
226

23RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2014 CROATIA)

IFML-Based Model-Driven Front-End Modernization

Roberto Rodríguez-Echeverría rre@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

Víctor M. Pavón victorpavon@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

Fernando Macías fernandomacias@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

José María Conejero chemacm@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

Pedro J. Clemente pjclemente@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

Fernando Sánchez-Figueroa fernando@unex.es
University of Extremadura / Quercus Software Engineering Group
Cáceres, Spain

Abstract

Since late 90’s the use of web application frameworks has been the default choice to develop
software applications inside the web domain. In parallel, Model Driven Web Engineering ap-
proaches have been defined and successfully applied to reduce the effort of web application
development and reuse, fostering the independence of the implementation technology. A direct
result of the success of these approaches is the elaboration of the Interaction Flow Modeling
Language (IFML) as an Object Management Group (OMG) standard. However, the real fact
is that there is a huge amount of legacy web systems that were developed before MDWE ap-
proaches were mainstream. The work presented herein tries to leverage IFML to modernize
the front-ends of framework-based legacy web applications. In concrete, a systematic model-
driven reverse engineering process to generate an IFML representation from such applications
is presented.
Keywords: Web Models Transformations, Reverse Engineering, Model-Driven Web Engineer-
ing

1. Introduction

Since late 90’s, widespread language-specific Web development frameworks (e.g. Struts1) have
supported most of the actual development of Web Applications (WAs). These frameworks are

1http://struts.apache.org/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


227

RODRÍGUEZ-ECHEVERRÍA ET AL. IFML-BASED MODEL-DRIVEN FRONT-END MODERNIZATION

often strongly tied to the programming-language level, increasing the complexity of application
maintenance and evolution. At the same time, within an academic context, Model Driven Web
Engineering (MDWE) approaches [7] have been defined to leverage model driven engineering
methods and techniques in the development of WAs increasing the independence of the imple-
mentation technology. MDWE approaches allow defining WAs in a declarative way by means
of conceptual representations and provide code generation engines to tackle the constant change
of implementation technologies. The recent publication of the IFML2 standard has confirmed
the convenience of MDWE approaches.

This work proposes a model-driven reverse engineering process to approximate these two
different worlds of Web application development. Such process defines the necessary activi-
ties, artifacts and tools to generate a conceptual representation from a legacy web application
developed by means of a Model View Controller Pattern (MVC)-based framework. In order to
provide a detailed description, a concrete application scenario implemented by a concrete set
of frameworks (Struts v1.3 and Hibernate v3.6), conventions (naming, configuration, etc.) and
design patterns (e.g. Data Access Object pattern) has been specified. On the other hand, IFML
has been selected as target conceptual representation. A case study has been performed to vali-
date the approach, the Conference Review System (CRS)3. Obviously, the proposed process is
described at a conceptual level and different realizations are possible.

The reverse engineering process defined is organized as a sequence of three steps: (1)
technology-dependent model extraction; (2) conceptual MVC model generation; and (3) MVC
to MDWE transformation. Since some preliminary works have been already published [5, 6],
the work presented herein mainly focuses on steps 2) and 3) and supposes a major extension
providing a comprehensive reverse engineering process not limited to the navigational concern
and extending the work to generate a IFML-based specification.

The rest of the paper is structured as follows. A presentation of related work is done in Sec-
tion 2. A detailed presentation of the generation of the MIGRARIA MVC model is performed in
Section 3. The final transformation to IFML is introduced in Section 4. Results are commented
in Section 5. And, finally, main conclusions and future work are outlined in Section 6.

2. Related Work
Web Application information extraction has been traditionally performed by reverse engineering
techniques [3]. Most approaches presented in that survey propose strategies of static analysis
taking just web pages as input of the extraction process. They treat the legacy system as a black
box and focus on analyzing its output (HTML pages). Meanwhile, the approach presented
herein proposes to extract the information concealed in the source code of the legacy system by
means of static analysis. Moreover, most of these approaches are not conceived as model-driven
approaches and pursue other aims that the generation of a conceptual representation.

