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Abstract 

The portability of a mobile device and the ubiquity of mobile Internet provide e-market 
users with more opportunities of access to e-commerce sites throughout a day. In this 
paper, we examine the access affordance of mobile technologies by analyzing the 
changes in purchase time dispersion of e-marketplace users after their adoption of 
mobile channel. By analyzing a large archival dataset including transactions in the 
mobile and online channels, we find that (1) a user’s purchase time becomes more 
dispersed throughout a day after the mobile channel adoption, and (2) the impact of the 
mobile channel adoption on the purchase time dispersion is significantly different 
across different user groups. These findings present strong empirical evidences of access 
affordance of the mobile channel and how the affordance is realized across e-market 
users. 
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Introduction 

Mobile technologies are transforming e-commerce markets and user behaviors.1 Statistics show that 
transactions through mobile channels (m-commerce) as of the second quarter of 2013 account for about 
11% of the total e-commerce spending in the U.S. (comScore 2013). eBay recently reported it attracted 6.5 
million new mobile customers in the U.S. during the first quarter of 2014 (Rueter 2014). With the 
proliferation of m-commerce, online retailers or marketplaces are trying to take advantage of m-
commerce as a lucrative venue for future growth. Alibaba, for example, announced it will invest heavily on 
developing a platform to help its retailers’ businesses in the mobile channel (Jing 2013). 

Compared to a PC, a mobile device is within an easy reach of a user throughout a day due to the mobility 
and form factor. Further, because most of these mobile devices are Internet-enabled, they allow users to 
connect to Internet applications such as e-marketplaces regardless of the users’ physical locations. 
Therefore, the mobile channel provides a higher level of spatially flexible access to such applications vis-à-
vis the online channel (Bang et al. 2013) and we refer to this as the ubiquitous access capability of the 
mobile channel.2 

Researchers have enhanced our understanding of the role of mobile channels in e-commerce by focusing 
on the ubiquitous access capability and its impact on e-market users’ behaviors. Bang et al. (2013) link the 
capability with the time-criticality of transactions and find the mobile channel launch can lead to either 
cannibalization or synergy effects on the preexisting online channel depending on the extent of time-
criticality of transactions. Ghose et al. (2012) show geographical proximity to brands is associated with 
more searches of the brands on mobile phones. These studies present useful insights into the realization 
of the ubiquitous access capability, suggesting that it depends on the shopping task a user is engaged in 
(Bang et al. 2013) or the geographical location of the user (Ghose et al. 2012). The current paper is in line 
with this emerging stream of research and contributes to it with a different focus from a different 
perspective. Specifically, drawing on the technology affordance perspective, we examine the change of e-
market users’ purchase behavior triggered by the ubiquitous access capability of mobile channel with a 
focus on purchase time dispersion, the degree to which an e-commerce user’s purchase time is dispersed 
over twenty-four hours.  

Time, the focal behavioral dimension in this study, is an important building block of social actions, 
promises, and norms. Each of our social behaviors is under a certain social contract or constraint, which is 
frequently linked with the time. Interestingly, however, despite the importance of the time factor, social 
science has kept quiet on the role of time in explaining social behaviors (Adam 1994). In e-commerce, it 
has been proposed that there are peak times for users’ shopping and therefore, orders follow a distinct 
hourly pattern (NetElixir 2011). Whether purchase time is concentrated or dispersed has implications on 
e-commerce firms’ decision on addressing their users. For example, if concentrated, an e-tailer may 
optimize its advertising impressions and conversions to sales with dayparting on Google AdWords or 
Facebook advertising, but at a very high cost due to other competing bidders for the limited ads slots. 
Purchase time is also an important consideration in targeting users to effectively trigger them to visit the 
e-tailer’s site. If dispersed, timing of targeting may as well be dispersed accordingly, and vice versa. Thus, 
a change in purchase time dispersion with the mobile channel would require e-commerce firms to adapt 
their existing practices. 

