
399

23RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2014 CROATIA)

A Comparative Analysis of Linked Data Tools to Support
Architectural Knowledge

Cristina Roda cristinarodasanchez@gmail
University of Castilla - La Mancha
Albacete, Spain

Elena Navarro elena.navarro@uclm.es
University of Castilla - La Mancha
Albacete, Spain

Carlos E. Cuesta carlos.cuesta@urjc.es
Rey Juan Carlos University
Móstoles, Madrid, Spain

Abstract
Architectural Knowledge (AK) has been an integral part of Software Architecture
specification since its original inception, but it has not been explicitly managed until recently.
It can be described as a computational structure composed of design decisions and rationales.
Recent research emphasizes that availability must be complemented by an effective use of this
information. We propose the use of Linked Data techniques to define and manage AK, thus
achieving flexible storage and scalable search. Our approach suggests storing the network of
decisions in RDF format to be retrieved efficiently by means of SPARQL queries. As a side
effect, many different AK structures can be described in this way, which then becomes a
general format to describe AK. Using this approach, this work analyses some significant
features regarding AK of several Linked Data tools, in order to determine which ones are the
best/worst for sharing and reusing AK as Linked Data.
Keywords: Architectural Knowledge, Linked Data, Ontology, RDF, SPARQL, AK Network.

1. Introduction
In recent times, Architectural Knowledge (AK) has become one of the most popular topics in
the Software Architecture (SA) field. AK has an organizational perspective, but it can also be
described as a computational structure, composed of assets of design knowledge, tracing back
to specific requirements and forward towards an implementation: that is, it describes the
extended history of the system’s design [10]. Then, from this perspective, AK is composed of
architectural elements, requirements, and a number of design assets. When the specification
just provided the final architecture, all this information was unrepresented design knowledge
[21]; but now the architecture includes this information as part of the rationale.

Although AK was considered as an integral element of the SA specification since the very
beginning of the discipline [14], it has been only recently [3] that both researchers and
practitioners have become aware of its importance. The importance of AK goes beyond
merely documenting the architecture; it is one of the vehicles for ensuring the quality of the
software development process. For instance, Bratthall et al. [4] carried out a survey with
several subjects from both industry and academia. They concluded that most of the
interviewed architects considered that by using the AK they could shorten the time required to
perform the change-tasks. Interviewed subjects also concluded that the quality of the results,
when they had to predict changes on unknown real-time systems, was better using AK.
Ozkaya et al. have also concluded, during their interview study [13], that the difficulties
during both the initial phases and the evolution of systems are not only due to the availability

400

RODA ET AL. A COMPARATIVE ANALYSIS OF LINKED DATA TOOLS...

of AK, but depend on its effective use. However, despite these difficulties, interviewed
architects have also remarked that they perceive AK to be essential when evolution happens.
Feilkas et al. [6] have also carried out a case study on three industrial information systems
highlighting the relevance of AK as one of its research questions. Authors have detected that
one of the problems in these projects was that developers were not aware of the intended
architecture because the AK was not properly described. Moreover, the case study also
exposed that both a machine-readable form of the AK and the introduction of automatic
analysis techniques are keys to achieve architecture-awareness in the development team.

We believe that a relevant conclusion can be extracted: it is a must to facilitate the
management of AK, not only during the development process, but especially during the
evolution of systems, in order to provide them with certain quality levels. The proposal
presented in this work paves the way to satisfy this need by using a Linked Data (LD) [2]
approach. In general, Linked Data [2] is referred to use the Web to create typed links between
data from different sources. In this manner, the main purpose of our approach is to provide
architects with abilities for both documenting the AK and exploiting it, regardless of the
architecture-centric practices already used by their organization.

