
306

23RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2014 CROATIA)

Complex Propagation of Events: Design Patterns Comparison

Marko Mijač marko.mijac@foi.hr
University of Zagreb, Faculty of Organization and Informatics
Varaždin, Croatia

Dragutin Kermek dragutin.kermek@foi.hr
University of Zagreb, Faculty of Organization and Informatics
Varaždin, Croatia

Zlatko Stapić zlatko.stapic@foi.hr
University of Zagreb, Faculty of Organization and Informatics
Varaždin, Croatia

Abstract
Today’s applications require high level of interactivity and the applications are expected to
update their state, and provide users with immediate correct results. In high complex
applications this usually means updating states of a number of objects that are part of complex
dependency network. To decouple these dependencies such systems usually employ implicit
invocation mechanisms such as well-known Observer pattern. However, building efficient
propagation system that will keep object states up-to-date is a challenging task, since a number
of issues arise. In this paper we identified 18 qualitative criteria and compared 5 design
patterns that can be used to build propagation system on top of applications’ business objects.
The exhaustive comparison results are given along with discussion and remarks that should be
taken in consideration when dealing with this challenging task.
Keywords: Design Patterns, Observer, Mediator, Events, Propagation, Publish-subscribe,
Change Manager, Implicit Invocation, Reactive Systems.

1. Introduction
Object oriented paradigm has been acknowledged as a dominant paradigm for developing
complex applications for a quite some time. These applications can have large number of
objects that are greatly interdependent. That means that object’s state and computations are
dependent on one or more other objects. Such dependencies can form a large and complex
dependency network and such application usually requires high level of interactivity which
also adds to its overall complexity. Moreover, users expect to receive immediate results
whenever they change any of input parameters. In such system, the main issue around
implementing interactivity is in handling dependencies between related objects and keeping
the states of these objects synchronized and continuously up-to-date. Building propagation
system that will efficiently traverse dependency network, and update required objects is a
challenging task, since a number of issues arise. Maier et al. [13] claim that contrary to
traditional batch mode programs, “interactive applications require a considerable amount of
engineering to deal with continuous user input and output”.

There are several design patterns (first of them introduced by Gamma et al. [9]) that are
designed for building interactive systems with propagation. They all share the common idea
of implicit invocation and asynchronous communication between dependent objects. Implicit
invocation, according to Avgeriou and Zdun [1] and Eugster et al. [7], offers several
advantages (such as loose coupling, dynamic adding and removing of dependent entities and
components during runtime etc.) over a point-to-point and synchronous communication which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301363147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

307

MIJAČ ET AL. COMPLEX PROPAGATION OF EVENTS: DESIGN PATTERNS…

leads to rigid and static applications. In their paper, Maier et al. [13] state Observer pattern to
be predominant approach for managing state changes, while Szallies [18] discusses that the
Observer pattern introduces an additional level of indirection and blurs state dependencies
between objects, which increases flexibility but decreases the understandability and
performance of the code.

In this paper we examined and compared design patterns suitable in solving the issues of
event propagation and management of dependencies between objects in complex systems.
Second section describes the methodology that was used in our research, in the third and
fourth section we present and discuss the results respectively, while in final section we drew
conclusions.

2. Methodology
In order to address the issues of event propagation and management of dependencies between
objects, our intent was to compare existing, explicitly documented design patterns. The first
step was to identify design patterns which are intended to deal with propagation, events,
reactive and interactive behavior, and implicit invocation. We performed exhaustive search in
several iterations on the following scientific databases: IEEE Xplore, Google Scholar, ACM
Digital Library, SCOPUS. Initially, for defining search keywords well-known patterns such as
Observer and Publish/Subscribe have been taken as a reference point, so an initial set of
search keywords was as follows: design pattern, subject, observer, event, publish, subscribe.
Since conducted search did not result in a desired number of patterns, other search iterations
were performed. The set of keywords expanded in each iteration, so in the final iteration in
addition to already mentioned keywords, it contained a significant number of other keywords
(propagation, event notification, reactive, interactive, dependency network, implicit
invocation, inversion of control, state changes), which we combined when constructing
search queries.

