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Abstract

Predictive  analytics  is  an  important  part  of  the  business  intelligence  and  decision  support  systems  
literature and likely to grow in importance with the emergence of big data as a discipline. Despite their  
importance, the accuracy of  predictive methods is  often not assessed using statistical hypothesis tests.  
Furthermore, there is no commonly agreed upon standard as to which questions should be examined when  
evaluating predictive methods. We fill this gap by defining three questions that involve the overall and  
comparative predictive accuracy of the new method. We then present a unified statistical framework for  
evaluating predictive methods that can be used to address all three of these questions. The framework is  
particularly versatile and can be applied to most problems and datasets. In addition to these practical  
advantages over hypotheses tests used in previous literature, the framework has the theoretical advantage  
that it is not necessary to assume a normal distribution.

Keywords:  Machine learning, statistical methods, predictive modelling, business intelligence, decision 
support systems

Introduction

Predictive  analytics  is  an  important  part  of  information  systems  research  and  likely to  grow in  importance  with  the  
emergence of big data as a discipline. It involves the use of quantitative techniques, generally machine learning algorithms,  
to build predictive models (Shmueli and Koppius 2011). It plays an important role in the business intelligence (Watson and 
Wixom 2007) and decision support systems literature and is highly relevant to both researchers and practitioners.

Despite the importance of predictive analytics, we notice that the accuracy of predictive methods is often not assessed using 
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proper statistical hypothesis tests and that the literature lacks a commonly agreed upon standard as to which questions 
should be examined when evaluating predictive methods. The purpose of this paper is to fill this gap by introducing three 
questions to consider when evaluating a predictive method. In addition, we present a unified statistical framework that can  
be used to address all three of these questions and is applicable to a wide variety of problems and datasets.

Shmueli and Koppius (2011) emphasise the importance of predictive analytics in information systems research and contrast  
predictive analytics with explanatory statistical modelling. They argue that predictive accuracy should be evaluated on the  
basis of out-of-sample predictions using measures such as root mean squared error (RMSE) or mean absolute percentage 
error (MAPE). They advocate the use of predictive analytics not only for the development of decision support systems, but  
also  for  theory  building  or  the  evaluation  of  theoretical  models.  See  Shmueli  (2010) for  a  thorough  discussion  of 
philosophical issues related to this approach.

The framework proposed in this paper is based on their findings, especially their emphasis on the importance of an out-of-
sample evaluation. We extend the approach by introducing a unified statistical  framework for evaluating out-of-sample 
predictions and precisely defining the questions to be examined when evaluating predictive methods. Our framework is  
meant to be used both in the more traditional context of evaluating decision support systems as well as the more modern  
context of evaluating competing theories.

In our view there are three questions that are of interest when evaluating a predictive method:

1. Does the predictive method generate statistically significant out-of-sample predictions?

2. Do the out-of-sample predictions outperform out-of-sample predictions generated by alternative methods in a statistically 
significant manner?

3. Are the out-of-sample predictions generated by the predictive method statistically significant corrected for the predictions 
generated by alternative methods?

We argue that the examination of all of these three questions is necessary for a thorough and rigorous evaluation of a  
predictive method.

Some might argue that the first question is already implied by the second and does not require explicit examination. We 
disagree for two reasons: First, we might be comparing the new predictive method to a method that is so poor that it does  
worse than a random walk. In that event, the new method might outperform the old one, even though it does not outperform 
a random walk. Second, it is in itself interesting to know which of the methods evaluated is actually useful. If the best  
method cannot be used (maybe because it is computationally too expensive), we would like to know which of the alternative 
methods evaluated might be an appropriate substitute.

The second question is the one question most papers focus on. In predictive analytics, it is common practise to compare the  
out-of-sample predictions of a newly introduced predictive method with the out-of-sample predictions of state-of-the-art  
approaches. We agree with the importance of doing so. However, we posit that such comparisons should be supported by 
statistical hypothesis testing to attain scientific rigour.

To  see  the  importance  of  the  third  question,  suppose  that  method  A is  outperformed  by  method  B.  This  does  not  
automatically imply that method A is useless. If it can be shown that method A can make correct predictions when method B  
fails to do so and thus compensates its weaknesses, the two methods can be combined to an ensemble that generates more  
accurate predictions than each of the individual methods. However, if the correct predictions generated by method A are 
mainly a subset of the correct predictions generated by method B, then method A is less useful.