Therefore, our initial hypothesis is that LD provides a good basis for software architects
to describe and manage the AK, and that this technology provides an adequate toolset which
can be exploited by them in a flexible way. In this line of research, it is followed the design
science research method [7] that involves the design of novel artifacts whose use and
performance let improve/understand the behavior of Information Systems. In this work, we
have selected some LD tools which seem to be particularly relevant, and examine their
features from an AK perspective. Our purpose is to decide (a) whether these features seem to
be adequate enough for supporting AK, thereby justifying this approach; and (b) which one of
these tools, if any, seems to be more promising from an AK perspective.

Our approach tries to contribute to the emerging Organizational Social Structures (OSS)
[18] perspective. An OSS can be seen as a dynamic interplay of people, e.g. stakeholders or
developers. From this perspective, we can find two alternatives: Communities of Practice
(CoP), where people share/learn a common practice, and Strategic Communities (SCs), where
people share experience and knowledge with the aim of achieving strategic business
advantage. Both of them have a common need: the need of sharing knowledge to achieve their
goals. This work intends to establish a foundation for them by means of the LD approach.

The remainder of this paper is organized as follows. Section 2 outlines some Linked Data
tools that are able to manage AK as Linked Data. All of these tools are afterwards analysed in
Section 3, according to different features, in order to find out which ones seem to be the
best/worst for sharing and reusing AK in a Linked Data format. Finally, Section 4 presents
our conclusions and future work.

2. Linked Data Tools
This section presents some of the most widely used Linked Data tools (a more detailed
description about their features, installation, etc., can be found in [16]). Initially, they have
been selected with the following requirements: they can handle LD and they must have a wide
support. Furthermore, all these tools have been selected because they have support for almost
all the features that we have considered in the analysis presented in Section 3. Some of these
features are of vital importance to manage AK, such as the SPARQL query language, RDF
and OWL schemas, RDF input data format, and RDF/XML as serialization format. In
particular, these four features are compulsory in our analysis so that those tools that do not
support them will be penalized regarding to their total score.

2.1 Virtuoso

It is a single data server, developed by OpenLink Software, that offers functionality for both a
traditional Relational data management server and a Linked Data server [12]. Namely, it
provides RDF, Relational and XML data management, document and Linked Data server, as

401

ISD2014 CROATIA

well as a web application server, among others. In order to use this server with Linked Data,
we may use OpenLink Data Spaces (ODS) [11][12] that allows one to establish and manage
data on the web, as an extension of the emerging Semantic Web. It includes the platform ODS
Briefcase which enables users to control file access rights, content-based search and metadata.
In addition, all resources are exposed as RDF data sets, so that the file server functionality can
be exploited by means of the SPARQL query language for the Semantic Web. ODS Briefcase
offers several features especially suited for managing LD, such as (i) uploading RDF files and
validating their format according to a particular syntax, e.g. XML; (ii) editing these files; (iii)
consuming data uploaded to the server by means of SPARQL [11]; and (iv) showing query
results in different formats (HTML, XML, JSON, Javascript, NTriples, RDF/XML or
spreadsheet). In addition, it is able to define SPARQL queries using a specific graphical
representation, and to run them using OpenLink iSPARQL [11].

2.2 Linked Media Framework (LMF)

LMF [17] is an easy-to-setup application server which packages Semantic Web technologies
to offer advanced services. This framework consists of two main elements: LMF Core and
LMF Modules. The LMF Core component is a LD server that exposes data following LD
Principles. In addition, it also offers a highly configurable Semantic Search service and a
SPARQL endpoint. Moreover, some other elements which can be used are [17]: (i) LMF
Semantic Search, that offers a highly configurable Semantic Search service; (ii) LMF Linked
Data Cache, which implements a cache to the LD Cloud, to be used transparently when
querying the contents of the LMF. In the case of querying a local resource that links to a
remote resource in the Linked Data structure, the remote resource will be retrieved in the
background and cached locally.

