modeling. However, that
does not necessarily mean seeking dis-
ruptive change. Instead, it seems more
appropriate to avoid giving up beneficial
aspects of the current paradigm and pre-
serve existing assets, which leads to the
final two requirements.

RB-1: Clear Specification of Classification
Levels Requirement RLA-3 implies that
a model may include classes on different
levels of classification. As a consequence,
the classification level of a class cannot be
concluded from the model it is part of.
The language architecture should provide
concepts that allow the explicit definition
of the classification level of every class.
They should also be represented in the
accompanying tool environment. The ra-
tionale behind this is that if a class is to be
interpreted appropriately, it is essential to
know which classification level it is sup-
posed to represent. There is, for exam-
ple, a clear semantic difference between
a class Document on M1 and a metaclass
Document on M2.

RB-2: Backward Compatibility The lan-
guage architecture should facilitate the
integration of existing (meta) models.
For this purpose, the meta-modeling lan-
guage has to include concepts that cor-
respond to those used in existing meta-
modeling languages. The rationale here is
that there is already a considerable num-
ber of DSMLs in the area of enterprise
modeling. To protect these assets, the ef-
fort required to port them to a multi-
level language architecture must not be
prohibitive.

4 Language Architecture and the
(Meta) Modeling Environment

Our earlier attempts to satisfy the above
requirements using a MOF-like language
architecture resulted in adding concepts
to a meta-modeling language that served

as workarounds (Frank 2011a). The cor-
responding modeling tools were imple-
mented in a traditional programming
language that features only one classifi-
cation level. Therefore, the representa-
tion of multiple levels of classification
was possible only by overloading either
M0 or M1. As a consequence, the con-
ceptual mismatch made it impossible to
convincingly address requirements RI-
1 to RI-3. Other meta-modeling envi-
ronments such as MetaEdit (Kelly et al.
2013) or ADOxx (Fill and Karagian-
nis 2013), though mature and power-
ful, do not support multiple classifica-
tion levels either. With respect to these
serious limitations, we decided upon a
paradigm shift. Both the language archi-
tecture and the programming language
used to implement the tool environment
should be based on a recursive construc-
tion permitting an arbitrary number of
classification levels.

4.1 Background: “Golden Braid”
and XMF

The idea of recursive language archi-
tectures has arguably become popular
through the “golden braid” metaphor
that Douglas Hofstadter used for his so-
phisticated praise of recursion (Hofs-
tadter 1979). It is based on the idea that
a class can be regarded as also being an
object that is instantiated from a meta-
class, which in turn can be seen as an ob-
ject instantiated from a higher level class
(i.e., “everything is an object”). To avoid
a regressus ad infinitum, the instantiation
process is recursive (see the description
below), that is, a core (meta) class is in-
stantiated from itself (for a more detailed
description see Clark et al. 2008a, 2008b).

Very few programming languages are
based on a golden braid architecture (e.g.,
the object-oriented extensions of Lisp,
Smalltalk, and Ruby). Among these lan-
guages, Smalltalk is especially appealing.
It treats classes as objects and is available
in powerful development environments.
Unfortunately, Smalltalk is not suited for
our purpose since it does not allow the
definition of metaclasses above M2. Fur-
thermore, it does not feature metaclasses
as classes of a set of classes. Each class is
assigned precisely one default metaclass,
and a metaclass in turn has only one in-
stance. XMF (executable Metamodeling
Facility) is not limited by this constraint
(Clark et al. 2008a, 2008b). It is a lan-
guage execution engine featuring a meta-
model called XCore (Clark et al. 2008a,

p. 43). Every language that is specified
in XCore can be executed by XMF. XMF
allows access to and modification of its
own specification and its runtime system.
Hence, there is no clear distinction be-
tween the language and a corresponding
meta-language, and therefore XMF is re-
flective. Furthermore, it includes tools for
building compilers for further languages.
That makes XMF a meta-programming
facility that allows execution of code writ-
ten in different languages in the same
runtime system. Apart from the fact that
XCore features a golden braid architec-
ture, there are further two reasons for
choosing XMF as an implementation lan-
guage. It offers most of the properties
essential to a meta-modeling language
(RI-1, RB-2) and also permits the mod-
ification of XCore to satisfy the spe-
cific requirements of designing and using
DSMLs.

The golden braid architecture in gen-
eral, and XCore in particular, is based
on concepts that seem to violate ac-
knowledged principles of meta-modeling
and that therefore can cause confusion.
XCore makes use of a circular relation-
ship in that the central metaclass Class,
which is amongst others associated with
a meta-attribute, a meta-operation, and
a meta-association (see Fig. 4), is an in-
stance of itself. At the same time, Class
inherits from Object. Hence, every class
is an object and can be executed. Ob-
ject is itself instantiated from Class. Fur-
thermore, every instance of Class can in-
herit from every other instance of Class
as long as cyclic relationships are avoided.
The lean recursive structure of XCore en-
ables the creation of an arbitrary num-
ber of classification levels, although not
without effort. Initially, Class is located
on M2. If a metaclass on a higher level
of classification is required, one will first
instantiate a class from Class, which will
result in a class on M1. Subsequently,
one would have the new class inherit
from Class, which would lift it up to
M2, because it would inherit the instan-
tiation capability of the Class. Instanti-
ating the new class and having the re-
sulting instance inherit from the origi-
nal metaclass Class would result in lift-
ing the instance up to M2 and, in con-
sequence, its classification level, which
was previously M2, up to M3. Since the
lifting procedure can be repeated in-
definitely, language hierarchies with any
number of classification levels can be
realized.
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Fig. 4 Excerpt of the FMMLx metamodel and its relation to XCore