In our view, anyone introducing a new predictive method should demonstrate that both question 1 and either question 2 or 
question 3 are in the affirmative with regards to the newly introduced method. If so, the novel method has been shown to be 
useful and to constitute a contribution to the literature.

In this paper, we present a unified statistical framework for hypothesis testing that can be used to address all of the three 
question mentioned above. It can be used for regression, classification and multi-label classification problems. Predictions 
can be both continuous or discrete. It can be used to test individual predictive methods or several predictive methods at  
once. It is even applicable when the assumption of a normal distribution fails. 

The framework thus has several theoretical and practical advantages over the hypotheses tests used in the current predictive  
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analytics literature.

The remainder of this paper is organised as follows: In the next section, we examine how the three questions have been 
evaluated in recent predictive analytics literature. We then introduce the mathematical concept underlying the framework. 
Afterwards, we evaluate the framework by comparing it to a more traditional approach of evaluating predictive methods.  
Finally, we discuss our findings and show how our framework can be used to address the three critical issues that need to be 
considered when evaluating predictive methods. We then conclude.

Literature Review

We carefully reviewed the recent literature on predictive analytics focusing on how each of the three questions listed above  
has been evaluated. An overview is given in Table 1.

Table 1. Evaluation of Statistical Significance in Predictive Analytics

Method Author(s)

Accuracy  of 
predictive 
method

t-test Yen and Hsu 2010

Unclear Schumaker 2013

Evaluated  without 
using a hypothesis test

David et al. 2012; Hagenau et al. 2013; Lee et al. 2011

Accuracy  of 
predictive 
method  in 
comparison  to 
alternative 
methods

Analysis  of  variance 
(ANOVA)

Zhao et al. 2011

Diebold-Mariano test Sermpinis et al. 2012

t-test Abbasi et al. 2010, 2012; Cao et al. 2012; Carbonneau et al. 2011; Chan and 
Franklin 2011; Khansa and Liginlal 2011; Kim et al. 2011; Li et al. 2012; Li and 
Chen 2013; Oh and Sheng 2011; Sahoo et al. 2012; Yang et al. 2010

Wilcoxon  signed-rank 
rest

Kao et al. 2013; Lu et al. 2012

Unclear Bhattacharyya et al. 2011; Cui et al. 2012; Du Jardin and Séverin 2011; Li et al.  
2014

Evaluated  without 
using a hypothesis test

Bai 2011; Bao et al. 2013; Choi et al.  2011, 2013; Delen 2010; Delen et al.  
2013; Gerber 2014; Hagenau et al. 2013; Kisilevich et al. 2013; Lau et al. 2013; 
Lee et al. 2011, 2012; Li and Wu 2010; Lu et al. 2012; Olson and Chae 2012; vd 
Reijden and Koppius 2010; Serrano-Cinca and Gutiérrez-Nieto 2013; Shin et al. 
2013; Su et al. 2012; Yolcu et al. 2013

Accuracy  of 
predictive 
method 
corrected  for 
alternative 
methods

Evaluated  without 
using a hypothesis test

Serrano-Cinca and Gutiérrez-Nieto 2013

We find that only few papers explicitly evaluate the overall accuracy of the predictive method and even fewer employ 
statistical hypothesis tests to do so. This might be partly attributable to the fact that standard accuracy measures such as  
RMSE or MAPE, as proposed by Shmueli and Koppius (2011), are difficult to interpret in an absolute sense and are more 
suitable for  a  relative  comparison of  different  predictive methods.  Nevertheless,  we believe  this  to  be  problematic as  
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knowing which of the evaluated methods generates statistically significant predictions is necessary in order to advance 
scientific knowledge on the specific problem domain. We would argue that if we cannot demonstrate that the predictive  
method we propose generates statistically significant out-of-sample predictions, said method may be of little practical or  
academic relevance.