The work presented in [2] and [1] proposes a model-driven process to generate a conceptual
representation of a web application by using the Ubiquitous Web Application (UWA) approach.
However, they also apply static analysis to the web application output without considering the
system source code. That approach generates directly the final model without intermediate
representations. Similarly, [4] proposes a reverse engineering process to obtain a WebML rep-
resentation from a legacy PHP web shop application based on static code analysis. First, the
source application is refactored to obtain a MVC version of it. Next, a code to model transfor-
mation into an intermediate model of the MVC web application is carried out. The last step is
a model to model transformation from the the MVC model into a WebML model. However, the
MVC metamodel proposed by the authors is tied to the WebML schema while the MIGRARIA-

2http://www.ifml.org/
3Additional material http://uex.be/migrariaifml



228

ISD2014 CROATIA

Fig. 1. MIGRARIA MVC metamodel overview

MVC one represents the general concepts defined by mainstream MVC-based web application
frameworks, providing a higher degree of reutilization.

[8] presents a revision of existing approaches for reverse engineering of web applications.
Most of the work related to reverse engineering of web applications has been presented before
2009. Since then the main approaches have moved to analyze Rich Internet Applications and its
related technology. The authors conclude that the current trend in web application reverse engi-
neering is the used of general reverse techniques. They also state that the use of web application
frameworks make the reverse engineering process harder. In contrast we think we may take
advantage of the knowledge of the framework to guide conveniently the analysis of the software
artifacts.

3. MVC Model Generation
In order to generate a conceptual MVC-based representation of the legacy system is necessary
to define (1) a MVC metamodel for web applications and (2) the generation process by means
of model2model transformation rules.

3.1. MIGRARIA MVC Metamodel

According to the goal of the MIGRARIA project, defining a modernization process framework
for legacy web applications, a specific language has been defined to generate a conceptual rep-
resentation of a legacy MVC-based web application, the MIGRARIA MVC metamodel (see an
excerpt in Figure 1). This metamodel specifies the main concepts of the development of a web
application arranged in the three main components of the MVC pattern: Model, View and Con-
troller. The Model package provides elements to represent data objects, their attributes, their
relationships and the operations defined over them. The View package provide elements to rep-
resent pages, as main containers, and presentation objects and requests, as main containtments.
Presentation objects, basically, have a set of attributes, can indicate data input or data output
and can be presented individually or inside a collection. Meanwhile, requests are characterized
by their parameters and path and define connection points with controller elements by means of
the request-handler association. The Controller package provides elements to represent request
handlers (ControlFlow), their mappings defined between presentation and data objects, their re-
sponse defining a relationship with the target page element, and the sequence of operation calls
performed to execute the requested action or to fetch the requested data.

3.2. MIGRARIA MVC Model Generation

The generation process is accomplished in three sequential steps, one for each package defined
by the MVC metamodel. First, all the interesting information related with data schema and data
operations is collected in the model representing the Model component of the legacy system.



229

RODRÍGUEZ-ECHEVERRÍA ET AL. IFML-BASED MODEL-DRIVEN FRONT-END MODERNIZATION

Second, all the information concerning web pages composition and interaction is gathered in
the model representing its View component. Those two models are generated independently of
each other. And finally, all the information related to request handling and operation execution
is collected by the model representing its Controller component. This last model plays a fun-
damental role and connects the former ones by defining mappings and relationships between
them.

The generation of the Model component is performed by analyzing Java data objects and
data access object classes and the Hibernate mapping configuration files. Due to space reasons,
it is not deeply explained.

Bearing in mind our approach is focused on data-driven web applications, next we detail
how some CRUD operations are represented by our MVC model.