2.3 Apache Jena & Fuseki

Apache Jena [19] is a Java framework for building Semantic Web applications, and specially
Jena is a Java API for these kind of applications that can be used to create and manipulate
RDF graphs. Jena provides a collection of tools and Java libraries to develop semantic web
and LD applications, tools and servers. Namely, Jena includes an API for reading, processing
and writing RDF data in XML, N-triples and Turtle formats. It has also an ontology API for
handling OWL and RDFS ontologies and a rule-based inference engine for reasoning with
RDF and OWL data sources. It is able to efficiently store large numbers of RDF triples on
disk. It has a query engine compliant with the latest SPARQL specification and a server to
allow these RDF data to be published so that they can be used by other applications using a
variety of protocols. In addition, it provides constant classes for well-known schemas (RDF,
RDFS, RDFa, Dublin Core or OWL) and also has some methods for reading and writing RDF
as XML. On the other hand, Fuseki is a SPARQL server that offers services for SPARQL
update and file upload to a selected dataset, validators for SPARQL query and update, and for
non-RDF/XML formats.

2.4 TopBraid Suite

TopBraid Suite [20] offers semantic technology applicable in several scopes, such as to
connect data, systems and infrastructures or to build flexible applications from LD models.
All components of the suite work within an open architecture platform built specifically to
implement W3C standards for the integration and combination of data obtained from diverse
sources. These components are TopBraid Composer, an Eclipse plug-in that provides
complete support for developing and managing ontologies and LD; TopBraid Ensemble [20],
a semantic web application assembly toolkit for rapid configuration and delivery of dynamic
business applications, suitable to create model-driven applications; and TopBraid Live (TBL),
a server to deploy flexible, model-driven applications and dynamic, on-demand integration of
data from diverse sources.

402

RODA ET AL. A COMPARATIVE ANALYSIS OF LINKED DATA TOOLS...

2.5 Sesame

Sesame is an open source Java framework for storing and querying RDF data, similar to Jena
(Section 2.3). This framework is fully extensible and configurable with respect to storage
mechanisms, inference engines, RDF file formats, query result formats and query languages.
The core of the Sesame framework is the RDF Model API, which defines how the building
blocks of RDF (statements, URIs, blank nodes, literals, graphs and models) are represented.
Sesame also provides the Repository API, which describes a central access point for Sesame
repositories. Its purpose is to give a developer-friendly access point to RDF repositories,
offering various methods for querying and updating the data in an easy way. Additionally,
Sesame supports the use of SPARQL for querying memory-based and disk-based RDF stores,
RDF schema inference engines, as well as explicit support for the most popular RDF file
formats and query result formats.

2.6 Mulgara

Mulgara [9] is a scalable open source RDF datastore written in Java, under the Open Software
License 3.0. This tool can be considered akin to a relational database, as the information can
be stored and retrieved via a query language. But unlike a relational database, Mulgara is
optimized for the storage and retrieval of RDF statements, i.e. subject-predicate-object. Some
of its main features are native RDF support, multiple databases per server, a simple SQL-like
query language (similar to SPARQL), large storage capacity or low memory requirements.
Moreover, Mulgara provides mechanisms for ensuring reliability (full transaction support,
clustering and store level fail-over, permanent integrity), connectivity (using SOAP, Jena,
etc.), manageability (near zero administration, web based configuration tools) and scalability
(via XA Triplestore engine) of our system.

2.7 RedStore

RedStore [8] is a lightweight RDF triplestore written in C, which uses the Redland library, a
set of free software libraries that provides support for RDF. It supports, in addition to native
persistence and in-memory storage, a variety of storage backend adapters, including MySQL,
Postgres and Virtuoso. In native mode, RedStore uses hashtables to store RDF data. Its main
features are: SPARQL over HTTP support, a built-in HTTP server, support for a wide range
of RDF formats, and a test suite for unit and integration testing.

2.8 Callimachus

Callimachus [1] is a framework for data-driven applications based on LD. It enables web
developers to quickly create web applications based on LD, as they only need a web browser
to develop a data-driven application. In addition, Callimachus uses either Sesame (Section
2.5) or Mulgara (Section 2.6) for RDF storage, AliBaba (a RESTful object-RDF library), and
a proprietary template-by-example technique to view and edit resources. One of the most
interesting features of Callimachus is that it is able to execute queries using RDF itself.