The most common proof-of-concept in the literature is to compare the predictions generated by the proposed predictive  
method to existing state-of-the-art methods in order to demonstrate that it constitutes an improvement. Whereas we agree 
with the need to compare new methods with existing state-of-art approaches, we note that it is often unclear whether the 
outperformance is  statistically significant. We argue that it is necessary to examine the statistical significance of an out-of-
sample  outperformance  in  order  to  attain  scientific  rigour:  If  we  cannot  demonstrate  that  the  outperformance  of  our  
proposed method is statistically significant, we cannot be certain that this outperformance is not simply attributable to the  
particular settings of one experiment such as the specific dataset used.

Finally, only one of the papers we reviewed (Serrano-Cinca and Gutiérrez-Nieto 2013) explicitly examined the accuracy of 
the  predictive  methods  corrected  for  alternative  methods.  However,  this  examination  was  conducted  without  using  a  
statistical hypothesis test. We argue that an examination of the accuracy of the predictive methods corrected for alternative 
methods is  a good alternative to the concept of outperformance: If  a new predictive method does not demonstratively 
outperform existing methods, then it might still be useful and interesting if it can be shown that the out-of-sample accuracy  
of the predictive method corrected for existing methods is still statistically significant. Such a finding implies that the new 
method compensates  weaknesses  of  existing  methods  and  the  methods  could  be  combined  to  form an  ensemble  that  
generates more accurate predictions.

The paired t-test is by far the most popular statistical hypothesis test in previous literature (see Table 1). Other tests used are  
the Wilcoxon signed-rank test, ANOVA or the Diebold-Mariano test  (Diebold and Mariano 2002), which is specifically 
developed for time series. However, these tests have a number of practical and theoretical shortcomings that undermine 
their applicability and reliability: First, existing statistical hypothesis tests cannot be used for multiple label classification 
problems. Second, when constructing an ensemble of algorithms, we might be interested in the predictive accuracy of the  
combined algorithms before training any specific MetaLearner. Existing statistical hypothesis tests cannot be used for such 
purposes. Third, existing statistical hypothesis tests cannot be used to evaluate the accuracy of predictive methods corrected 
for alternative methods. This is of particular relevance for examining question 3. Fourth, existing statistical hypothesis tests 
rest on the assumption of a normal distribution. If that assumption fails, the tests are no longer reliable. Even though this is a  
well-known fact, little attention has been paid to the issue in previous literature. This implies that potentially unreliable  
statistical hypothesis tests have been applied.

The framework for statistical hypothesis testing proposed in this paper does not suffer from any of these shortcomings.  
Moreover,  it  can be used for regression, classification and multi-label  classification problems. Predictions can be both  
continuous  or  discrete.  Most  importantly,  it  offers  a  unified  framework  to  evaluate  the  out-of-sample  performance of 
predictive methods along the lines of all of the three questions listed above.

Calculation

Mathematically, the statistical hypothesis test consists of three propositions, which we introduce in this section. Detailed  
mathematical proofs for the propositions are presented in Appendix 1.

Basic Idea of the Statistical Hypothesis Test

Suppose we have m continuous or discrete random variables  X1, X2, X3,..., Xm. The variables Xa, a=1,2,...m, are drawn 
without replacement from a dataset of out-of-sample predictions of m predictive methods. Further suppose that we have n  
continuous  or  discrete  dependent  random variables  Y1,  Y2,  Y3,...,  Yn.  The  variables  Yc,  c=1,2,...n,  are  drawn  without 
replacement from a dataset of the values for the testing set that the predictive methods have been trained to predict. In most 
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regression problems, we would find that m=n=1, but for multi-label classification problems the values for m and n are 
greater than one.

Let xi
a denote the ith value in the dataset associated with variable Xa. Let yj

c denote the jth value in the dataset associated with 
variable Yc. Let N be the number of instances in the dataset.

Define the variable Xc
a as follows:

(1)

We interpret  Xc
a as  a  random variable that  has been constructed by randomly drawing from the two datasets  without 

replacement.  We then  establish  the  null  hypothesis  that  the  variables  X 1,  X2,  X3,...,  Xm do  not  constitute  statistically 
significant predictions for the variables Y1,  Y2,  Y3,...,  Yn.  In  other words,  our null hypothesis is that the out-of-sample 
predictions of the predictive methods have no predictive value:

(2)

Let X be a vector containing the Xc
a for all a and c, with one exception: Where ever a subset of the random variables Xc

a is 
linearly dependent, we exclude one of these variables from X. (See Proposition 1 for the rationale.)  