Prior studies have addressed user behaviors on digital shopping platforms based on an implicit 
assumption of deterministic or static relationships between users and channels. The relationships are 
derived either from invariant channel capabilities enabled by underlying technologies (e.g., Bang et al. 
2013; Ghose et al. 2012; Kuruzovich et al. 2008) or from consumer profiling (e.g., Gupta et al. 2004). 
However, studies on the impact of technology as a socio-technology assemblage have discredited such 
relationships and shown that users’ technology action is, in fact, more situated, flexible, and dynamic 
(DeSanctis and Poole 1994; Markus and Silver 2008; Orlikowski 2000). From the theoretical lens of 
technology affordance, we view channel usage behaviors as an outcome of flexible and dynamic decisions 
that can change with the users’ usage context and experience. In order to empirically validate the impact 

                                                             
1 We use the terms ‘user’ and ‘consumer’ interchangeably. 
2 In this paper, the online channel means the traditional e-commerce channel based on the stationary Internet. 
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of mobile channel on purchase time dispersion, we analyze large-scale archival data from a leading e-
marketplace in South Korea. In doing so, this study also contributes to the technology affordance 
literature, which has employed narrative or case analyses to derive or verify theoretical arguments, thus 
usually lacking in empirical support for the generalizability of the arguments. 

The rest of the paper is organized as follows. We present the theoretical lens of this study, technology 
affordance, and develop hypotheses. Next, we conduct empirical analyses to test the hypotheses. We 
conclude by discussing implications, limitations, and directions for future research. 

AFFORDANCE OF MOBILE CHANNEL 

Technology Affordance 

Technology affordances are defined as “the possibilities for goal-oriented action afforded to specified user 
groups by technical objects” (Markus and Silver 2008, p.622). Affordances are not exclusive properties of 
user or technology; rather, they are constituted in relations between user and technology. Thus, under this 
perspective, there is no guarantee that technology features determine a certain type of outcome, but users’ 
(or user groups’) technology goals (or intentions) also play an important role in driving the outcomes.  

Users come to a technology with diverse goals, and even for the same user, technology goals can differ 
across various usage contexts. Technology goals can also vary as users’ experience with the technology 
accumulates. With regard to this point, Leonardi (2011) note, “[t]echnologies have material properties, 
but those material properties afford different possibilities for action based on the contexts in which they 
are used. Although the material properties of a technology are common to each person who encounters 
them, the affordances of that artifact are not” (p.153), implying that technology affordance can depend on 
user, usage context, and usage experience.  

Meanwhile, the notion of technology affordance has slightly different nuanced meanings across IS 
scholars. Markus and Silver (2008) view technology affordance as the necessary condition for IT use given 
technical objects. According to them, affordance is a function of user goals (intentions) which can differ 
across user, context, and time, but technical objects exist independent of users’ perceptions. On the other 
hand, another school of thought on technology affordance highlights unexpected, situated and emergent 
actions (Faraj and Azad 2012). Similarly to the enactment of a technology-in-practice (Orlikowski 2000), 
they focus on the aspect of technology affordance that allows users to find a new meaning within the 
context of technology-in-use. Based on the interpretivistic perspective, the same (technical) objects can 
have different meanings and affordance can be enacted from mutual relations between technical objects 
and users, therefore, the same technology can exhibit different affordances to different users. Such an 
enactment can show a different form of usages, compared to what technology implementers (or 
developers) intended or expected beforehand (Faraj and Azad 2012). Lastly, Leonardi (2011) propose 
another perspective by incorporating the role of technology designer (or implementer) in the relation 
between technology and user. Based on the philosophical stance of critical realism, Leonardi (2011)’s 
affordance is a function of user intention given technical objects, but technical objects can be modified or 
adapted to users by technology designers based on feedback from users.  

Although explanations on the technology use (technology outcome) based on the concept of technology 
affordance vary across scholars as explained above, their affordance perspectives commonly guide us to 
look at the mobile channel use in a flexible way in that the affordance can be realized differently across 
users and contexts, and the realization can be dynamic (i.e., can change over time).   

Purchase Time Dispersion and Access Affordance of Mobile Channel 

Prior studies distinguish between mobile and online channels with two features: ubiquity and usability 
(Clarke 2001; Lee and Benbasat 2003; Venkatesh and Ramesh 2006; Zhang 2007). Small screens and low 
level of user interface of mobile devices might hamper users’ interaction with the devices; however, the 
ubiquity of mobile network allows users to connect to the Internet regardless of their locations. Based on 
the ubiquity of mobile channels, Bang et al. (2013) characterize the mobile channel as having ubiquitous 
access capability, while the online channel as having constrained access capability in the context of e-
commerce. 