3. Feature Analysis
This section presents a detailed analysis of the LD tools from the previous section in order to
compare their features and determine what the best ones are. This analysis was performed
using the examples of AK networks described in http://goo.gl/NJD2Ft to illustrate the power
of LD. Some of these features have been chosen because we consider them of vital
importance for solving the following deficiencies which often make even more difficult the
exploitation of AK:
i. There is not a standard for representing AK, but multiple approaches.
ii. Not every decision and rationale throughout the lifecycle (the history of AK) is recorded.

403

ISD2014 CROATIA

iii. There is not a standard language for querying AK.
iv. There is not a scalable solution able to manipulate the historical AK.

Therefore, the features selected from the point of view of managing AK as LD are:

 Data persistence: indicates if the LD tool provides persistence for its stored data. It is
related to deficiency (ii), as this feature is desirable to access the history of AK over time.

 Query languages: identifies the different query languages that can be used to manipulate
LD. It is related to deficiencies (iii) and (iv), as we want to store AK and the volume of
such information can rapidly increase, it is also desirable to have a query language that
allows us to navigate AK efficiently.

 Supported schemas/vocabularies by the LD tool, like XML or RDF. It is related to
deficiency (i), as we are looking for a standard schema to represent AK, such as RDF.

 Federated queries: indicates if the LD tool supports data searching across multiple servers.
It is related to deficiencies (iii) and (iv), as AK may be stored in different locations,
following a LD approach.

 Input data formats supported by the LD tool in order to store and manage LD. It is related
to deficiency (i), so that the standard for storing AK could be RDF.

 Query output formats provided by the LD tool when a query is executed. It is related to
deficiency (iii), as we are looking for a standard query language that provides different
output formats when querying AK.

 RDF serialization formats supported by the LD tool, like RDF/XML, Turtle, etc. It is
related to deficiency (i), as we want to represent our AK with a standard such as RDF.

On the other hand, we also take into account some technical features that are relevant
when choosing a software tool. They are not directly related to the AK field and its
management as LD, but to the software itself. In this way, features selected from the point of
view of software are:

 Type of tool: specifies the type of the analyzed LD tool.
 Interaction UI (User Interface): indicates whether the LD tool has a friendly UI.
 License: informs of the type of license that the LD tool has.
 Security: indicates how the LD tool guarantees that the information is always safely stored.
 SDK: indicates if the LD tool can be used to create other applications.
 Complexity: how complex is the Installation, Start-up and Data management of the tool.

A detailed analysis is presented in [16], providing a thorough analysis of all these features
(both from the point of view of managing AK as LD and from the point of view of software)
with regard to each tool. Notice that almost all LD tools are able to provide federated queries,
as they all support SPARQL 1.1 [22]. This language can be used to express queries across
diverse data sources, regardless of whether the data are stored natively as RDF or retrieved as
RDF via middleware. SPARQL 1.1 Federated Query extension has been created to execute
queries distributed over different SPARQL endpoints.

In order to decide which the best/worst LD tools are with regard to the analysed features,
the following formula (which maximizes the global contribution) is used:

Total score = QL1 · SS1 · IDF1 · RSF1 · (IUI + DP + QL2 + SS2 + FQ + IDF2 + QOF +

Li + Sec + RSF2 + SDKS + CI + CSU + CDM)

Each one of these parameters is calculated using the rules presented in Table 1, namely in

column How to score. Parameters QL1, SS1, IDF1 and RSF1 are compulsory features, and
therefore their values will be either 1 or 0, depending on their support. The reasons to
consider them as necessary features are the following:

 QL1 establishes that the tool supports at least SPARQL as a query language, due to the fact
that it is the standard query language used in LD.