We then approximate Xc
a using a normal distribution. Note that we are not assuming any specific underlying distribution of 

the variables Xa and Yc themselves. See below for an alternative method to be used when the normal approximation is  
judged to be too inaccurate.

Let V be the variance-covariance matrix of X. It follows from our assumptions that we can model X using a chi-squared 
distribution:

(3)

Having introduced the basic idea of the statistical hypothesis test, we are left with three questions:

1. In order to ensure that X is not linearly dependent, we have left out some variables. Does this make our model arbitrary?

2. How do we calculate the variances and covariances in V?

3. How do we evaluate the statistical significance of a prediction given the predictions of other predictive methods?

These three questions are addressed in Propositions 1, 2 and 3 respectively.

Proposition 1: Proof of Non-Arbitrariness of the Model

As mentioned above, we do not include Xc
a  in  X if the inclusion would cause  X to contain a subset of variables that are 

linearly dependent. The reason for this is simple: If there were a subset of variables in  X that are linearly dependent,  V 
would be a singular matrix and V-1 could not be found. 

However, if there is a subset of variables that are linearly dependent, we have to eliminate one of these variables arbitrarily.  
This raises a very important question: If there is no justification which of these variables to eliminate, and we are thus  
forced to eliminate one of these variables arbitrarily, is our model outcome arbitrary?

Proposition  1  states  that  the  model  outcome is  not  arbitrary,  because  it  does  not  matter  which  of  these  variables  is  
eliminated, the model outcome will always be the same.

Intuitively we can interpret this proposition as follows: We know that a set of variables is linearly dependent, then taking  
away one variable does not eliminate any information, because the last variable is automatically implied by all the others.
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More formally, we can express our proposition as follows: Consider n+1 random variables, X1, X2, X3,..., Xn+1  for which X1 

+ X2 + X3 +...+ Xn+1= 0. Consider an additional set of random variables, Y1, Y2, Y3,..., Ym that are not linearly dependent. Let 
Xi be a vector containing all X with the exception of Xi . Let Y be a vector containing all Y. Let Vi and VY be the variance-
covariance matrix of  Xi  and Y respectively and let  σi be the matrix containing their covariances. Proposition 1 states the 
following:

(4)

Proof: See Appendix 1.

Proposition 2: Calculating the Elements of V

In order to calculate the variance-covariance matrix V of X, we need to calculate the variances under the null hypothesis for 
every element Xc

a that is part of X and their respective covariances.

Recall that we have interpreted Xc
a as a random variable that has been constructed by randomly drawing from the dataset  

without replacement. We can therefore interpret this problem as a generalisation of the hypergeometric distribution. Suppose 
that there is another variable in X that we denote as Xd

b. 

Proposition 2 states that cov(Xc
a, Xd

b) can be calculated as follows:

(5)

Proof: See Appendix 1.

Note that this formula is also applicable to cases where a=b and/or c=d. When a=b and c=d the above formula is equivalent  
to calculating the variance of Xc

a.

Note further that in the special case in which xi
a and can yj

c only assume the values 0 or 1, a equals b and c equals d, this 
formula reduces to the standard formula for the variance of the hypergeometric distribution. When a equals b or c equals d, 
it  reduces  to  the  standard  formula  for  the  covariance  of  the  hypergeometric  distribution.  This  is  consistent  with  our 
interpretation of the problem as a generalisation of the hypergeometric distribution.

Finally note that this is not an estimate of the variance-covariance matrix under the null hypothesis, but that it actually is the 
variance-covariance matrix under the null hypothesis.

Proposition 3: Evaluating Statistical Significance Corrected for Other Predictive Methods

Suppose X1 and X2 are two random variables of length n1 and n2 respectively. Further suppose that their expected values is 0, 
their variance-covariance-matrices are V1 and V2 respectively and their mutual covariance matrix is σ12.