4.2 Conceptual Foundation: Flexible
Meta-Modeling and Execution Language

During the design of the modeling lan-
guage architecture and the correspond-

ing implementation of prototypical mod-
eling tools, an especially appealing design
option emerged. If a common represen-
tation of (meta) models and code could
be accomplished, there would no longer

be a need to transform (meta) mod-
els into code, and to synchronize mod-
els and code later on after changes have
occurred. Hence, models would be exe-
cutable, that is, offering operations ac-
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cepting of queries and changes to their
state. A straightforward approach would
be to use XCore directly as a com-
mon foundation. However, that would
not be satisfactory for the following rea-
sons: First, the creation of language hi-
erarchies is too cumbersome (see the
description above). Second, XCore does
not account for an explicit classification
level. In fact, the classification level of a
class may even be contingent, that is, a
class can be instantiated into a class on
Mn and into another class on Mm with
m �= n at the same time. In other words,
a class may be level-agnostic. While
this feature offers outstanding flexibil-
ity, it is not satisfactory from a concep-
tual point of view (RB-1). Third, XCore
does not provide direct support for dis-
solving the instantiation/specialization
dichotomy (RLA-2). To address these
shortcomings, the design was aimed at
modifying XCore accordingly. Further-
more, a complementary graphical no-
tation was created to foster the conve-
nient use of specific language concepts.
We call the resulting meta-modeling lan-
guage Flexible Meta-Modeling and Ex-
ecution Language (FMMLx), where the
“x” is intended both to express the flex-
ible classification level of the metamodel
and to indicate that the metamodel, as
well as all models instantiated from it, are
executable within XMF. In the following,
the extensions applied to XCore are pre-
sented with reference to the representa-
tion of the FMMLx metamodel in Fig. 4.
Note that only key properties of the meta-
model are accounted for. Most of the op-
erations and constraints are omitted. Fig-
ure 4 also includes an example of classes
specified with FMMLx. To avoid misin-
terpretation, the classification level of the
represented concepts is indicated by the
background color of each class name (see
the legend of Fig. 4). While contingent
means that a class can represent different
levels at the same time, variable indicates
that its level can be explicitly modified.
This may seem confusing at first. How-
ever, the respective concepts should be-
come clearer with the illustration of their
application in the subsequent examples.

Explicit Classification Level and Conve-
nient Construction of Classes on Arbitrary
Classification Levels For this purpose,
the auxiliary metaclass MetaAdaptor was
introduced. It is instantiated from Class
and inherits from Class. First, the at-
tribute level:Integer was added. The core

class of FMMLx, MetaClass is instanti-
ated from MetaAdaptor and inherits from
it. The intended classification level of
MetaClass can be easily defined by ini-
tializing the attribute level:Integer. Fur-
thermore, all classes that are instanti-
ated from MetaClass or from one of its
instances, also inherit from MetaClass.
Hence, all (meta) classes in a multi-
level modeling system both inherit the
attribute level:Integer and instantiate it.
Whenever a class or object is instanti-
ated, its level attribute is initialized with
the intended number. The default level
is n − 1 if the class it is instantiated
from is located on n. For this purpose,
the instantiation operation new() inher-
ited from Class was overridden. To en-
able the creation of classes on levels
lower than n − 1, a further instantia-
tion method, newAtLevel (l: Integer) was
added to MetaAdaptor. In Fig. 4, the con-
tingent classification level of Class and
MetaAdaptor is represented by a striped
bar. Note that users of FMMLx would
normally see only MetaClass and its in-
herited properties. The classification level
of MetaClass can be defined according to
specific needs. In the example in Fig. 4, it
is set to 4.

Relaxing the Rigid Instantiation/Specia-
lization Dichotomy The problem that
is addressed by requirement RLA-2 has
been known for some time. For the ex-
tension of XCore we used a modifica-
tion of “intrinsic features” (Frank 2011a).
They are similar to “powertypes” (Odell
1994) and especially to “deep instantia-
tion” (Atkinson and Kühne 2008). How-
ever, unlike powertypes and deep in-
stantiation, intrinsic features comprise
not only attributes but also operations
and associations. Furthermore, it is pos-
sible to specify an entire class as in-
trinsic, which implies that all its fea-
tures are intrinsic. Intrinsic features
enable what one could call selective
specialization or deferred instantiation:
A feature that is marked as intrinsic
can be instantiated only on the spec-
ified instantiation level. To implement
the intrinsic features of FMMLx, the
implementation of the meta-attribute
(Attribute), meta-operation (Compiled-
Operation), and meta-association (Asso-
ciation) in XCore were modified. This
is relatively easy since XMF treats at-
tributes, operations, and associations as
objects, the features of which can be
defined through corresponding meta-
classes. It was only necessary to add

two attributes to these metaclasses: isIn-
trinsic: Boolean indicates if the respec-
tive feature is intrinsic, and instLevel:
Integer allows the specification of the
level where a proper instance would be
located. These additional attributes are
marked with a gray background in Fig. 4.
To complete the implementation of in-
trinsic features, the new() operation de-
fined in MetaAdaptor had to be further
modified. It checks the intended instan-
tiation level of intrinsic attributes, op-
erations, or associations. Only if the in-
stantiation level corresponds to the clas-
sification level of the respective class mi-
nus one will new() instantiate them. To
illustrate the use of intrinsic features,
we refer to the example used to mo-
tivate RLA-2. The attribute numberO-
fEmployees: Integer within Organization-
alUnit on M2 would be marked as in-
trinsic (isIntrinsic = true) and its in-
tended instantiation level would be set
to 0 (instLevel = 0). Instantiating Or-
ganizationalUnit into Department would
now result in inheriting numberOfEm-
ployees: Integer to Department. The at-
tribute would only be instantiated on the
level below, for example, with the ob-
ject that represents a particular market-
ing department. The FMMLx metamodel
is supplemented by various executable
constraints that are specified in XOCL, a
variant of the OCL. Examples of XOCL
constraints are shown in Fig. 4.