 SS1 determines if the tool supports RDF, because this is the standard representation
schema accepted for LD. It also determines that the tool supports OWL, which is widely

404

RODA ET AL. A COMPARATIVE ANALYSIS OF LINKED DATA TOOLS...

used for reasoning in the context of LD, because it enables to connect different datasets,
located in different data stores, using different schemas. Moreover, both RDF and OWL
can help architects to obtain more complete answers for queries over LD, as stated in [15].

 IDF1 establishes that the tool provides RDF as input data format, as it is the standard input
data format for LD.

 RSF1 indicates that the tool provides RDF/XML as a RDF serialization format, as it has
been defined by the W3C in the original specification.

Initially, we did not consider these four compulsory parameters within the formula, but
only the sum of the remaining ones. Finally, we noticed that this was a wrong choice, given
that some tools obtained better scores than others, despite they lacked an adequate support for
LD, e.g. lack of schemas for RDF and OWL. This led us to mark them as compulsory. This
way, the tool with the highest score must be considered as the best analysed LD tool and
conversely, the one with the lowest score will be considered the worst. Notice that the
remaining features are still considered equally important; therefore they are equally scored,
namely 1 point per each feature at most –so the score of each feature ranges between 0 and 1.
Moreover, in order to facilitate this normalization, some of these features, such as QL2 or
SS2, are calculated by dividing the number of supported query languages or schemas by the
number of query languages or schemas offered by the tool with the highest support.

Table 2 shows the marks for each LD tool. Notice that we have omitted the feature that is
Table 1. Features preferences.

Analysed feature Parameter Preferences How to score
Type of tool - (Without preferences) (Not scoring, only informative)

Interaction UI IUI A User Interface that allows users to
interact with the Linked Data tool.

1 If the tool has a UI
0 Otherwise

Data persistence DP A platform that provides data persistence
over the time.

1 If the tool provides data
persistence
0 Otherwise

Query languages* QL1

QL2

A tool that supports, at least, SPARQL.

The more query languages supported, the
more preferable.

1 If the tool supports SPARQL
0 Otherwise

(Number of supported query
languages)/5

Supported
schemas/vocabularies*

SS1

SS2

A tool that supports, at least, RDF and
OWL as schemas.

The more schemas are supported, the more

preferable.

1 If the tool supports RDF and
OWL as schemas

0 Otherwise
(Number of supported

schemas)/13
Federated queries FQ A tool that supports federated queries. 1 If the tool provides federated

queries
0 Otherwise

Input data formats* IDF1

IDF2

A tool that supports, at least, RDF as an
input data format.

The more input data formats supported, the

more preferable.

1 If the tool supports RDF as an
input data format

0 Otherwise
(Number of input data

formats)/11
Query output formats QOF The more query output formats supported,

the more preferable.
(Number of query output

formats)/17
License Li A tool with an Open Software license. 1 If the tool has an Open

Software license
0 Otherwise

Security Sec A tool with security services. 1 If the tool has security services
0 Otherwise

RDF serialization formats* RSF1

RSF2

A tool that supports, at least, RDF/XML as
a RDF serialization format.

The more RDF serialization formats are

supported, the more preferable.

1 If the tool supports RDF/XML
as a RDF serialization format

0 Otherwise
(Number of RDF serialization

formats)/10
SDK support SDKS A tool that provides SDK support. 1 If the tool has SDK support

0 Otherwise
Complexity Installation CI It is desirable a Low complexity in all

cases.
0.2 Low 0.1 Medium 0 High

 Start-up CSU 0.3 Low 0.15 Medium 0 High
Data

management
CDM 0.5 Low 0.25 Medium 0 High

 (*) These features are compulsory.