Figure 2 presents an example of a create operation. In this case, at the left, an excerpt of
the author submission page from the CRS case study is shown that is basically composed by
a HTML form allowing to specify the title, abstract, subjects and track of the paper to submit.
The form contains a pair of input text controls and a pair of select controls. The JSP producing
the submission page is analyzed to get its presentation objects and requests. The product of
that analysis is the page PaperCreate of the View model. This model element is composed of
an input presentation object (HTML form) that contains a pair of data presentation attributes
(input text) and a pair of dataset presentation attributes (select) representing corresponding form
controls. Dataset attributes have associated two presentation collections that allow to specify
the set of elements populating each dataset presentation attribute. And the view also contains
the specification of the request new that represents the submission of the form and references to
the input presentation object paperForm by means of its submit attribute.

(a) Legacy Web Application (b) MIGRARIA MVC repre-
sentation

Fig. 2. Create paper operation

As a basic common pattern, at least, two different controllers are related to a concrete view,
one populating its objects and collections and the other one handling the request generated from
the view. In this case, the controller PaperPopulateCreateAction specifies the data operations
called (trackDAO.getAll and subjectDAO.getAll) and the mappings defined to fetch the data for
every dataset presentation attribute of the presentation object paperForm. The mappings define
the relation between the controller instances storing the return of the operation calls (tracks, sub-
jects) and the corresponding presentation collections defined in the view (tracks and subjects).



230

ISD2014 CROATIA

Fig. 3. WebML data model

Meanwhile, the second controller, PaperCreateAction, is responsible of handling the request
new. A controller that receives a presentation object as input defines a controller instance to de-
fine the mapping. In the example, the controller instance paper is defined as an instance of the
data object Paper and a mapping is established between that instance and the input presentation
object paperForm. The mapping attributes allow defining fine grain mappings. In this case, on
the one hand, the data presentation attributes of the input presentation object are mapped to the
corresponding attributes of the data object paper. And on the other hand, the dataset presenta-
tion attributes are both mapped to two different controller instances: one to store the selected
track id and the other one to store the ids of the selected subjects. Those instances are used as
parameters of data operation calls to fetch the data objects for those ids (trackDAO.get and sub-
jectDAO.get). The returned data objects are stored on controller instances (tracks and subjects)
and passed again as parameters of data operation calls to associate them with the instance paper
representing the object in creation. Finally, the last data operation call of the sequence represents
the creation of a new Paper object from the controller instance paper (paperDAO.create).

Additionally, controllers specify its response by means of a response element. This response
element may have two different types, page or control, indicating whether the controller returns
directly a view or delegates the control to another handler to generate the response view. Figure
2 presents both types of response. These two different control response types allow capturing
the common response patterns of a web application, such as returning a view in a HTTP GET
request or redirecting to a different path (action) in a HTTP POST request. That way the as-
sociation of a request contained in a page with its handler and the handler response with its
corresponding page specifies the navigation map of the legacy web application.

For the sake of brevity the recovery and representation of the rest of the CRUD operations
has been omitted.

4. IFML Model Transformation
In order to get a fully functional IFML specification of the legacy web application, WebRatio
has been used as supporting tool in this work. This is the most featured IFML supporting tool
so far. We can additionally use the professional-level model edition and code generation tools
of WebRatio while keeping the specification conformed to the IFML standard. In this sense, for
the sake of simplicity, regarding the data model specification, WebML Data model schema has
been used. Although IFML standard does not state a concrete data representation, WebRatio
requires to use WebML data representation.

4.1. Data Model

WebML Data model schema is subsumed by MIGRARIA MVC metamodel, so a simple straight-
forward transformation process may be defined. MIGRARIA MVC model provides an exten-
sion of WebML data schema by introducing concepts to specify the operation set related with
a concrete data object. Basically, transformation rules are defined to scan all the data objects,
its data attributes and relationships to generate their WebML counterparts (entities, fields and
relations). Figure 3 shows an excerpt of the WebML data model generated for the CRS system
concerning the entities involved in the reverse engineering example illustrating the approach.