Despite quite broad and thorough search, we managed to identify only 5 explicitly
described design patterns/variants of design patterns: Observer Pattern (simple) [9], Observer
Pattern (advanced) [9], Observer Pattern revisited [6], Event-notification pattern [16] and
Propagator pattern [8].

Since our research is focused on design patterns in imperative object-oriented paradigm,
we did limit our results to design patterns in this paradigm. That said we excluded the results
from functional, declarative, aspect-oriented and reactive paradigms. Also the patterns
focused on distributed environments (e.g. Publish/Subscribe [7], [1], Event Notifier [11],
CORBA notification/event service) were excluded.

Table 1. Qualitative comparison criteria

Criteria

G
en

er
al

at

tri
bu

te
s Intent

Also known as
Related patterns
Structure

Ev
en

t p
ro

pa
ga

tio
n

re
la

te
d

ch
ar

ac
te

ris
tic

s Object roles: event emitter/receiver Event granulation
Dependency network location Order of propagation
Dependency network structure Direction of propagation
Response to event Cut-off propagation
Event data Acyclic graph handling
Coupling Cyclic graph handling
Subject and Observer relationship Events composition and filtering

308

ISD2014 CROATIA

In order to qualitatively compare identified design patterns, we formed a set of 18
qualitative criteria as presented in Table 1. Among considered criteria the first four are
proposed by Gamma et al. [9], and are traditionally used to describe design patterns. These
will allow us to compare general ideas behind design patterns, to highlight structural
differences between them, and to show if and how they relate to other design patterns. Other
14 criteria were chosen in order to differentiate design patterns according to characteristics
closely related to the issues of event propagation. They aim to enhance overall understanding
of the event propagation problem, and to differentiate design patterns according to their
capabilities in this matter. The 14 criteria were carefully extracted from papers which
described identified design patterns. Also, papers from aforementioned other paradigms
(functional, declarative, reactive programming…) were taken into consideration when
forming and justifying this set of criteria.

3. Results
Following the stated methodology, after obtaining the literature review results, the five design
patterns and the papers in which they were initially presented were analyzed in detail. The
data about these patterns has been extracted according to the set of previously identified
comparison criteria and the results are presented in Table 2. Columns contain data regarding
characteristics of particular design pattern, while rows present particular comparison
characteristics across different design patterns.

Table 2. Results of qualitative comparison

 Observer pattern
(Simple) [9]

Observer pattern
(Advanced) [9]

Observer pattern
revisited [6]

Event-notification
pattern [16]

Propagator pattern
[8]

Intent
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Manage update
dependencies between
objects by introducing
an event notification
mechanism.

Define a network of
dependent objects so
that when one object
changes state, all
direct and indirect
dependents are
updated.

Also known as Dependents,
Publish-subscribe

Dependents,
Publish-subscribe - Implicit Invocation

Mechanism Cascaded Update

Related
patterns - Mediator, Singleton Mediator Observer, Mediator Composite, Observer,

Mediator, Strategy

Structure Subject and
Observer

Subject,
ChangeManager
and Observer

Observable,
ObserverManager,
Observer

Observer, Subject,
EventStub,
StateChange.

Propagator object

Object roles:
event emitter /
receiver

Depends on
implementation
(Abstract class or
interfaces)

Depends on
implementation
(Abstract class or
interfaces)

Claimed. Both
Subject and
Observer are
expressed as Java
Type object.

Depends on
implementation
(Abstract class or
interfaces)

Yes (Propagator)

Dependency
network
location

Distributed.
Subscriptions
contained in each
Subject.

Centralized. Stored
and managed by
ChangeManager
object.

Centralized. Stored
and managed by
ObserverManager.

Distributed. Stored in
Subject's StateChange
objects.

Distributed.
Propagator object can
contain lists of both
predecessors and
dependents.

Dependency
network
structure

Dynamic Dynamic Dynamic Dynamic Dynamic

Response to
event

Observer's update
method.

Observer's update
method. -

One or more arbitrary
methods in Observer,
as EventStub objects.

Propagator's update
method.

Event data
No additional data
(Update method
has no parameters)

Update method can
contain parameters
for defining Subject
and aspects.

Parameters.
Combines push and
pull model.

Possible parameters
that indicate Subject,
event identification,
changed data...