The recursive structure of the FMMLx

enables considerable flexibility and re-
duces specification effort to a large de-
gree. For example, a DSML used for
modeling product types should allow
the expression of associations between a
product type and its components. Nor-
mally, this would require including a
metamodel of associations in the specifi-
cation of the DSML, even though a corre-
sponding specification already exists for
the meta-language with which the DSML
was designed. FMMLx makes it possible
to avoid this additional effort. By instan-
tiating the metaclass Product from Meta-
Class, Product would at the same time
inherit the specification/implementation
of the meta-association that is part of
FMMLx (where it is inherited from
Class in XCore) as well as the spec-
ification/implementation of the meta-
attribute (Attribute), the meta-operation
(CompiledOperation), etcetera. By pro-
viding these basic language concepts
on each level of abstraction above M0,
FMMLx enables the convenient extension
of all languages of a particular hierarchy.
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Fig. 5 Illustration of concrete syntax

FMMLx is complemented by a graph-
ical notation. On the one hand, this fa-
cilitates the distinguishing of metamod-
els on different classification levels from
object models using the style of the es-
tablished UML class diagrams. On the
other hand, it enables the representa-
tion of specific characteristics of FMMLx,
such as intrinsic features. The notation is
adapted from an existing meta-modeling
language (Frank 2011a). The examples in
Fig. 5 illustrate key elements of FMMLx’s
concrete syntax. The color of the top bar
that contains the name of a class serves to
indicate the level of classification. Black
represents M2 and blue (shown as dark
gray in this article) represents M3. Fur-
ther colors can be defined for higher lev-
els of classification. Intrinsic features are
marked by a white number in a black
square. The number represents the level
where the prospective instance of the fea-
ture is to be located. Note that this is
the default notation of FMMLx. To en-
hance usability, it may be replaced by the
specific concrete syntax of a particular
DSML.

4.3 Meta-Modeling Environment

FMMLx is supplemented by a meta-
modeling environment that extends
Xmodeler, a meta-modeling framework
that supplements XMF and that is im-
plemented within the Eclipse framework.
The framework has two main compo-
nents. First, a generic model editor en-
ables the creation of (meta) models by
using a generic, UML-like notation. Sec-
ond, a concrete syntax editor supports
designing the symbols on which a graph-
ical notation is based and additional
widgets such as menus, listboxes, text
editors, buttons, etcetera. The symbols
created with this editor are mapped to

their respective (meta) model elements
using a generic tree structure that is part
of Xmodeler, thereby completing the
definition of a DSML. A model is repre-
sented by executable (meta) classes. They
can be modified using either a graph-
ical model editor or common software
development tools such as browsers or
editors. The model-view-controller pat-
tern is used to synchronize a model and
its diagram(s). Based on the specifica-
tion of a metamodel, the definition of a
corresponding notation and its respective
mapping, Xmodeler facilitates generating
a DSML editor.

The multilevel modeling environment
builds on this framework. A FMMLx ed-
itor that was created with the generic
components of the framework serves as
a bootstrap editor. It is used to spec-
ify metamodels and corresponding nota-
tions of reference DSMLs and to gener-
ate corresponding editors (RI-4). Refer-
ence DSML editors serve to create more
specific DSML editors, which in turn may
be used for creating even more specific
DSML editors. Finally, editors may be
created that operate on objects on M0.
They do not allow for further instanti-
ations or, therefore, for creating further
model editors. Figure 6 shows a model
that illustrates the recursive architecture
of the multilevel modeling environment.
All model editors that constitute an inte-
grated multilevel environment reuse the
generic model editor that is part of the
Xmodeler. Furthermore, each editor that
is used to define further DSMLs makes
use of the concrete syntax editor within
the Xmodeler.

All (meta) models editors that be-
long to a certain hierarchy of DSMLs
operate on models, that is, interrelated
classes that are part of the same multi-
level class hierarchy. Therefore, they facil-

itate navigation through the correspond-
ing class hierarchy (RI-3). Furthermore,
extensions of classes on a certain level
are visible in affected lower level classes
immediately. Adding an intrinsic feature
triggers an update procedure that adds
that intrinsic feature to all instances, and
transitively to instances of instances, of
the respective class. Propagating the dele-
tion of a property on a higher level to
affected lower levels cannot be entirely
automated, because XMF does not fea-
ture static typing. Therefore, identify-
ing elements on lower levels that are
supposed to be deleted requires man-
ual intervention. For example, assume
a metaclass Product includes the opera-
tion 〈pricePerUnit:Money〉 that is avail-
able within its instances (i.e., classes rep-
resenting particular product types). If
this operation is deleted later on and
there are other classes in the system that
provide a method with the same inter-
face, the lack of static typing prevents the
straightforward identification of calling
classes. Instead, additional inspection of
possible calling classes would be required.
Hence, requirement RI-2 (cross-level in-
tegrity) is supported to a large degree but
cannot be entirely guaranteed by the tool
environment. In order to promote both
productivity and a consistent notation
within a particular DSML hierarchy, the
concrete syntax editor can reuse existing
notations. It is possible to integrate edi-
tors of different DSML hierarchies into a
multi-language editor by integrating the
corresponding metamodels and concrete
syntax specifications, thereby addressing
requirements RI-2 and RI-3.