(6)

Proposition 3 states that (6) is a squared Mahalanobis distance. Furthermore, assume that X1 and X2  are multivariate normal. 
Then:

(7)
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Proof: See Appendix 1.

There is a simple interpretation to Proposition 3: The difference between the two chi-squared distributions is in itself chi-
squared distributed and can be interpreted as the statistical significance of X2 corrected for X1. Note that this result is non-
trivial as the difference between two chi-squared distribution is generally not chi-squared distributed.

When the Normal Approximation Fails: The Monte Carlo Method

Lahiri et al. (2007) demonstrate that the accuracy of a normal approximation to the hypergeometric distribution increases  
with the sample size and decreases with a larger deviation of the number of possible successes and the number of draws  
from 50% of the total number of samples. In  addition to these factors,  the accuracy of a normal approximation to the  
distribution proposed in this paper will depend on the prevalence of outliers.

For cases in which the approximation error is judged to be unacceptably large, we propose an alternative procedure: We  
reinterpret the test statistics defined in (3) and (6) as the squared Mahalanobis distance of the observation from the expected 
value  under  the  null  hypothesis.  Essentially,  a  chi-squared  test  is  designed  to  calculate  the  probability that  a  random  
procedure would produce an observation with a Mahalanobis distance that is greater or equal a given value.

Where the normal approximation and thus the chi-squared test  fails,  we construct  a new test  based on a Monte Carlo  
experiment: For this experiment, we rearrange values yj

c randomly, such that yj_new
c = yj_old

c and yj_new
d = yj_old

d  for all c, d. We 
now know that the null hypothesis (H0) is true and we calculate the test statistic as defined in (3) or (6), depending on what 
we want to test. We repeat this procedure a large number of times and record the test statistics generated.

We then compare the randomly generated test statistics to the test statistic based on the original values. Our new p-value  
will be the share of randomly generated test statistics that exceed the test statistic based on the original values.

Note that E(Xc
a) and V are unaffected by the random rearrangement of values y j

c. We only need to recalculate Xc
a as defined 

in (1). Since this is computationally very cheap, the Monte Carlo method is computationally feasible even for large datasets 
and a large number of iterations.

Note further that the proposed methods of calculating E(Xc
a) and V are accurate regardless of whether a normal distribution 

is assumed.

Using the Concept to Address the Three Questions

Having introduced the mathematical concept underlying the statistical framework, we are still left with the question how the  
concept can be used to address the three questions introduced in the first section of this paper. 

The first question can be examined using equations (1), (2), (3) and (5). Equation (3) defines the test statistic itself. Its input 
variables X, E(X) and V are defined in equations (1), (2) and (5) respectively. When the normal approximation is judged to 
be appropriate, the test statistics can be interpreted as chi-squared distributed under the null hypothesis. Otherwise, it can be 
compared with the results of the Monte Carlo experiment.

The second question can be examined by slightly modifying the approach defined above. For a pairwise comparison of two  
predictive methods, their out-of-sample predictive accuracy should first be measured using an appropriate loss function,  
such as the squared prediction error. We then create a dataset of size 2n consisting of the squared prediction errors of the  
predictive methods we want to compare. These are our values for xi

a as defined in equation (1). yi
c is then a dummy variable 

that assumes the value of 1 if xi
a has been generated by the new method and 0 otherwise.

The null hypothesis we examine in the second question is that there is no statistically significant difference between the  
predictive errors generated by the two methods. We can therefore apply equations (1), (2), (3) and (5) in a similar fashion as  
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above.

The third question can be examined using equations (1), (2), (3), (5) and (7). We first calculate the test statistic as defined in  
equation (3) for the combined predictions of the new predictive model(s) and the predictive model(s) we would like to 
correct  for.  We then do the same only for  the predictive model(s)  we would like to correct  for.  By equation (7),  the  
difference  between  the  two test  statistics  is  in  itself  chi-squared  distributed  under  the  null  hypothesis,  if  the  normal  
approximation is judged to be appropriate. Otherwise, the Monte Carlo approach can be employed.