231

RODRÍGUEZ-ECHEVERRÍA ET AL. IFML-BASED MODEL-DRIVEN FRONT-END MODERNIZATION

4.2. IFML Model

In order to illustrate the details of the transformation process in a manageable way, the resulting
models for the CRUD operations aforementioned are presented and the generation of every one
of their elements is traced back to the MVC model.

Figure 4 presents the elements generated to model the creation of a paper (a new submis-
sion) from the MVC model of Figure 2. The main structure of this model is conformed by the
following elements:

• IFML model elements:

– A page, named paperCreate.jsp, as main container, representing the author submis-
sion page.

– A View Component Form, named paperForm, representing the HTML form to input
the submission data.

– Two Actions, named PopulateCreatePaperAction.execute and CreatePaperAction.execute.
The first one represents the population form operation and the second one the regis-
tration of a new paper in the system.

• PopulateCreatePaperAction.execute action elements

– Two Selector Units, named getAll - IN!subjectDAO.getAll and getAll - IN!trackDAO.getAll,
(HTML select inputs).

– Given that action has not got input parameters, its Input Collector Unit is empty.

– Its Ok Collector Unit contains the following four output parameters: subjects.id[output],
sujects.name[label], tracks.id[output] and tracks.name[label]. They are related to
the 2 select controls (track and subjects) of the paperForm form.

• CreatePaperAction.execute action elements:

– A Create Unit, named CreateUnitPaper, representing the creation of a new data
object paper.

– Its Input Collector Unit binds five parameters: abst, fileLocalPath, subjects, title y
track.

– A Get Unit to set the active user as the main author of the submitted paper.

– An Ok Collector Unit which an Ok Link resembling the successful navigation flow.

As expected, the organization of these elements resembles the controller-view-controller pat-
tern aforementioned. In this example, the controller responsible of populating the objects of the
response view is transformed in the two selector units shown. Meanwhile the controller respon-
sible of handling the request is modeled as action with the associated operation units presented.

5. Case Study
In order to evaluate this approach, we have developed a complete case study named the Con-
ference Review System (CRS). CRS is a web application implemented by a developer team of
our software laboratory. This system is based on the case study proposed in the First Interna-
tional Workshop on Web-Oriented Software Technology4. So partial MDWE representations

4http://users.dsic.upv.es/~west/iwwost01/



232

ISD2014 CROATIA

Fig. 4. IFML WebRatio create operation

Table 1. Transformation result summary

Source Element No. Target element Gen.
Page 34 Page 100%

Output Presentation Objects 9 Component View Details 100%
Input Presentation Objects 16 Component View Form 100%

Object Presentation Collection (mapping) 22 Component View Simple List 100%
Object Presentation Collection (DataSet_PA) 8 Componet View Simple (filter) NA

Data Operation Call (type=create) 6 Create Operation 100%
Data Operation Call (type=remove) 4 Delete Operation 100%
Data Operation Call (type=update) 14 Update Operation 100%

Data Operation Call (type=getAll, DataSet_PA) 5 Selector Unit 100%
Session Operation Call (type=set) 1 Set Session Attribute 100%
Session Operation Call (type=get) 12 Get Session Attribute 100%

Collection Operation Call 23 Connect Unit, Disconnect Unit or Reconnect Unit 100%

are available. The implementation technology coincides with the one proposed by the applica-
tion scenario used in this paper. And the development team has followed a basic collection of
code conventions and design patterns.