Update method can
contain parameter
indicating predecessor
object.

Coupling

Subject and
Observer are
loosely coupled
(to interfaces or
abstract classes)

Subject and
Observer are
loosely coupled (to
interfaces or
abstract classes)

Decoupled.
Observable and
Observer are stored
in
ObserverManager

Subject and Observer
decoupled by using
EventStub and
StateChange objects.

Propagators are
loosely coupled (to
abstract class).

309

MIJAČ ET AL. COMPLEX PROPAGATION OF EVENTS: DESIGN PATTERNS…

as instances of base
Java Object.

Subject and
Observer
relationship

One-to-many

One-to-many
(SimpleChangeMan
ager), Many-to-
many
(DAGChangeMana
ger)

Many-to-many Many-to-many Many-to-many

Event
granulation

One event per
Subject, one
update method per
Observer.

Suggested use of
aspects to achieve
higher granulation.

One event per
Observable, one
update method per
Observer.

Multiple events per
Subject, multiple
update methods per
Observer.

One event per
Propagator, one
update method per
Propagator.

Order of
propagation Depth-first Depth-first Depth-first Depth-first Depth-first

Direction of
propagation Forward Forward Forward Forward Forward/Backward

Cut-off
propagation Possible Possible Possible Possible Yes

Acyclic graph
handling No

Yes, topological
sorting or breadth
first order of
propagation.

Claimed, by
maintaining the list
of visited objects.

No
Yes, topological
sorting, smart
propagation.

Cyclic graph
handling No No

Claimed, by
maintaining the list
of visited objects.

No

Yes, topological
sorting, smart
propagation, graph
marking.

Events
composition
and filtering

No No No No No

4. Discussion

4.1. Pattern Description and General Attributes

All examined patterns explicitly state their purpose as managing dependencies between
objects, and therefore share the same intent and idea. They do however differ in various
implementation and design aspects. The first three patterns can be considered variants of
Observer pattern, while Event-notification and Propagator pattern evolved more or less
independently and can be considered as separate patterns. However, Riehle mentions three
variants of Observer pattern which include Propagator and Event-notification Pattern as well
[15].

Mixture of names used to denote these patterns shows a mess in the nomenclature. A lot
of design pattern names are used interchangeably to describe different design patterns or
different terms. For example Riehle [16] states Event-notification pattern to be also known as
Implicit invocation mechanism, which should rather be considered an architectural style than
design pattern. Also, some design patterns had synonyms that are now deprecated.

Our focused patterns are implementing inversion of control mechanisms, which are
according to Gasiunas et al. “essential for improving stability and reusability of software
systems” [10]. They also state implicit invocation to be a major technique for inversion of
control, which is again usually implemented by the Observer pattern. If we take a look at the
structure of compared design patterns (see Fig. 1 to Fig. 5), we can see that they follow a
general idea of Observer pattern. We can identify two basic roles: entities that emit events and
entities that receive these events, and react to them. For a purpose of clarity in the following
table we show terms denoting these roles in different patterns:

Table 3. Roles in design patterns

Pattern Event emitter role Event receiver role
Observer (Simple) Subject Observer
Observer (Advanced) Subject Observer
Observer revisited Observable Observer

310

ISD2014 CROATIA

Event-notifier Subject Observer
Propagator Propagator Propagator
Other terms: Publisher, Notifier, Broadcaster,

Producer,
Subscriber, Reactor, Dependent,
Listener, Consumer

By looking at the structure of Simple Observer pattern (see Fig. 1) described by Gamma

et al. [9], we can see that two above mentioned roles dominate. Subject represents an object
which emits events (notifications) about its state changes, knows whom to notify about these
changes, and provides an interface to attach and detach Observers. Observers are objects
which are interested in state changes that occur in Subject. They have a responsibility to
subscribe to Subject’s events and react on them. To achieve higher level of decoupling the
roles of Subject and Observer are in this pattern implemented as base classes, which are then
inherited by ConcreteSubject and ConcreteObserver. Base class implementation is very
common, but implementation with interfaces, composition or combination of these concepts
is also possible.