Evaluation

We evaluated the usefulness of our framework by comparing it  to a  more traditional  approach of assessing predictive 
accuracy. As an illustration, we used the digits dataset, which is a public domain dataset commonly used in the computer 
science literature for evaluating machine learning algorithms. The purpose of the dataset is to train algorithms to recognise  
handwritten digits. The dataset contains a total of 1797 samples (about 180 for each digit) and 64 features. We selected 13 
machine learning algorithms and used the machine learning library scikit-learn, which was developed by Pedregosa et al. 
(2011) for Python. All of these algorithms are standard predictive methods widely accepted and used in the recent predictive  
analytics literature. We created out-of-sample predictions using stratified 10-fold cross-validation.

We calculated the RMSE based on the probabilistic out-of-sample predictions generated by each of the 13 algorithms.  We 
then sorted the algorithms in order of their predictive performance and used Welch's t-test to test whether the difference of  
the squared prediction errors for each of these algorithms in comparison to the next algorithm is statistically significant.  
Results are reported in Table 2.

Table 2. Results for the digits dataset (t-test)

RMSE t p-value

Support vector machine (polynomial kernel) 0.07317 -0.03047 0.97570

Support vector machine (radial basis function kernel) 0.07330 -4.71988 2.3711e-06***

AdaBoost 0.09585 -0.74261 0.45772

Gradient boosting 0.09947 -2.92146 0.00349***

Stochastic gradient descent 0.11299 -1.24922 0.21159

Logistic regression 0.11875 -0.33890 0.73469

Support vector machine (linear kernel) 0.12030 -0.32270 0.74692

Probit regression 0.12179 -1.94641 0.05162*

K-nearest neighbours 0.12939 -0.58249 0.56024

Linear discriminant analysis 0.13172 -5.40331 6.5924e-08***

Random forest 0.15304 -5.20449 1.9598e-07***

Decision tree 0.17360 -69.59584 0.00000***

Naive Bayes 0.53725 - -

Note: *p < 0.1, **p < 0.05, ***p < 0.01

The results indicate that among the algorithms tested a support vector machine with either a polynomial kernel or a radial  
basis function kernel are the best algorithms for the digits dataset. Differences in performance between the two algorithms  
appear to be relatively small and it does seem to be important whether we use a polynomial kernel or a radial basis function  
kernel.

However, these results can only give us an indication of the relative performance of each of our algorithms: From our 
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results, we know that the outperformance of some algorithms in comparison to others is statistically highly significant, but  
we cannot infer statistical significance of the predictions themselves. For instance, Naive Bayes might be such a weak 
predictor that its out-of-sample predictions are negatively correlated with the actual class labels. If  that is the case,  an 
algorithm that does not outperform a random walk might still outperform Naive Bayes. Alternatively, all of these predictive  
methods might be highly informative, with some being more informative than others. This traditional approach cannot give 
us any indication which of these possible interpretations is true.

We then contrast these results with the insight gained from our own framework: As above, we sorted the algorithms by their 
RMSE and investigated the statistical significance in comparison to the next algorithm using the approach we developed for  
the second question (accuracy of predictive method in comparison to alternative method). For the third question (accuracy 
of predictive method corrected for alternative methods), we used all remaining algorithms as control variables. We also 
conducted a Monte Carlo simulation with 100,000 iterations for each of the algorithms and each of the three questions.  
Results are reported in Table 3.

Table 3. Results for the digits dataset

Accuracy of predictive method
Accuracy of method in comparison 

to next method

Accuracy of method 
corrected for other 

methods

Xc
a – 

E(Xc
a)

χ2 (p-value)
p-value from 
Monte Carlo 
simulation

RMSE χ2 (p-value)
p-value from 
Monte Carlo 
simulation

χ2 (p-value)
p-value from 
Monte Carlo 
simulation

SVM 
(polynomial 
kernel)

1353.12
13875 

(0.00000***)
0.00000*** 0.07317

0.000756965 
(0.978051)

0.97739
4.5544 

(0.03283**)
0.03406**

SVM (radial 
basis function 
kernel)

1353.35
13871 

(0.00000***)
0.00000*** 0.07330

20.2292 
(6.87e-06***)

0.00000***
0.280358 

(0.596467)
0.59219

AdaBoost 1305.66
13317.3 

(0.00000***)
0.00000*** 0.09585

0.531503 
(0.465976)