5 Exemplary Use Scenario

Even though the proposed language ar-
chitecture and the modeling environ-
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Fig. 6 Illustration of
multilevel modeling
environment

ment that supplements it are able to di-
minish the conflict inherent in design-
ing DSMLs, the benefits of such an ap-
proach for creating and using DSMLs are
not necessarily obvious. The following
scenario, which corresponds to the ex-
ample on the right-hand side of Fig. 2,
is aimed at illustrating the potential not
only of multilevel modeling, but also of
using models as versatile representations
that allow for interaction.

Products exist in a remarkable variety
of types. Therefore, meaningfully repre-
senting a wide range of different products
with just one class seems to be a hope-
less undertaking. The diversity of prod-
uct types is a specific challenge to those
companies that offer a wide, ever chang-
ing range of different product types, such
as department stores or e-commerce plat-
forms. It creates a challenge, too, for soft-
ware vendors that would like to reuse sys-
tems designed for certain product types
to handle other product types, too. A fur-
ther challenge for modeling products and
their representation in information sys-
tems results from the fact that prod-
ucts and corresponding types that can-
not be represented together on the only
classification level that is available within
traditional systems architectures (Frank
2002). Applying the conception of mul-
tilevel modeling to these challenges in-
volves specifying a reference DSML for
modeling products. The reference DSML
would then be used to specify further spe-
cific DSMLs to model product types of
certain categories. The simplified meta-
model in Fig. 7 represents a generic con-
ceptualization of products. The use of the

background colors blue (shown as dark
gray in the Fig. 7), black and white indi-
cates that the metamodel includes classes
on M3, M2, and M1. The names printed
in gray on top of metaclass names re-
fer to the respective metaclasses. Note
that since the classification level of Meta-
Class is variable, it can be instantiated
into classes on different classification lev-
els. In order to describe a product type
in more detail, it will usually be required
to refer to the parts from which it is
made. These can be ingredients that are
absorbed into a product or components
a product is constructed from. The first
case is represented in the metamodel as
CompoundProduct and the second case
as ComposedProduct. In both cases, the
composite pattern is applied to describe
how a product is made up of its con-
stituents. Terms and conditions – which
in the example are reduced to price –
cannot always be directly assigned to a
product because they may depend on
the number of units or type of packag-
ing. The abstract metaclass SalesUnit and
its subclasses represent this notion. In
cases where packaging is not relevant, the
metaclass BasicQuantity serves to specify
the units (e.g., liter, piece, etcetera) and
the quantity to which the terms and con-
ditions apply. The white digits in black
rectangles mark intrinsic features. They
indicate that a concept is supposed to
be instantiated only on the classification
level that is specified by the digit. For ex-
ample, the subclasses of Part (M3) need
to be instantiated twice before the at-
tribute weight: Float, which applies to

product types, can be instantiated on M1.
Its attribute serialNo:String can only be
instantiated on the M0 level. The spec-
ification of ingredients requires a dif-
ferent classification level: An instance of
CompoundProduct, which would be lo-
cated on M2, e.g., Beer, is assigned to an
instanceof Ingredient on M1. Therefore,
Ingredient and its subclasses are speci-
fied on M2 in the metamodel. Moreover,
Share and IngShare are specified on M1,
because they are supposed to be instanti-
ated only once, where their instances are
linked to ingredient classes on M1. The
two exemplary constraints serve to pre-
vent cyclic compositions on M0 (C1) and
cyclic specialization relationships (C2).

The example in Fig. 8 shows how a ref-
erence DSML is used to define a more
specific DSML for modeling customized
bicycles. It represents generic knowledge
about the construction of bicycles, which
is differentiated into the type and the in-
stance level. For example, a certain type
of bicycle may accept a range of different
saddle types. However, for a particular
instance of this bicycle type it is required
to assign exactly one instance of a cer-
tain saddle type. The composition on the
type level is represented by composed_of
associations between the metaclass Cus-
tomizedBicycle and the metaclasses rep-
resenting part types. The specific com-
position of a particular exemplar is rep-
resented by the part_of association. It
applies only to the instance (M0) level,
which is indicated by the white “0” in
a black rectangle next to the designa-
tor of the corresponding intrinsic asso-
ciation. The names printed in gray on
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Fig. 7 Exemplary specification of a reference DSML for product modeling on M3, M2 , M1

top of metaclass names refer to the cor-
responding metaclass on M3. Additional
constraints allow the space of possible
configurations on the M1 level to be fur-
ther restricted. For example, a type of car-
rier can be assigned only if a correspond-
ing frame type can accept the mounting
of a carrier.

Such a DSML could be provided for
an entire industry, for example, to sup-
port software vendors who develop soft-
ware for bicycle manufacturers or deal-
erships. It could also be used to model
particular bicycle types. In addition to
that, the DSML could be used to cre-
ate models that guide the configuration
of customized bicycles. These models
could be specified for networks of deal-
erships or for a single dealer. Figure 9
shows a model of a certain type of cus-
tomized bicycle that was specified us-
ing the DSML in Fig. 8. It can be re-

garded as a local DSML that guides and
restricts the configuration of specific bi-
cycles that correspond to a certain prod-
uct type, in this case called Customized-
Racer_G5. It includes all part types, in-
stances of which can be used to build a
particular customized bicycle. Additional
constraints can be specified to exclude
certain combinations.