E-Business 

4 Thirty Fifth International Conference on Information Systems, Auckland 2014  

Users can access the e-market throughout a day; however, their location should be fixed to a place that 
has a PC and Internet connection. Routinized social behaviors, such as going back to work in the morning, 
restrict us from shopping online anytime. On the other hand, mobile channels, thanks to the ubiquity of 
mobile Internet and mobility of devices, are free from the constraints that online channels are subject to, 
and can provide more access possibilities than online channels.  

Enhanced access possibilities provided by mobile channels are not only due to the technical aspects of 
mobile Internet and devices which overcome the geographical limitation and thus time limitation, but also 
can be enacted through technology-in-use. In other words, access affordance of mobile channel can be 
realized even when the online channel is also available. With regard to this point, the project manager 
who was in charge of the mobile channel introduction of the e-marketplace from which our data were 
collected said, 

We figured out significantly large number of mobile transactions are conducted in the middle of night or 
daybreak. That indicates many of our customers are purchasing products in the mobile channel when they 
are at home. That is against our prior expectation. We initially thought the mobile channel usages at night 
would be quite low because we assumed they prefer using PCs to mobile for purchasing products…. Maybe, 
they accessed our e-market followed by unexpected needs to purchase a product while staying in bed. They 
probably don’t want to bother to boot up their PCs.              – Mr. X, Project Manager. 

To sum up, we can shop online when time, space, and situation permit, but these restrictions can be 
mitigated by the availability of a mobile channel. Therefore, with enhanced access possibilities afforded by 
the adoption of the mobile channel, we can expect that purchase time of a user would become more 
dispersed throughout a day. This leads to the following hypothesis: 

H1. A user’s purchase time becomes more dispersed throughout a day after the mobile channel adoption.   

Under the affordance perspective, however, it cannot be assured that such a capability determines a 
certain purchase behavior for all users. The realization of this access affordance will depend on users’ 
shopping goals, which would differ across users, usage context, and usage experience. Since time-related 
social constraints depend on user groups (e.g., a businessperson might have working hours from 9AM to 
6PM, while a professor or a college student might have a more flexible work schedule), the extent of 
purchase time dispersion induced by the mobile channel adoption could be heterogeneous across user 
groups. Further, since users’ interpretation over technology evolves over time as they interact with the 
technology, their technology usage pattern would be dynamic. For example, users might find the mobile 
channel difficult to use at the initial stage, but would make better use of it as they become used to the new 
channel over time. The above discussion results in the following hypotheses: 

H2a. The impact of the mobile channel adoption on purchase time dispersion is heterogeneous across 
different user groups. 

H2b. The impact of the mobile channel adoption on purchase time dispersion is dynamic (i.e., time-
varying) as users’ experience accumulates in the mobile channel. 

Empirical Analysis 

Data Description 

This study uses two large datasets from a major e-marketplace in South Korea, which introduced the 
mobile channel on June 1, 2010 to its more than ten million users of the existing online channel.3 The first 
dataset contains a random sample of 30,000 users, who did not adopt the mobile channel until one year 
after the introduction of the mobile channel, and their entire online orders (1.45 million) during more 
than two years (March 1, 2009-June 1, 2011). The second dataset contains a random sample of 30,000  

                                                             
3 The e-marketplace launched its mobile web page on June 1, 2010, which we call the mobile channel launch. Before 
the launch, users could access the PC version web of the e-marketplace via their feature phones or smartphones. 
However, from the technology affordance perspective, we do not regard the access mechanism as a mobile channel 
because it could not afford the users' effective access to the information on the site and execution of their shopping 
tasks. After the launch of the mobile web page, an access with a mobile device was directed to the mobile web page 
and any purchase incidents during the access were recorded as transactions in the mobile channel.” 
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Table 1. Basic Description on Data 

Total Number of Orders                                                                                                     
 Treatment Group Control Group 
Number of orders 381,256 870,708 
Number of orders by hour of day 

00h 
01h 
02h 
03h 
04h 
05h 
06h 
07h 
08h 
09h 
10h 
11h 
12h 
13h 
14h 
15h 
16h 
17h 
18h 
19h 
20h 
21h 
22h 
23h 

 
22,538 
15,821 

9,137 
5,570 
3,421 
3,009 
3,254 
4,601 
7,172 

12,411 
17,143 

22,935 
20,795 
22,477 
21,988 
21,164 
20,901 
20,274 
16,522 
14,991 
18,327 
22,983 
26,343 
27,479 