Fig. 1 Simple Observer Pattern [9]

Fig. 2 Advanced Observer Pattern [9]

Fig. 3 Observer pattern revisited [6]

Gamma et al. were aware of the limitations of simple version of Observer pattern, so for
complex use of this pattern they proposed some improvements and modifications (see Fig. 2).
They introduced a third role in Observer pattern – change manager – a central object for
managing dependencies between Subjects and Observers. Subject and Observer role are still
existent, but this time dependencies between them are not kept in each Subject, but in one
central place – hash table inside ChangeManager object. This allows a global management of
dependencies and possibility to deliver optimizations and overall improvements by
implementing propagation strategies.

In order to improve the Observer implementation, Eales [6] proposed ObserverManager –
a central object for controlling a whole lifecycle of Observer-Observable relationships,
ensuring no dangling references occur. Also, it manages update process, avoiding multiple
redundant updates and cycles. Observer and Observable objects are expressed as Java base
type Object.

311

MIJAČ ET AL. COMPLEX PROPAGATION OF EVENTS: DESIGN PATTERNS…

Fig. 4 Event notification pattern [16]

Fig. 5 Propagator pattern [8]

Explicit modeling of abstract state and dependencies, increased decoupling of Subject and

Observer and selective registration possibility are some novel concepts that are presented in
Event-notification pattern (see Fig. 4) [16]. Subject continues to have responsibility to manage
its state, and to publicly expose state changes as StateChange objects. It is now the
responsibility of these StateChange objects to register, unregister and notify interested
Observers through EventStub objects about state changes. EventStubs are Observer’s first
class objects who know which operation of Observer should be called in case of StateChange
invocation. This structure has some important consequences in addressing the issue of event
granulation.

Propagator pattern described by Feiler and Tichy [8] actually represents a family of
patterns, consisting of: Strict propagator, Strict propagator with failure, Lazy propagator, and
Adaptive propagator. Different variants share common structure, but differ in propagation
strategy. Feiler and Tichy [8] see interconnected objects in application as nodes in
dependency network. To be a part of dependency network, an object must inherit Propagator
class (see Fig. 5), which handles all dependency network related operations and propagation
operations as well. Propagator class encompasses at the same time roles of Subject, Observer,
and change manager, making the structure of Propagator pattern much simpler than the
structure of Observer pattern. However, authors still leave the possibility to implement global
change manager as a separate entity using Mediator pattern.

Other design patterns usually participate only in more complex implementations of here
considered design patterns. Such is the case with implementations containing change manager
role. According to Gamma et al. [9] by encapsulating complex semantics change manager
acts as mediator between Subject and Observer, so here we can utilize Mediator pattern. Same
authors also propose use of Singleton pattern in change manager implementation, to make it
globally accessible and ensure existence of only one manager instance. Such claims are also
supported by Eales [6], Riehle [16], Feiler and Tichy [8]. In addition to Mediator and
Singleton pattern, according to [8], with Propagator pattern also Composite pattern and
Strategy pattern can be associated.

4.2. Event Propagation Related Characteristics

The structure of dependency network consists of a number of objects that are interdependent,
so it is a common situation for an object to depend on other objects, but also to influence
other objects. Therefore, an object can at the same time encompass both: the roles of event
emitter and event receiver. This is easily realized in Propagator pattern, since its Propagator
role naturally encompasses roles of both event emitter and receiver. In other design patterns,
these two roles are clearly separated as Subject (Observable) role and Observer role.
However, by applying different implementation approaches, one can accomplish to merge
these roles into one object. For example, in Observer revisited pattern as claimed, Observable
and Observer objects are implemented as base Java objects, so they can play both roles at the
same time. In other design patterns this could be accomplished by implementing at least one
of the roles as class interfaces, since multiple-inheritance is rarely supported in modern OO

312

ISD2014 CROATIA

programming languages. We believe that in complex systems, where dependency networks
are formed, it is not convenient to threat event emitter and receiver as separate roles, so a
solution like in a Propagator pattern would be more appropriate.