In order to validate our approach, the reverse engineering generated IFML model has been
compared to a manual IFML model representing the same original system (CRS). Table 1
presents a summary of the results obtained. In this table only the most relevant source elements
of the transformation are presented. In concrete, those ones directly related to the generation of
IFML model elements. 154 elements from the 1655 elements of the source MIGRARIA MVC
model. 95% of the expected target elements are successfully generated. As a final step, although
a proper effort assesment experiment has not been developed, the generated IFML model was
used by a WebRatio experienced engineer to generate a complete specification of the legacy sys-
tem. As main conclusion our approach decreased about a 70% the development time compared
to model the system manually from the scratch.

6. Conclusions and Future Work
This work tackles an important part of the modernization process defined within the MIGRARIA
project which faces the evolution of the presentation of a legacy Web system towards a new Web
2.0 RIA client. In this paper we have focused on the process of extracting and representing the
information from the legacy system to represent it at a higher abstraction level.

The generation of the IFML model takes as input a conceptual model of the legacy web
application (MIGRARIA MVC model), so its reusability depends on the reusability of the re-
verse engineering process defined to get this model. In this case, two main sources of change
are considered: (1) a change of the code conventions and design patterns, and (2) a change of
the implementation technology. For the sake of brevity, we discuss only the former one. If the
implementation technology remains the same but the code conventions change, it is mandatory
to adapt the model transformation chain defined. In new case studies under development (based
on real applications) we have observed that most of the times the selected strategy is to add



233

RODRÍGUEZ-ECHEVERRÍA ET AL. IFML-BASED MODEL-DRIVEN FRONT-END MODERNIZATION

more steps to the original transformation chain instead of adapting the rules previously defined.
Those results may suggest that our transformations rules (and the code convetions considered)
are generic and comprehensive enough to be applied in different modernization scenarios with-
out heavy modification.

As main lines for future work we consider the following: (1) providing precise metrics to
evaluate the initial coverage of a new case study; (2) effort assesment; and (3) improving the
tool support of the reverse engineering process to simplify the engineer’s decision making.

Acknowledgements
This work has been funded by Spanish Contract MIGRARIA - TIN2011-27340 at Ministerio
de Ciencia e Innovación and Gobierno de Extremadura (GR-10129) and European Regional
Development Fund (ERDF).

References
1. Bernardi, M.L., Di Lucca, G.A., Distante, D.: The RE-UWA Approach to Recover

User Centered Conceptual Models from Web Applications. Int. J. Softw. Tools Technol.
Transf. 11 (6), 485–501 (2009)

2. Di Lucca, G.A., Distante, D., Bernardi, M.L.: Recovering Conceptual Models from
Web Applications. In: Proceedings of the 24th annual ACM international conference
on Design of communication. pp. 113–120. ACM Press (2006)

3. Martin, R., Archer, L., Patel, R., Coenen, F.: Reverse Engineering of Web Applications:
A Technical Review. University of Liverpool (2007)

4. Rieder, M.: From Legacy Web Applications to WebML Models. A Framework-based
Reverse Engineering Process. Technische Universität Wien (2009)

5. Rodríguez-Echeverría, R., Conejero, J.M., Clemente, P.J., Preciado, J.C., Sánchez-
Figueroa, F.: Modernization of legacy web applications into rich internet applications.
Curr. Trends Web Eng. 7059/2012 (Lecture Notes in Computer Science), 236–250
(2012)

6. Rodríguez-Echeverría, R., Conejero, J.M., Clemente, P.J., Villalobos, M.D., Sánchez-
Figueroa, F.: Extracting navigational models from struts-based web applications. In-
Proceedings of the 12th International Conference on Web Engineering. pp. 419–426.
Springer, Heidelberg (2012)

7. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. eds: Web Engineering: Modelling and
Implementing Web Applications (Human-Computer Interaction Series). Springer, Hei-
delberg (2007)

8. Tramontana, P., Amalfitano, D., Fasolino, A.R.: Reverse engineering techniques: From
web applications to rich Internet applications. In: 15th IEEE International Symposium
on Web Systems Evolution. pp. 83–86. IEEE, Eindhoven, The Netherlands (2013)