 
44,577 
30,113 
17,451 
10,354 

6,765 
4,861 
5,260 
7,966 

15,245 
30,893 
45,917 
58,815 
54,128 
59,822 
57,772 
55,944 
55,611 

49,450 
38,190 
32,407 
36,395 
44,911 
51,995 
54,673 

Total Subjects 6,477 17,349 
Gender Female 3,289 10,691 

Male 3,188 6,658 
Age  ≤ 20 362 626 

21~25 1,592 2,559 
26~30 2,143 4,795 
31~35 1,344 4,547 
36~40 639 2,572 
41~45 245 1,185 
46~50 93 531 
51≤ 59 534 

 
and frequency. The remaining dataset consist of 6,477 users and their 381,256 order records. For the 
control group, we eliminated from Dataset 1 those users who joined the e-marketplace after March 1, 
2009, resulting in 17,349 users and their 870,708 records. Table 1 shows the descriptive statistics of the 
treatment and control groups. 

Analysis Result 

Table 2 shows the purchase time dispersion by group and time window, and differences of the purchase 
time dispersion, without the control variables accounted for. Cell (7) shows that the purchase time became 
more dispersed after the mobile channel adoption, and Cell (11) shows that it is still valid after the 
common macroeconomic effect influencing both groups are controlled for. Cell (12) shows no difference 
between the adopter and non-adopter groups in purchase time dispersion changes from Window_Pre to 
Window_Before. This result partly indicates the common time trends of the two groups. Lastly, Cell (13) 
implies that the purchase time became more dispersed after the mobile channel adoption after we 
controlled for the common macroeconomic effect, time-invariant group-specific effects, and group-
specific time trends. 
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Table 2. Purchase Time Dispersion by Panels and Time windows 

Panel A: Adopter group (nA=6,476) Differences 
Window_Pre 

(1) 
Window_Before 

(2) 
Window_After 

(3) 
[(3) ‒ (2)] 

(7) 
[(2) ‒ (1)] 

(8) 
.335 (.005) .392 (.002) .464 (.004) .072 (.005) .057 (.005) 

Panel B: Non-adopter group (nNA=17,349)  
Window_Pre 

(4) 
Window_Before 

(5) 
Window_After 

(6) 
[(6) ‒ (5)] 

(9) 
[(5) ‒ (4)] 

(10) 
.355 (.003) .401 (.002) .415 (.003) .015 (.003) .046 (.003) 

Difference-in-differences 
[(7) ‒ (9)] 

(11) 
[(8) ‒ (10)] 

(12) 
.057*** (.006) .012 (.007) 

Difference-in-differences-in-differences 
[(11) ‒ (12)] 

(13) 
.045*** (.010) 

            Note: *p<0.05, **p<0.01, ***p<0.001; two-tailed tests. 

 

Table 3. DDD Estimation with Control Variables 

Dependent Variable = Purchase Time Dispersion 
Explanatory Variables Coefficients (Std. Err.) 

Constant (β0) 0.243 (0.030)*** 
 Adopter-group indicator (β1) −0.018 (0.006)** 

After-period indicator (β2) 0.077 (0.004)*** 
Adopter-group indicator ൈ After-period indicator (β3) 0.059 (0.007)*** 

Before-period indicator (β4) 0.066 (0.004)*** 
Adopter-group indicator ൈ Before-period indicator (β5)  0.016 (0.007)* 

Control Variables 
Search behaviors  
Proportion of orders searched either through keyword typing 

or category browsing  
−0.004 (0.007) 

Mean number of product categories per order −0.008 (0.004)* 
Mean display rank of orders 0.001 (0.000)* 

Privacy-related behaviors  
Email promotion allowance 0.002 (0.003) 

SMS promotion allowance −0.004 (0.003) 
Whether to report personal interests −0.001 (0.003) 

Whether to authorize personal information transfer 0.150 (0.005)*** 
Transaction risk-related behaviors  

Product return or cancellation ratios −0.060 (0.010)*** 
Whether to request e-mail or SMS confirmations for 

transactions 
0.008 (0.005) 

Whether to use a safer login system  0.024 (0.013) 
Assurance-seeking behaviors  

Ratio of orders with a minimum quality guarantee −0.023 (0.008)** 
Ratio of orders with a price-matching guarantee  −0.180 (0.010)*** 

Demographics  
Age (years) 

Gender (0=male, 1=female) 
0.000 (0.000)* 
−0.003 (0.004) 