405

ISD2014 CROATIA

not scoring, i.e. Type of tool. As a result, the first position is for Sesame (9.35), the second is
for Apache Jena and Fuseki (8.82), then Virtuoso (8.58), Callimachus (7.3), TopBraid Suite
(6.98) and Mulgara (5.43). The last ones are RedStore (0) and Linked Media Framework (0),
which have no score because they do not support OWL (a compulsory feature represented as
parameter SS1). As we can see, the best LD tools, between the analysed ones and according
to our ranking, are Sesame and Apache Jena & Fuseki. In this sense, these two tools are really
similar, given that both provide a Java framework to manage LD. Their strength with respect
to the others comes from the large number of supported schemas and vocabularies and RDF
serialization formats, in addition to the SDK support, which is exclusive of them.

4. Conclusions and Future Work
As already indicated, AK provides the basis to guide architects in many decisive processes,
such as evolution [5], and to achieve certain levels of quality during these processes.
However, as mentioned in Section 3, there are several shortcomings that can prevent
organizations from exploiting AK, such as the variety of formats for documenting and
representing it, or the difficulties in meeting its requirements for evolution.

In this paper, we suggest the use of LD techniques to solve these shortcomings. These
techniques allow one to define and query AK in an easy and effective way, providing a
flexible storage and scalable search. In this sense, our approach recommends storing the
network of decisions using RDF, to be efficiently retrieved by means of SPARQL queries. It
is worth noting that this proposal does not depend on any particular AK tool or model, or on
any RDF triplestore or serialization format: we are considering the benefits of the LD
approach itself. Furthermore, we have presented several tools for managing LD and we have
analysed some relevant features of these tools with regard to AK, with the purpose of
deciding to which extent they provide relevant features, and which ones are the best/worst for
sharing and reusing AK as LD. Our results show that the best LD tools for this specific goal,
among the analysed ones, are Sesame and Apache Jena & Fuseki. Therefore, given these
outcomes, we conclude that the best choice to handle and share AK is to use a LD tool with
some SDK support, such as Sesame or Apache Jena & Fuseki, to build some specific tool or
interface which simplifies the use of this tool in an AK context. In summary, the LD approach
offers important advantages in terms of scalability, as it has been defined to manage great
amounts of data thanks to its index-based structure. This facility is being widely used within
the open data initiative, to make data available to everyone. This approach makes possible to
define and implement a shared repository of AK available to every architect, without
compromising specific approaches.

Table 2. Scores of Linked Data tools.

Analysed
features

Par. Virtuoso LMF Apache
Jena &
Fuseki

TopBraid
Suite

Sesame Mulgara RedStore Callimachus

Interaction UI IUI 1 1 1 1 1 1 1 1
Data persistence DP 1 1 1 1 1 1 1 1
Query languages QL1

QL2
1

5/5=1
1

1/5=0.2
1

2/5=0.4
1

1/5=0.2
1

2/5=0.4
1

2/5=0.4
1

3/5=0.6
1

1/5=0.2
Supported

schemas/vocabularies
SS1
SS2

1
4/13=0.31

0
4/13=0.31

1
9/13=0.69

1
5/13=0.39

1
12/13=0.92

1
4/13=0.31

0
1/13=0.08

1
13/13=1

Federated queries FQ 1 1 1 1 1 0 1 1
Input data formats IDF1

IDF2
1

4/11=0.36
1

4/11=0.36
1

2/11=0.18
1

11/11=1
1

1/11=0.09
1

4/11=0.36
1

1/11=0.09
1

1/11=0.09
Query output

formats
QOF 7/17=0.41 5/17=0.29 6/17=0.35 4/17=0.24 5/17=0.29 1/17=0.06 17/17=1 1/17=0.06

License Li 1 1 1 0 1 1 1 1
Security Sec 1 1 1 1 1 0 1 1

RDF serialization
formats

RSF1
RSF2

1
5/10=0.5

1
5/10=0.5

1
8/10=0.8

1
4/10=0.4

1
9/10=0.9

1
3/10=0.3

1
10/10=1

1
3/10=0.3

SDK support SDKS 0 0 1 0 1 0 0 0

 CI 0.2 0.2 0 0.2 0.1 0.2 0 0.1
 CSU 0.3 0.3 0.15 0.3 0.15 0.3 0.15 0.3
 CDM 0.5 0.25 0.25 0.25 0.5 0.5 0.5 0.25

TOTAL SCORE 8.58 0 8.82 6.98 9.35 5.43 0 7.3

406

RODA ET AL. A COMPARATIVE ANALYSIS OF LINKED DATA TOOLS...