Based on the model in M1, a config-
uration tool can be built that helps a
salesperson configure a particular bicy-
cle. The mockup in Fig. 10 illustrates how
such a tool might look. It could be in-
tegrated with stock management and ac-
counting software, ideally by using re-
spective DSMLs for these areas. Since it
includes both representations of classes
and references to particular instances, it
combines the classification levels M0 and
M1. Note that the example is based on the
assumption that a particular customized

bicycle is unique. One could also select
a different approach, where each config-
uration is specified as a class, instances
of which can be created later on. In that
case, a further classification level would
be required.

There is a clear difference between
products like bicycles and beverages.
While the identity of a bicycle will usually
be preserved in an information system
that represents it, one would not bother
distinguishing representations of partic-
ular bottles. Therefore, it is impossible to
use software that was designed for han-
dling product exemplars with an identity
of their own for products that lack this
characteristic. However, multilevel mod-
eling enables reuse of common concepts
on a higher level of abstraction. The ref-
erence DSML in Fig. 7 can be reused
for a wide range of product types. Fig-
ure 11 shows its application to beverages.
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Fig. 8 Metamodel of DSML for specifying types of customized bicycles

The metamodel on M2 specifies meta
types of beverages: Beer, for instance,
can be instantiated into specific brews on
M1. The metamodel represents knowl-
edge about packaging by providing pos-
sible metaclasses of containers. For exam-
ple, the metaclass DisposableBottle can be
instantiated into a certain type of bottle,
which could be defined by its volume and
weight. In addition, possible ingredient
types can be assigned to beverage meta-
classes. In the example, all possible in-
gredients of beer are shown as instances
of Ingredient. This prototypical instanti-
ation corresponds to the known use of
reference models and can be interpreted
as a constraint that restricts the range
of permissible instantiations of Ingredi-
ent assigned to a particular brew on M1
(via an instance of Share). The respective
constraint is also shown in Fig. 11.

Note that it may be an interesting on-
tological question whether Water (and
other ingredients) should be modeled as
a type (because it is clearly an abstraction
from a particular physical occurrence and
would allow for further specialization) or
as an instance (because it hardly allows

for further instantiation). In the example,
we selected the first option. With respect
to the subject of this paper it is important
to stress that the model in Fig. 11 includes
both metaclasses and classes.

While the example is restricted to beer
and soft drinks, other metaclasses of bev-
erages could be specified on this level,
too. Note that for illustration purposes
the example shows a simplified model
that does not account for further useful
concepts, which might, for example, cap-
ture commonalities of instances of Ba-
sicVolume or of instances of Compound-
Product. However, these details are not at
the core of the proposed approach and
would require extensive additional con-
siderations. The mockup in Fig. 12 illus-
trates how a DSML could be presented
to prospective users as an interactive ap-
plication. The excerpt of a diagrammatic
representation of the respective model il-
lustrates its conceptual foundation. In a
similar way to the previous example, it
may have been generated from a respec-
tive metamodel and a corresponding def-
inition of presentation elements. A type
of beer is not further instantiated in an

information system. Moreover, there is
usually no need to distinguish particu-
lar bottles or containers. Therefore, the
model in M1 would not be instantiated
any further. Nevertheless, the respective
classes to represent a certain kind of beer
in a certain sales unit could be assigned to
an instance on M0, such as, to an object
representing a particular customer.

Note, however, that the number of
classification levels may vary. While the
above examples are based on four classifi-
cation levels, it is conceivable to use more
or fewer levels for certain product types.

6 Evaluation

The proposed approach to multilevel
modeling is based on a language archi-
tecture that is in clear contrast to estab-
lished principles of conceptual modeling
and on an “exotic” meta-programming
environment. Therefore, evaluating it is
at present restricted to comparing it
against requirements, discussing partic-
ular strengths and shortcomings, and
relating it to similar work.
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Fig. 9 Specific DSML for
the configuration of
bicycles

Fig. 10 Mockup of bicycle configuration on M0 with references to M1
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Fig. 11 DSML for modeling beverage types

Fig. 12 Mockup of tool to specify classes of beverages and excerpt of corresponding diagram

6.1 Discussion

The main purpose of the proposed ap-
proach is to diminish the conflict in-
herent in designing DSMLs. With re-

spect to this objective, a set of re-
quirements were derived for the lan-
guage architecture, a corresponding tool
environment, and preserving coherence
with traditional approaches to concep-

tual modeling. The evaluation of the ap-
proach was conducted from two perspec-
tives (see Table 1). First, it was com-
pared against the requirements (see the
rows marked P1). Second, we evaluated
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Table 1 Evaluation against requirements and comparison with traditional approaches

RLA-1: Flexible number of classification levels

P1 The recursive language architecture enables an arbitrary number of classification levels. +
P2 Traditional architectures such as MOF do not allow for an arbitrary number of classification levels. −
RLA-2: Relaxing the rigid instantiation/specialization dichotomy

P1 Intrinsic features allow the combining of aspects of specialization with aspects of instantiation. +
P2 Similar concepts have been defined for traditional language architectures, but usually lack a respective implementation. o

RLA-3: No strict separation of language levels

P1 The FMMLx allows the creation of (meta) models that include classes on different classification levels. +
P2 It is characteristic of traditional architectures that all classes within one model are on the same classification level. −
RI-1: Straightforward representation of language architecture

P1 The common representation of models and code is a nearly perfect approach to satisfy this demand. +
P2 Traditional (meta) modeling tools are limited by programming languages that allow for one classification level only. Therefore, more

levels can be represented only by overloading the M0 level, which not only results in a conceptual mismatch but demands substantial
implementation effort.