Density of orders by day of the week (6 dummies) χ2 = 6.43, Prob. > χ2 = 0.376 
Density of orders by product category (37 dummies) χ2 = 266.92, Prob. > χ2 = 0.000 

Note: *p<0.05, **p<0.01, ***p<0.001; two-tailed tests. The list of thirty-eight product categories used in the 
analysis is provided in Appendix 2. 
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Among the 8,818 mobile channel adopters, 1,707 users (19.4%) were clustered into Class 1 and 7,111 users 
(80.6%) into Class 2 based on estimated posterior probabilities (Table 4 and Figure 5). Class 1 is a group 
of users who showed insignificant changes in the purchase time dispersion, while Class 2 showed an 
increasingly diversified pattern in their purchase time throughout a day after adopting the mobile channel. 
The average purchase time dispersion before mobile channel adoption (t=0) was much higher for Class 1 
than for Class 2, suggesting users in Class 1 might have had a more flexible time table (e.g., college 
students), and been less subject to time constraints with respect to purchasing products from the e-
marketplace, compared to users in Class 2 (e.g., business people). Consequently, there was no impact of 
mobile channel adoption on their purchase time dispersion. On the other hand, users in Class 2 have 
received benefits from using the mobile channel. The mobile channel seems to have liberalized their 
purchase time – they could enjoy anytime shopping by using the channel. The GMM results confirm the 
existence of user segments and heterogeneous effects of the mobile channel adoption on the purchase 
time dispersion across the user segments, suggesting access affordance of the mobile technology was 
realized differently across user segments. Furthermore, the continuous increase in purchase time 
dispersion of Class 2 (Figure 5) shows the adaptation of the user group to using the mobile channel as 
their transaction experience in the channel accumulates, indicating the dynamic nature of the realization 
of access affordance over time. This result is consistent with our early conjecture and supports H2a and 
H2b.  

 

Table 4 Growth Mixture Model Results 

2-class Model Class Size Slope Intercept 
Class 1  n1=1,707 (19.4%) 0.000 (0.009) 0.457 (0.015)*** 
Class 2  n2=7,111 (80.6%) 0.057 (0.009)*** 0.221 (0.015)*** 
Control Variables    
Search Needs 

Proportion of orders searched either through 
keyword typing or category browsing  

0.014 (0.002)*** 0.011 (0.004)** 

Mean number of product categories per order -0.005 (0.001)*** -0.003 (0.002) 
Mean display rank of orders 0.000 (0.000) 0.000 (0.000) 

Privacy Concerns 
Email promotion allowance 

 
0.004 (0.001)** 

 
0.004 (0.002) 

SMS promotion allowance 0.001 (0.001) −0.002 (0.002) 
Whether to report personal interests -0.002 (0.001) 0.002 (0.002) 

Whether to authorize personal information transfer  0.002 (0.001) 0.005 (0.002)* 
Transaction risk-related behaviors 

Product return or cancellation ratios  
 

0.016 (0.003)*** 
 

0.011 (0.006) 
Whether to request e-mail or SMS confirmations  -0.002 (0.002) -0.003 (0.003) 

Whether to use a safer login system  -0.020 (0.004)*** 0.006 (0.007) 
Assurance-seeking behaviors 

Ratio of orders with a minimum quality guarantee  
 

0.016 (0.003)*** 
 

0.009 (0.004) 
Ratio of orders with a price-matching guarantee  0.009 (0.004)* 0.022 (0.006)*** 

Demographics 
Age (years) 

 
0.000 (0.000) 

 
0.000 (0.000) 

Gender (0=male, 1=female) 0.003 (0.001)* 0.003 (0.002) 
Preference on Day of Week (6 dummies) 

Not shown for expositional brevity 
Preference on Product Categories (37 dummies) 

Note: *p<0.05, **p<0.01, ***p<0.001; two-tailed tests. Class counts and proportions for the latent class patterns are 
based on estimated posterior probabilities. The list of thirty-eight product categories used in the analysis is provided 
in Appendix 2. 
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mobile world, however, thanks to the access affordance of mobile channel, e-market users could purchase 
products anytime they want, resulting in other traditionally non-peak time slots becoming attractive to 
advertisers. By lowering the advertising costs for advertisers and increasing the time slots the ads 
platform operators can sell, this purchase time dispersion due to mobile channel adoption can lead to a 
“win-win” situation for the two parties.  