Several ideas outline the path for our future work, due to the possibilities offered by LD.
One of them is related to the social part of the proposal. Even though OSS are already gaining
a growing attention, and practitioners are becoming more aware of the need of sharing the
knowledge, we are planning to carry out several case studies in order to evaluate the degree of
acceptance of the ideas presented in this work.

Acknowledgements

This work has been funded in part by the Spanish Ministry of Economy and Competiveness
under the National R&D&I Program, within Projects DESACO (TIN2008-06596-C02-01),
and CoMobility (TIN2012-31104), and also through the FPU scholarship (FPU12/04962).

References
1. 3 Round Stones, I.: Callimachus, http://callimachusproject.org/.
2. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semant.

Web Inf. Syst. 5 (3), 1–22 (2009).
3. Bosch, J.: Software Architecture: The Next Step. 1st European Workshop in Software

Architecture (EWSA’04), pp. 194–199. Springer (2004).
4. Bratthall, L., Johansson, E., Regnell, B.: Is a Design Rationale Vital when Predicting

Change Impact? – A Controlled Experiment on Software. 2nd Int. Conf. on Product
Focused Soft. Process Improvement (PROFES 2000). pp. 126–139, Springer (2000).

5. Cuesta, C.E., Navarro, E., Perry, D.E., Roda, C.: Evolution styles: using architectural
knowledge as an evolution driver. J. Softw. Evol. Process 25 (9), 957–980 (2013).

6. Feilkas, M., Ratiu, D., Jurgens, E.: The loss of architectural knowledge during system
evolution: An industrial case study. 17th IEEE International Conference on Program
Comprehension (ICPC’09). pp. 188–197, IEEE CS Press (2009).

7. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Q. 28 (1), 75–105 (2004).

8. Humfrey, N.J.: RedStore, http://www.aelius.com/njh/redstore/.
9. Mulgara Project: Mulgara, http://www.mulgara.org/.
10. Navarro, E., Cuesta, C.E.: Automating the Trace of Architectural Design Decisions

and Rationales Using a MDD Approach. 2nd European Conf. on Software
Architecture (ECSA 2008). pp. 114–130, Springer (2008).

11. OpenLink Software: OpenLink Virtuoso, http://my.openlinksw.com.
12. OpenLink Software: Virtuoso Universal Server, http://virtuoso.openlinksw.com/.
13. Ozkaya, I., Wallin, P., Axelsson, J.: Architecture knowledge management during

system evolution. 2010 ICSE SHARK ’10. pp. 52–59, ACM Press (2010).
14. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM

Softw. Eng. Notes 17 (4), 40–52 (1992).
15. Polleres, A., Hogan, A., Delbru, R., Umbrich, J.: RDFS & OWL Reasoning for

Linked Data. Reasoning Web. Semantic Technologies for Intelligent Data Access. pp.
91–149, Springer (2013).

16. Roda, C., Navarro, E., Cuesta, C.E.: Analyzing Linked Data tools for SHARK.
TR#DIAB-13-09-1. Computing Systems Department, Albacete, Spain (2013).

17. Semantic Web: Linked Media Framework, http://semanticweb.org/wiki/Linked_
Media_Framework.

18. Tamburri, D.A., Lago, P., Van Vliet, H.: Organizational Social Structures for
Software Engineering. ACM Comput. Surv. 1–34 (2012).

19. The Apache Software Foundation: Apache Jena, http://jena.apache.org/.
20. TopQuadrant Inc.: TopQuadrant, http://www.topquadrant.com.
21. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE

Softw. 22 (2), 19–27 (2005).
22. W3C: World Wide Web Consortium, http://www.w3.org/.