−

RI-2: Cross-level integrity

P1 Since all classes of an entire language hierarchy are represented in a tool, changes on a higher level can be immediately implemented.
Adding properties can be handled by automated updates of affected classes on lower levels. The deletion of properties requires manual
intervention and is aggravated by the lack of static typing.

o

P2 In traditional tools, each editor operates on a particular level of classification. Models on different levels are not integrated. Therefore,
it is far more demanding to support cross-level integrity.

−

RI-3: Cross-level navigation

P1 All classes on all levels of classification are objects within one namespace. Therefore, navigation in any direction is not a problem. +
P2 Since models on different levels of classification are usually not integrated in a tool, cross-level navigation is not possible without

extraordinary effort.
−

RB-1: Clear specification of classification levels

P1 Each class on every classification level is an object that stores its classification level. +
P2 The classification level of a class can be determined from the model it is part of. +
RB-2: Backward compatibility

P1 The FMMLx includes concepts features by traditional meta-modeling languages as a subset. +
P2 Not applicable.

whether a traditional approach would be
able to satisfy the requirements (see the
rows marked P2). On the one hand, the
term traditional refers to language archi-
tectures with a fixed number of classifi-
cation levels. On the other hand, it refers
to implementation languages that are re-
stricted to one classification level. The
symbols in the right-hand column indi-
cate how well a respective requirement
is satisfied according to the given justifi-
cations (“+”: clearly satisfied, “o”: partly
satisfied, “−”: not satisfied).

In addition to mitigating the DSML de-
sign problem, multilevel modeling pro-
motes reuse and integration in general.
Reuse of software artifacts across a range
of applications requires those applica-
tions to share commonalities. If they lack
common concepts on the M1 level, di-

rect reuse is not possible within current
software architectures. Using multilevel
language architectures for building infor-
mation systems would enable reuse on
higher levels of abstraction: Two systems
that do not share common classes may
well share common metaclasses or meta
metaclasses. For the same reason, multi-
level modeling fosters integration of soft-
ware systems. The integration of two soft-
ware systems requires them to share con-
cepts in a common semantic reference
system (Frank 2008), such as a common
schema or a common set of classes. For
instance, if two systems share the same
product concept, they can efficiently ex-
change corresponding data; otherwise,
integration would be compromised by
the need to reconstruct semantics. If the
two systems require specific product con-

cepts, a high level of integration would
not be possible. However, if the specific
product concepts are based on a com-
mon, more generic concept, both systems
could refer to this common concept and
make sense of a corresponding instance.
This would also enable more meaning-
ful and efficient retrieval. Today, search-
ing for product types depends on ana-
lyzing strings that might represent prod-
uct names. Within a multilevel architec-
ture, a product class would be an instance
of a more general product (meta) class,
which in turn might be instantiated from
an even more general product class. All
systems that are at least integrated via a
reference DSML would be able to search
for instances of generic product classes,
including the instances of these instances.
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The benefits of multilevel modeling are
balanced by a few drawbacks. The flexi-
bility enabled by a recursive language ar-
chitecture is essentially based on replac-
ing specialization with inheritance. This
makes it possible for class A on M1 to in-
herit from class B on M2. It is even pos-
sible – and required for building classes
on higher levels of classification – that a
class on Mn inherits from a class on Mm,
with m < n. As a consequence, the sub-
stitutability constraint (Liskov and Wing
1994), which is particularly useful for
promoting consistent reuse, has to be
sacrificed: An instance of a class on Mi
could not replace an instance on Mj with
j <> i without generating a contradic-
tion. Without the substitutability con-
straint, inheritance can be used as an in-
strument to enable selective reuse: If a
certain operation of class A is also needed
in class B, one could simply have B in-
herit from A regardless of whether any
other feature of A is relevant for A. As
a consequence, a class may inherit fea-
tures it should not have, which creates
a serious risk to system integrity. XMF
leaves it to the developer to deal with this
challenge. To reduce the risk of inherit-
ing features that jeopardize integrity, we
added the attribute isCore: Boolean to the
XCore classes Attribute and CompliedOp-
eration (see Fig. 4). Doing so allowed us
to mark those features that should be in-
herited. On the level of subclasses, this
information can be used to filter the list
of all inherited features down to a use-
ful selection by fading out those that are
not marked with as isCore. Nevertheless,
to avoid the risk created by the exten-
sive use of multiple, cross-layer inheri-
tance within XMF, developers would have
to be familiar with the peculiarities of
the language. A substantial amount of
the flexibility that is enabled by XMF de-
rives from the fact that it does not feature
static typing, which may amongst others
cause problems when checking the effects
of deleting parts of a model. The lack of
static typing can be compensated to some
extent by analysis tools and by using pre-
and post-conditions, which can be imple-
mented in XMF with a moderate amount
of effort.