The location of dependency network states where the subscriptions to events are
located. Regarding to this we identified two types of dependency network: distributed and
centralized. Distributed dependency network implies that subscriptions to events of particular
event emitter are contained within that very emitter. On the other hand, centralized
dependency network assumes that subscriptions to all events are held in central change
manager object in some kind of hash table. This characteristic has some important
implications regarding propagation performance and optimization. For example, centralized
option with Change manager implementation is more advisable when dealing with complex
and large dependency networks, because it keeps all dependencies between objects at one
place, which makes it easier to create propagation strategies and apply optimizations.
However, compared with distributed option, it additionally blurs dependencies between
objects. Advanced variant of Observer pattern and Observer pattern revisited natively
implement centralized dependency network, while other design patterns implement
distributed option. However, the authors of Propagator pattern and Event-notification pattern
also claim change manager implementation as possible.

In dependency network, dependencies between objects are created or destroyed
dynamically (at runtime), so it is imperative for design pattern to support dynamic structure
of dependency network. In patterns implementing the role of change manager this is usually
done centrally in change manager itself, while in others it is responsibility of event emitter
(e.g. Subject) to maintain a list of its receivers (e.g. Observer). However in both cases event
receivers have the role to initiate the process of subscribing and unsubscribing from event.

Responding to event is the responsibility of event receiver, which appoints one of its
methods to react to event. In all patterns except Event-notification pattern this is method is
hardcoded in design (Update method), while in Event-notification pattern arbitrary method
can be assigned to one or more of Subject’s events. Hardcoding a method that will be
responsible for reacting to event greatly reduces the flexibility, because we react to possible
several different events with the same method. So, although it increases complexity of
implementation, Event-notification pattern has the advantage in this case. However, instead of
implementation with EventStubs and StateChange objects, one could preferably go with
simpler implementations with delegates.

In order to appropriately react to event, receiver often needs to retrieve additional data
from event emitter. Here we can differentiate two models: push model and pull model [5].
With push model, emitter sends additional data to receiver along with event notification.
Receiver receives this data whether it needs it or not, usually as parameters of update method.
On the other hand, with pull model receiver only receives event notification, and if additional
data is required it is pulled from emitter by receiver. Both models have their own advantages
and disadvantages, and the best model to choose depends on particular situation. A question
of when to use parameterization of event notification (push model) and when not to (pull
model), is also discussed by Riehle [15].

Loose coupling is generally recognized as a factor influencing quality characteristics of
software (such as reusability and maintainability). Achieving loose coupling between
interconnected objects and components is one of the reasons for utilizing Observer and related
patterns. Here, this is done by employing principles of implicit invocation and coupling object
on interface or abstract class level. For example, all that Subject needs to know about object it
notifies is that it implements Observer interface. On the other hand, the relationship between
Observer and Subject can be stronger, especially if Observer needs to pull some specific data
from Subject. Although all compared design patterns by default help in achieving loose
coupling between dependent objects, Event-notification pattern goes a bit further by
introducing EventStub and StateChange objects as an additional level between event emitters
and receivers, thus lowering coupling even more.

All focused patterns imply the ability of handling one-to-many relationship between
event emitter (i.e. Subject) and event receivers (i.e. Observers). More complex scenarios often

313

MIJAČ ET AL. COMPLEX PROPAGATION OF EVENTS: DESIGN PATTERNS…

require Observer to have the ability to listen more than one Subject, i.e. many-to-many
relationship. Although it can be achieved in all considered patterns, this should be approached
with caution. Having objects which depend on possibly many other objects, and at the same
time influence multiple other objects can result in quite complex network of dependencies. If
not properly handled propagation of events in such cases can lead to acyclic behavior,
redundant updates and glitches. Gamma et al. [9] also suggest caution here, and suggest the
use of their DAGChangeManager instead of SimpleChangeManager.

All considered patterns except of Event notification pattern support one event per Subject
(event granulation), and one Update method per Observer. Event notification pattern [16]
supports explicitly exposing more than one event per Subject through its StateChange objects.
Similarly, through EventStub objects allows definition of more Update methods. Gamma et
al. [9] also recognize this requirement, and they propose a workaround by using aspects to
achieve higher granulation. In this case Subject and Observer still have only one event and
one update method, but the user can specify an aspect in which it is interested. Although the
original version of Propagator pattern does not support multiple events per object, Boeker [3]
in his web article describes implementation of Propagator pattern as an alternative to
Observer pattern, and improves it by introducing state change objects, similar to ones in Event
notification pattern. Ability to offer several different events per object is a feature which
increases flexibility. The examples of such objects with multiple available events can be
found in most modern OO frameworks (e.g. Java and .NET frameworks).