0.46664
8.34505 

(0.00387***)
0.00369***

Gradient 
boosting

1288.26
13193.5 

(0.00000***)
0.00000*** 0.09947

7.94789 
(0.00481***)

0.00465***
1.34062 

(0.246924)
0.24910

Stochastic 
gradient descent

1276.13
12718.7 

(0.00000***)
0.00000*** 0.11299

1.40713 
(0.2355)

0.23399
2.53227 

(0.11154)
0.11085

Logistic 
regression

1288.49
12531.4 

(0.00000***)
0.00000*** 0.11875

0.105197 
(0.745679)

0.74523
0.610687 

(0.434529)
0.43296

SVM (linear 
kernel)

1230.67
12444.8 

(0.00000***)
0.00000*** 0.12030

0.095851 
(0.756867)

0.75844
5.02729 

(0.02495**)
0.02456

Probit regression 1288.27
12438 

(0.00000***)
0.00000*** 0.12179

3.35216 
(0.0671168*)

0.06729*
2.20726 

(0.137362)
0.13607

K-nearest 
neighbours

1048.23
12140.1 

(0.00000***)
0.00000*** 0.12939

0.281373 
(0.595803)

0.59749
2.97042 

(0.0848*)
0.08510*

Linear 
discriminant 
analysis

1254.65
12060.4 

(0.00000***)
0.00000*** 0.13172

27.892 
(1.28e-07***)

0.00000***
1.29648 

(0.254857)
0.25317

Random forest 842.26
11835.8 

(0.00000***)
0.00000*** 0.15304

28.7859 
(8.08e-08***)

0.00000***
1.98829 

(0.15852)
0.15799

Decision tree 1057.87
10105.6 

(0.00000***)
0.00000*** 0.17360

1837.69 
(0.00000***)

0.00000***
0.0185835 
(0.891567)

0.89055

Naive Bayes 944.77
3130.61 

(0.00000***)
0.00000*** 0.53725 - -

2.62881 
(0.10494)

0.10000

Note: SVM=support vector machine, *p < 0.1, **p < 0.05, ***p < 0.01
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We find that the relative performance indicated by the chi-squared-values is identical to the relative performance indicated 
by RMSE. Even though we would expect them to be similar, there is no mathematical reason to assume that this should  
always be the case.

We also find that  the p-values  from the chi-squared-distribution are very close to the p-values  from the Monte Carlo 
simulations. This indicates that the normal approximation appears to be fairly accurate for this dataset.

The results demonstrate that the out-of-sample predictions generated by all of these algorithms are positively correlated with 
the actual class labels (as indicated by the positive values for Xc

a – E(Xc
a) in the second column) and statistically highly 

significant. Therefore every single algorithm, including Naive Bayes, is a highly effective predictor in this problem domain.

Results also demonstrate that it  does matter whether we use a polynomial kernel or a radial basis function kernel for a 
support vector machine: Even though the difference in overall performance may be insignificant, a support vector machine 
with a polynomial kernel is considerably less correlated with the other algorithms we investigated and is therefore able to  
better compensate their weaknesses. A polynomial kernel is therefore highly preferable to a radial basis function in this  
setting.

Finally, we are able to show that AdaBoost, even though not being the best performer among the algorithms we evaluated,  
still  remains  statistically  significant  even  when  corrected  for  all  other  algorithms.  Whereas  traditional  approaches  to  
evaluating predictive methods would have led us to conclude that AdaBoost is not an interesting contribution to the field,  
our own statistical framework for evaluating predictive methods demonstrates that it may be able to effectively compensate 
weaknesses of other algorithms.

Discussion

The results of our evaluation demonstrate the usefulness of the framework we developed: Whereas traditional approaches  
rely  mainly  on  the  evaluation  of  relative  performance,  we  were  able  to  demonstrate  that  the  additional  information 
generated by our own statistical framework is important: The distinction whether we are comparing mediocre predictors to  
bad predictors or highly effective predictors to slightly less effective predictors is an important one. In addition, to the best  
of our knowledge, our statistical framework is the only framework able to evaluate the predictive performance of algorithms 
corrected for the predictions generated by other algorithms. The results of our evaluation demonstrate that this performance 
measure cannot be inferred from either absolute or relative performance and is interesting in its own right.