6.2 Related Work

To the best of our knowledge, there is
no approach that corresponds directly
to the proposed conception of multi-
level modeling. There are, however, var-
ious approaches that deal with the pecu-
liarities of creating and using models on

multiple classification levels. A few au-
thors focus on investigating fundamen-
tal characteristics (Atkinson and Kühne
2001; Kühne 2006) and clarifying the re-
spective terminology (Henderson-Sellers
2011). Others aim to dissolving the di-
chotomy between specialization and in-
stantiation in order to reduce the com-
plexity of multilevel model hierarchies.
Such approaches include “Materializa-
tion” (Dahchour et al. 2002), “m-objects”
(Neumayr et al. 2009), and the already
mentioned powertypes (Odell 1994) and
clabjects (Atkinson and Kühne 2008).
While each approach has specific charac-
teristics, they are all similar to that of in-
trinsic features. However, none of them is
focused on the development of multilevel
DSMLs. Instead, they are primarily in-
tended to support systems development.
While some of the approaches are supple-
mented by corresponding implementa-
tions (Kühne and Schreiber 2007; Atkin-
son et al. 2009), none of those makes
use of a multilevel programming lan-
guage. Volz presents an elaborate concep-
tual foundation for meta-modeling envi-
ronments as well as a corresponding pro-
totypical implementation that allows for
multiple classification levels (Volz 2011).
The repository is implemented in Java.
Therefore, the semantics of multilevel in-
stantiation is not embedded in the im-
plementation language, as in XMF, but
is based on an additional interpretation.
Unlike the proposed conception of mul-
tilevel modeling, all those approaches are
based on a traditional, MOF-style lan-
guage architecture that is restricted to
a certain number of classification levels,
usually three. This restriction does not
apply to “ConceptBase” (Jeusfeld 2009;
Jarke et al. 1995), which allows an ar-
bitrary number of classification levels.
However, since it is implemented in Te-
los (Mylopolous et al. 1990), a declara-
tive language based on predicate logic, it
is different from our approach in various
aspects. First, ConceptBase allows for de-
duction, which is not the case for XMF.
Second, related to the first aspect, it uses
a different concept of a class. As a con-
sequence, the integration of ConceptBase
with object-oriented programming lan-
guages has to overcome a serious seman-
tic mismatch. ConceptBase is also not
aimed at the development of DSMLs and
corresponding tools.

Völter presents the idea of a “domain
hierarchy,” where “higher domains are a
subset (in terms of scope) of the lower
domains” (Völter 2013, p. 60). Apart

from the fact that Völter uses an idiosyn-
cratic terminology, where “higher” cor-
responds to “more specific”, he does not
detail how to develop and maintain hi-
erarchies of languages. Kleppe outlines
a vision of future domain-specific lan-
guage systems where she distinguishes
between vernacular languages and ve-
hicular languages. Vernacular languages
serve to cover a wide range of use sce-
narios, whereas vehicular languages are
more specific, local languages that sat-
isfy the needs of particular organizations
(Kleppe 2009, preface). While Kleppe’s
vision clearly corresponds to the mul-
tilevel modeling approach presented, it
is not further elaborated. Krogstie out-
lines a vision of empowering users of
large enterprise systems through enter-
prise models, which not only promote
a better understanding of complex do-
mains but also enable advanced users to
modify a system according to their needs.
To increase the value of enterprise mod-
els, Krogstie demands that they be inter-
active (Krogstie 2007, p. 306). Unlike our
work, Krogstie’s considerations remain
on an abstract conceptual level without
consideration of implementation issues.

In the field of knowledge representa-
tion, also known as semantic web, there
are a few languages based on descrip-
tion logic that permit the representation
of various levels of classification. OWL
Full (W3C 2004, 2009) is one of the most
prominent representatives of these lan-
guages. However, although they provide
powerful modeling concepts and support
reasoning, they are not suited for our
purpose, which is illustrated in the fol-
lowing by referring to OWL. First, OWL
Full does not allow expression of the
classification level of a class, which is a
clear violation of requirement RB-I. Fur-
thermore, the semantics of description
logic, especially the conception of classes,
is clearly different from those of object-
oriented languages: Unlike description
logic, an object is an instance of one and
only one class (Frank 2012a). This kind
of mismatch poses a serious challenge to
the construction of tools based on (meta)
models. Finally, OWL Full does not allow
expression of whether an attribute of a
metaclass is meant to represent a class or
an instance-level feature. Hence, it would
not be possible to represent intrinsic fea-
tures. Walter et al. (2014) propose an
integration of object-oriented metamod-
els and OWL metamodels. However, the
scope is restricted to the MOF, hence to
three classification levels.
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7 Conclusions and Future Work

By reconstructing domain-specific con-
cepts, DSMLs promise to substantially
promote the economics of designing and
using conceptual models and, hence, the
economics of developing, managing, and
maintaining information systems. How-
ever, their design is confronted with the
fundamental conflict between range of
reuse and productivity of reuse or, in
other words, the ambivalent effects of
semantics.

The approach presented in this pa-
per clearly makes it possible to dimin-
ish this conflict. Furthermore, multilevel
modeling enables relaxing the rigid di-
chotomy between instantiation and spe-
cialization, which contributes to reduced
model complexity and allows for a more
natural style of modeling since it cor-
responds directly to proven abstractions
of natural languages. The more specific
a DSML, the easier it is to use, be-
cause it provides clearer guidance and
leaves less leeway for inappropriate con-
structions. Therefore, multilevel model-
ing fosters the empowerment of users by
providing them with concepts they are fa-
miliar with in order to model and eventu-
ally change the domains and information
systems for which they are responsible.

The proposed approach features the
common representation of code and
models. Therefore, it not only facilitates
modeling tools that allow navigation of
multiple language levels and that pro-
mote cross-level model integrity. Fur-
ther, it enables executable models that
allow users to directly query, analyze,
and change models on various levels
of abstraction. Lastly, it enables enter-
prise models to be integrated with en-
terprise software systems, thus providing
the foundation of more advanced, self-
referential enterprise systems (Frank and
Strecker 2009). That in turn, could cause
models to become the primary inter-
face through which users could concep-
tualize, analyze, and modify enterprise
software systems and their surrounding
action systems.