An order in which the changes in dependency network are propagated (order of
propagation) has a significant impact on performance and the correctness of propagation.
Feiler and Tichy [8] identify two ways in which changes can propagate through dependency
network: Depth-first and Breadth-first propagation. These are analog to well-known search
algorithms which are thoroughly analyzed in the literature, for example in [4]. In Depth-first
propagation method a changed node always notifies the first direct dependent, which then
notifies its first direct dependent, and so on until leaf nodes are reached. Only then initially
changed node notifies the second and the other direct dependents. Alternatively, in Breadth-
first propagation, a changed node first notifies all direct dependents and only then passes to
another level. Depth-first propagation is by default employed by all considered design
patterns. However, this method can result in some significant issues such as redundant
updates, poor performance, incorrect results, inconsistent data (also called glitches [2]). This
can happen for example when a node has more than one predecessor, which is quite common
situation in dependency networks. Therefore it is essential to appropriately address these
issues. Feiler and Tichy [8] and Maier et al. [13] propose topological sorting of dependency
network when implementing Depth-first method. Alternatively, implementation of Breadth-
first propagation method is going to have the same effect as topological sorting.

Besides order of propagation a direction of propagation should also be considered.
Feiler and Tichy [8] identify two types of propagation depending on direction: forward
(immediate, eager) propagation and backward (on demand) propagation. They also propose
different variants of Propagator pattern implementing these approaches: Strict Propagator and
Lazy Propagator. Except for the Propagator pattern which supports both approaches, other
considered design patterns employ only forward propagation.

In a large and complex dependency network propagation of changes can be quite
computationally demanding, so wherever possible optimization steps should be applied. Cut-
off propagation denotes a simple and obvious optimization step of comparing new value of
object’s state with current. If both current and the new state are the same, then we can stop
(cut-off) the propagation. This optimization step is explicitly supported in Propagator pattern,
referred as “smart propagation” [8] and “intelligent adjustment of states” [14]. As a means of
implementing cut-off, Feiler and Tichy [8] involve the use of Memento pattern; however,
contrary to complex Memento pattern, simple comparison between attribute’s current value
and the upcoming new value is often good enough. Although not explicitly stated, other
considered design patterns can also easily implement this optimization, which we strongly
encourage. This is a simple optimization step; however, in complex scenarios more
sophisticated optimizations could be required, such as the possibilities to create smart and

314

ISD2014 CROATIA

adaptable propagation strategies. This poses a great challenge, since the structure of
dependency networks is highly dynamic (object can be added or removed from dependency
network at any time, the same is with relationships between objects).

Interdependent objects in dependency networks can often form acyclic or even cyclic
graphs. Multiple redundant updates, “gliches”, inconsistencies, infinite loops are some of the
issues that indicate the existence of such circular graphs in one’s application. As already
mentioned, it is essential to address these issues in order for dependency network to function
properly.

Some of the authors recognized this problem, and included recommendations on how to
avoid these issues in particular design patterns. Gamma et al. [9] recommended using
DAGChangeManager implementation of Observer pattern (instead of Simple observer pattern
and SimpleChangeManager implementation) when dealing with possible acyclic dependency
network, aiming at prevention of multiple redundant updates. The order of propagation is
crucial in avoiding inconsistent state which arises from acyclic nature of dependency network.
Therefore proper measures should be assured, such as aforementioned topological sorting of
dependency graph, or employing a Breadth-first method of propagation. Eales [6] claims his
Observer pattern implementation avoids multiple updates and cycles by “viewing the update
process as graph traversal which maintains a list of visited objects”, although no
implementation specifics are provided. Feiler and Tichy [8] in their Propagator pattern
propose topological sorting and “smart propagation” as a means of dealing with acyclic
graphs. In contrast, Riehle [16] in his Event Notification Pattern doesn’t specify particular
strategies to deal with acyclic graphs.