This paper also provides important implications to e-commerce firms. E-commerce users’ purchase 
behavior is not uniform in the time dimension, which has been a rationale behind the suggestion that e-
commerce firms should consider time during a day as a decision variable in addressing the users (e.g., 
dayparting in online advertising). Our results show that the behavioral patterns are subject to changes 
with adoption of new technologies (i.e., the mobile technology). Further, as the GMM analysis indicates, 
the same mobile technology does not necessarily lead to changes in purchase time dispersion in similar 
ways across users; and the change may not be instantaneous but may involve users’ adaptation over time. 
These results imply that e-commerce firms need to monitor and understand users’ purchase time patterns 
continuously, and adjust their practices, including targeting and advertising, accordingly. 

Our study has a few limitations. First, our data do not allow us to consider multi-channel usage behaviors. 
For example, e-marketplace users might search for products in the PC channel, and then purchase the 
products in the mobile channel which has ubiquitous access capability. Although consumers are likely to 
purchase at the moment when they have enough information about the product, consumers could exploit 
the benefits of each channel (Han et al., 2013). Collecting data regarding multi-channel usages and 
examining the hopping from one channel to another will be an interesting avenue for future research. 
Second, since our data was obtained from a single e-marketplace, users’ experience at other online 
retailers or marketplaces could not be considered in the analysis. Although the e-marketplace is the 
largest in terms of revenue in the mobile commerce market in South Korea, users’ mobile commerce 
experience could be accumulated through other competing e-markets as well. Our study can be extended 
by examining the impact of users’ mobile channel experiences at one e-market on their usage behaviors at 
other e-markets.   
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Appendix 1. 

yti = β0 + β1·1(i=A) + β2·1(t=after) + β3·1(i=A)·1(t=after) + β4·1(t=before) + β5·1(i=A)·1(t= before) + εti, 

E[yti | i=A, t=after] = β0 + β1 + β2 + β3, E[yti | i=A, t=before] = β0 + β1 + β4 + β5, E[yti | i=A, t=pre] = β0 + β1,   

E[yti | i=NA, t=after] = β0 + β2, E[yti | i=NA, t=before] = β0 + β4, E[yti | i=NA, t=pre] = β0,      

DD(before, after) = ൫yതୟ୤୲ୣ୰
୅ െ yതୠୣ୤୭୰ୣ

୅ ൯ െ ൫yതୟ୤୲ୣ୰
୒୅ െ yതୠୣ୤୭୰ୣ

୒୅ ൯, ∴  E[DD(before, after)]  = β3 െ	β5 

DD(pre, before) = ൫yതୠୣ୤୭୰ୣ
୅ െ yത୮୰ୣ୅ ൯ െ ൫yതୠୣ୤୭୰ୣ

୒୅ െ yത୮୰ୣ୒୅ ൯, ∴  E[DD(pre, before)] = 	β5 

Therefore, DDD = DD(before, after) െ DD(pre, before) ൌ β3 െ 2β5 

Appendix 2. The List of Thirty-eight Product Categories Used in the Analysis 
 

1. Cellphone/Smartphone  
2. Digital Camera/DSLR Camera 
3. MP3/PMP/Electronic Dictionary 
4. Digital Goods (Software, Game) 
5. PC-related Peripherals 
6. TV/Fridge/Washing Machines 
7. e-Coupons/Gift Cards 
8. Furniture 
9. Bag/Wallet/Fashion Accessories 
10. Health/Siler Products 
11. Golf Clubs/Supplies 
12. Men’s Fashions/Apparel/Underwear 
13. GPS/Black Box 
14. Laptop/Desktop PC 
15. Book/Music/DVD 
16. Hiking/Outdoor/Camping/Fishing 
17. Stationery 
18. Baby Products 
19. Senior Clothing 
20. Daily Supplies 
21. Skin Care/Cosmetics 
22. Sports Equipment 
23. Watches/Jewelry/Fashion Accessories 
24. Fresh Goods (Agricultural Products, Marine Products) 
25. Flowers 
26. Women’s Fashions/Apparel/Underwear 
27. Shoes 
28. Travels/Hotels/Airline Tickets 
29. Children’s Apparel 
30. Sound/Speaker 
31. Automobile (Tires, Parts) 
32. Toy/Doll 
33. Kitchen Appliances/Supplies 
34. Confectionary/Processed Food 
35. Childbirth/Maternity Dress 
36. Bedding/Curtain/Carpet 
37. Shopping Abroad 
38. Perfume/Hair/Body 

 

 