Multilevel modeling is also suited to
effectively promote integration. On the
highest level, a generic common lan-
guage could serve as a minimum stan-
dard to enable modest integration of all
kinds of systems. Reference DSMLs for
certain domains would provide common
concepts on a higher level of seman-
tics (i.e. with less leeway for interpreta-
tion) than generic concepts, thereby en-
abling a higher level of integration for all

systems built with the reference DSML
or one of the DSMLs that were created
using the reference DSML. More spe-
cific DSMLs would enable tighter inte-
gration within narrower domains. There-
fore, multilevel modeling is suited to
reinvigorate the long-standing discussion
on reference models: Instead of build-
ing one reference model for a certain do-
main, it is now possible to construct a hi-
erarchical system of DSMLs that may in-
clude reference models on a lower level.
So far, our work is restricted to static and
functional abstractions. Preliminary in-
vestigations of applying multilevel mod-
eling to dynamic abstractions such as
process models are promising. However,
the development of respective multilevel
languages for process modeling is still a
substantial challenge.

The specific advantages of the pro-
posed approach to multilevel modeling
mainly derive from a recursive language
architecture that is in such clear con-
trast to MOF-like architectures that one
can speak of a paradigm shift. It requires
rethinking familiar concepts, especially
since certain aspects of the new paradigm
seem to be counterintuitive or even para-
doxical, such as the possibility of inher-
iting from a class on a different classifi-
cation level. At the same time, mastering
high-level models such as those shown
in Fig. 7 or Fig. 11 is not a trivial un-
dertaking. Therefore, using the proposed
approach appropriately requires experts
willing to invest considerable time in un-
derstanding its central concepts. Never-
theless, even though higher-level models
will often be complex, they are likely to
be more comprehensible than the code
found in some of today’s enterprise soft-
ware systems. Despite its use in various
industrial projects, XMF is still a lan-
guage that has not been widely dissem-
inated. While this may be regarded as
a serious disadvantage by IT managers,
we do not consider it a substantial draw-
back from an academic perspective. Only
if research takes the freedom to occa-
sionally work with languages and tools
that clearly deviate from mainstream so-
lutions can it develop alternative and ulti-
mately superior solutions that may foster
progress in practice.

Further research is necessary to ex-
ploit the potential of multilevel model-
ing. First, there is a need to design and
evaluate further hierarchies of DSMLs.
Our preliminary investigations in the
area of enterprise modeling indicate that
resources, including IT infrastructures,
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Domain-specific modeling languages
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general-purpose modeling languages.
However, their design poses a funda-
mental challenge. While economies of
scale advocate the development of
DSMLs that can be used in a wide
range of cases, modeling productiv-
ity demands more specific language
concepts tuned to individual require-
ments. Inspired by the actual use of
technical languages (German: “Fach-
sprachen”), this paper presents a novel
multilevel modeling approach to con-
ceptual modeling and to the design of
information systems. Unlike traditional
language architectures such as Meta
Object Facility (MOF), it features a re-
cursive architecture that allows for an
arbitrary number of classification lev-
els and, hence, for the design of hier-
archies of DSMLs ranging from refer-
ence DSMLs to “local” DSMLs. It can
not only diminish the conflict inherent
in designing DSMLs, but enables the
reuse and integration of software ar-
tifacts in general. It also helps reduce
modeling complexity by relaxing the
rigid dichotomy between specializa-
tion and instantiation. Furthermore, it
integrates a meta-modeling language
with a metamodel of a reflective meta-
programming language, thereby allow-
ing for executable models. The spec-
ification of the language architecture
is supplemented by the description of
use scenarios that illustrate the poten-
tial of multilevel modeling and a critical
discussion of its peculiarities.
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as well as goals, are promising subjects.
Multilevel modeling may also be suited
to promoting reuse in business process
modeling, since current process model-
ing languages suffer from a substantial
lack of abstraction (Frank 2012b). Sec-
ond, the design and use of hierarchies
of DSMLs present a number of specific
challenges. From an economic point of
view, there is a need to analyze whether
the effort of creating a further level of ab-
straction can be justified by correspond-
ing benefits such as improved economies
of scale. From an epistemological point
of view, the question is how to deter-
mine the appropriate number of classi-
fication levels for a certain domain. To
analyze this question empirical investi-
gations aiming to discover commonali-
ties and differences within the domain of
interest may seem appropriate. However,
empirical studies alone will not be suffi-
cient because creating DSMLs for reuse
is not only based on reconstructing ac-
tual uses of technical languages. Instead,
it will usually include a prescriptive el-
ement that is aimed at developing con-
cepts better suited for certain purposes.
Furthermore, guidelines are needed for
organizing the design and maintenance
of multilevel DSMLs. Since decisions may
involve resolving the conflicting interests
of language developers and users, coor-
dination mechanisms are required to ac-
count for political aspects, as well. Fi-
nally, these decisions go beyond the scope
of a certain organization or a particular
industry. To take full advantage of mul-
tilevel DSMLs, interested parties would
have to agree on hierarchies of DSMLs
that cover many domains on a global
scale.

We regard multilevel modeling as an
very promising approach not only to
move forward the field of conceptual
modeling, but also for building, using
and maintaining advanced information
systems. In a joint project with one of
the creators of XMF and the Xmodeler
we further develop the Xmodeler, recon-
struct an existing set of DSMLs for enter-
prise modeling and build a prototype of
a self-referential enterprise system.
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