Furthermore, dependency network can contain cyclic graphs, which are causing infinite
loops during propagation. To prevent this behavior, infinite loop must be manually stopped as
soon as dependency network reaches consistent and correct state, and perhaps some additional
specific condition is met. Determining a point is safe to be stopped is challenging, since we
need to monitor a progress of propagation at all time, and be aware of all objects and
dependencies involved in particular propagation instance. Eales [6] states his Observer pattern
revisited avoids circular behavior by maintaining a list of visited objects, while Feiler and
Tichy [8] propose topological sorting, “smart propagation” and graph marking when dealing
with cyclic graphs.

In their original form, none of the examined design patterns supports composition and
filtering of events. However, in complex environments, the abilities to compose new events
from existing ones and to fire or react to events only under certain circumstances (filtering)
would be highly desirable. Such features were already pointed out in declarative and reactive
approaches ([13], [2], and [10]), and would also be useful in imperative programming.

4.3. Utilizing Design Patterns

Since none of the considered patterns possess all useful features, it is probable that features
from different patterns will have to be combined in order to construct satisfactory solution.
Therefore, as it can be seen in Table 4, we identified advanced features and we give
guidelines for implementing them by using one or combining more design patterns.

Table 4. Guidelines for implementation of advanced features

Feature Guidelines
Dynamic dependency network All five patterns apply.

Object can both emit and receive events See Propagator role in Propagator pattern [8], or consider implementing
emitter/receiver as class interfaces.

Objects’ dependencies are held centrally See implementation of ChangeManager [9] and ObserverManager [6].
Event can be handled by arbitrary method See implementation of EventStub objects in [16].
Expose multiple events by the same emitter See implementation of StateChange objects in [16].

Emitter send additional data to receiver Push additional data to receiver as parameters, or let receiver pull required data
from emitter. A combination is also possible.

Loosely coupled dependencies between objects All five patterns apply. For additional level of decoupling see implementation
of EventStub and StateChange objects in [16].

315

MIJAČ ET AL. COMPLEX PROPAGATION OF EVENTS: DESIGN PATTERNS…

Receiver depends upon multiple emitters All patterns except for simple Observer pattern apply. However, be sure to
address the possible acyclic behavior.

Dependency network forms acyclic graph
Watch for the order of propagation. Be sure to apply breadth-first order of
propagation, or a topological sorting of dependency network in case of depth-
first order. See DAGChangeManager [9]

Dependency network forms cyclic graph
Apply advanced techniques such as graph marking (maintaining the list of
visited objects), topological sorting, and “smart propagation” to break up the
loop and avoid redundant updates.

Propagation performance optimization

Apply cut-off propagation step. Keep objects’ dependencies in one central
location (hash map) by implementing change manager object. Also, make sure
possible acyclic and cyclic behaviors are properly handled, so no redundant
updates occur. For most complex scenarios consider developing “smart” and
adaptable propagation strategies.

Composition and filtering of events
None of the considered patterns provides such capabilities, however some
implementation guidelines and ideas can be taken from declarative and reactive
approaches (e.g. [1], [15], and [11]).

The table summarizes the presented and discussed comparison results and gives

guidelines on how to implement the features ranging from those supported by all five design
patterns to those that require special attention in combination and update of compared
patterns.

5. Conclusion
Conducted comparison showed a great similarity between considered design patterns,
especially in their overall idea and intent. All design patterns assume the existence of event
emitter and event receiver roles, either in separate or in a single object. In a number of
considered criteria mentioned design patterns are quite uniform. Such is the case with the
ability to dynamically change dependency network, order and direction of propagation, ability
to cut-off propagation etc. However, significant differences can be seen in their structure,
possibilities and implementations.

Simple Observer pattern is quite modest in its capabilities, and we find it not suited for
handling complex propagation cases. Others do satisfy a number of criteria and employ some
advanced features, which are common to more design patterns or unique to particular pattern.
It appears however, that no design pattern has all desired features.