Our framework might benefit  researchers  and practitioners  alike:  Being able to measure the intercorrelation of out-of-
sample predictions, researchers could use this framework to build more effective ensembles of machine learning algorithms.  
Practitioners, on the other hand, often rely on several decision support systems or predictive algorithms to guide important  
decisions. However, such an approach is only useful if these different systems are sufficiently independent from each other.  
Since our framework is able to assess the statistical significance of predictive methods when corrected for other methods, it  
could help them choose an appropriate set of decision support systems.

Conclusion

The objective of this paper was to define three important questions to consider when evaluating predictive models and to 
develop a unified statistical  framework to examine these questions.  Our framework is applicable to  a  wide variety of  
problems, including regression, classification and multi-label classification. Predictions can be both continuous or discrete.  
It can be used to test individual predictive methods or several predictive methods at once. It is even applicable when the 
assumption of a normal distribution fails. Owing to its versatility and its practical and theoretical advantages over current 
statistical hypothesis tests used to evaluate predictive models, the framework could be of interest to most researchers in the  
field of predictive analytics or big data.
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Researchers could make use of the theoretical benefit of the framework, namely that it provides a “fail-safe” option for  
cases in which the assumption of a normal distribution is not applicable. This issue has been largely ignored in previous  
literature.

Even though the framework is complete and can be readily applied to examine predictive methods, there is still potential for 
further  research:  Most  importantly,  there  is  still  a  need  to  define  the  exact  circumstances  under  which  the  normal  
approximation is appropriate. Even though the normal approximation is not necessary for the framework to be applicable, it 
significantly reduces computational cost, particularly for large datasets. Finding these exact circumstances can only be done 
numerically.

Most importantly, we hope that this paper can be seen as an encouragement to use statistical hypothesis testing to evaluate  
predictive models thus enhancing the rigour of the predictive analytics literature.
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Appendix 1

Proposition 1: Proof of Non-Arbitrariness of the Model

Since variables can be freely rearranged, we simplify our notation without any loss of generality by letting i=n and j=n+1.

Since every variance-covariance-matrix is positive semi-definite, every positive semi-definite matrix has an inverse, which 
is also positive semi-definite, and every positive semi-definite matrix has a root, we know that there exists a positive semi-
definite matrix V-1/2

n  that is the square root of the variance-covariance matrix. Let  (V-1/2
n)xy denote the element in the xth 

row and the yth column of the square root matrix. Finally, define matrix A as follows:

(A1)

Lemma 1.1: 

(Lemma 1.1)

Proof:

(A2)

q.e.d

Lemma 1.2:

 (Lemma 1.2)

Proof:
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    (A3)

q.e.d.

Lemma 1.3: 

     (Lemma 1.3)

Proof:

      (A4)
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Since the square root of a symmetrical, positive semi-definite matrix is also symmetrical:

(A5)

q.e.d.

Define matrix V as follows:

   (A6)

Then, by block-wise inversion of a matrix:

(A7)

Recall that the the square root of a symmetrical, positive semi-definite matrix is also symmetrical. By Lemmas 1.1, 1.2 and 
1.3:

       (A8)

By Lemmas 1.1, 1.2 and 1.3:

          (A9)

q.e.d.

Proposition 2: Calculating the Elements of V

Let E(xi
a*yj

c*xk
b*yl

d) denote the expected value of xi
a*yj

c*xk
b*yl

d if i, j, k and l are random variables.
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Lemma 2.1:

    (Lemma 2.1)

Proof:

     (A10)

q.e.d.

  (A11)

q.e.d.

Proposition 3: Evaluating Statistical Significance Given Other Predictive Methods

Define matrix V as follows:

      (A12)

In analogy to (A7) we write:

(A13)

Define Y as follows:

     (A14)

It is easy to see that E(Y) is 0. Consider its variance-covariance-matrix:
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(A15)

Therefore, Y'V-1Y is a squared Mahalanobis distance.

 (A16)

If X1 and X2  are multivariate normal, then Y is a linear combination of multivariate normally distributed random variables 
and therefore in itself multivariate normal. Then:

    (A17)

q.e.d.
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