By comparing these design patterns we managed to recognize several features that should
be considered when dealing with complex propagation scenarios: An object should be able to
be both Subject and Observer at the same time; It should be possible to choose the appropriate
level of event granulation (e.g. one or more events per object, one or more events per
component); An object should be able to have zero or more observing objects, while at the
same time being able to observe zero or more other objects; It should be possible to
selectively register to only some of available events; To additionally decouple Subject and
Observer, implementation of events as objects (possibly first-class objects) should be
considered; Events should be able to pass certain data (parameters) to the listening object;
Adaptable update strategies that allow consistent, non-redundant, fast and scalable update
should exist; In a case where one strategy is not sufficient, multiple strategies should be able
to coexist; Update strategies should be able to deal with acyclic and cyclic dependency graphs
and provide a way to break update loop; Central mediator object (change manager) that
manages dependencies between objects and update strategies should be considered;
Composition and filtering of events should be considered; Possibility to adjust settings of
update process, such as commencing update manually or automatically, updating dependency
network partially or entirely; Possibility to perform updates utilizing multithreading options;
and Possibility to properly handle update failure should be considered.

A number of individual features can be rather easily implemented and handled. However,
building a system which will be characterized by the ability to update complex network of
interdependent objects in a fast, flexible, consistent, and scalable manner is a much harder
task with different emerging issues that are mentioned in the discussion part of the paper.

Resolving aforementioned issues presents a possibility to expand this topic and conduct
further research, which should result in building adequate model and framework for events

316

ISD2014 CROATIA

propagation. Approaches covered in this paper are based on imperative programming
paradigm, so a comparison with approaches developed in other paradigms would be valuable.
This is especially the case with solutions presented in the area of reactive programming and
reactive systems based on declarative/functional programming (e.g. [10], [17]), aspect-
oriented programming (e.g. [12]) and hybrid approaches. Although omitted from this study,
propagation of events in distributed environment brings even more challenges and also
possibilities for future research.

References
1. Avgeriou, P., Zdun, U.: Architectural Patterns Revisited – A Pattern Language. In:

Proceedings of 10th European Conference on Pattern Languages of Programs (EuroPlop
2005). , Irsee, Germany (2005)

2. Bainomugisha, E., Lombide Carreton, A., Van Cutsem, T., Mostinckx, S., De Meuter,
W.: A Survey on Reactive Programming. ACM Comput. Surv. 45 (4), (2013)

3. Boeker, M.: Propagator in C# - An Alternative to the Observer Design Pattern,
CodeProject, http://www.codeproject.com/Articles/38108/Propagator-in-C-An-
Alternative-to-the-Observer-Des, Accessed: July 10, 2013, (2009)

4. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison Wesley (2000)
5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented

software architecture: System of patterns. John Wiley & Sons, Chichester (1996)
6. Eales, A.: The Observer Pattern Revisited. Presented at the Educating, Innovating &

Transforming: Educators in IT, (2005)
7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of

Publish/Subscribe. ACM Comput. Surv. 35 (2), 114–131 (2003)
8. Feiler, P., Tichy, W.: Propagator: A family of patterns. In: Technology of Object-

Oriented Languages and Systems. IEEE (1997)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
10. Gasiunas, V., Satabin, L., Mezini, M., Nunez, A., Noye, J.: Declarative Events for

Object-Oriented Programming. Technische Hochschule, Darmstadt (2010)
11. Gupta, S., Hartkopf, J., Ramaswamy, S.: Event Notifier, a Pattern for Event Notification.

Java Rep. 3 (7), (1998)
12. Jicheng, L., Hui, Y., Yabo, W.: A novel implementation of observer pattern by aspect

based on Java annotation. In: Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on. pp. 284–288. IEEE, Chengdu (2010)

13. Maier, I., Rompf, T., Odersky, M.: Deprecating the observer pattern. Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland (2010)

14. Rege, K.: Design patterns for component-oriented software development. In: 25th
Proceedings of EUROMICRO conference. pp. 220–228. IEEE Computer Society, Milan
(1999)

15. Riehle, D.: Describing and composing patterns using role diagrams. Presented at the
WOON, (1996)

16. Riehle, D.: The Event Notification Pattern - Integrating Implicit Invocation with Object-
Orientation. Presented at the TAPOS 2.1, (1996)

17. Salvaneschi, G., Mezini, M.: Reactive Behavior in Object-oriented Applications: An
Analysis and a Research Roadmap. Presented at the AOSD, Fukuoka, Japan (2013)

18. Szallies, C.: On Using the Observer Design Pattern. (1997)

