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Robust Multi-criteria Service Composition
in Information Systems
Service compositions are used to implement business processes in different application
domains. A quality of service (QoS)-aware selection of the service to be composed involves
multiple, usually conflicting and possibly uncertain QoS attributes. This article presents a
heuristic multi-criteria service selection approach that is designed to determine a Pareto
frontier of alternative service selections in a reasonable amount of time. Taking into account
the uncertainty of response times, the obtained service selections are robust with respect to
the constrained execution time. The proposed solution approach is based on the
Non-dominated Sorting Genetic Algorithm (NSGA)-II that is extended by heuristics that
exploit problem specific characteristics of the QoS-aware service selection. The applicability
of the solution approach is demonstrated by a simulation study.
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1 Introduction

Service-oriented architectures (SOA) are
emerging as the architecture paradigm

used to implement business information
systems (Papazoglou et al. 2008; Aier
et al. 2011). Business processes are imple-
mented based on software services that
are accessible by using standard inter-
faces in an SOA. The services are hosted
inside an enterprise or purchased from
external service providers. The selection
of the services to be composed is driven
by functional requirements and the QoS.
Facing a growing market of services and
alternative service implementations, the
challenge of a QoS-aware service selec-
tion is to identify the services to be com-
posed in a way that predefined QoS re-
quirements are met and QoS attributes
are optimized (Bichler and Lin 2006).
We expect future applications of QoS-
aware service selection algorithms for de-
cision support systems in domains such
as value chains, i.e., the orchestration
of a network of production and logis-
tics activities, supply chain management,
or multi-segment intermodal transporta-
tion within the physical internet.

The QoS-aware service selection is a
multi-criteria optimization problem that
is NP-hard as shown by Yu and Lin
(2004). Taking an economic point of
view, the objective of a QoS-aware ser-
vice selection is to minimize the cost
of the service composition. According to
Eder et al. (1999), customer satisfaction
is achieved by a high availability of the
business process and the compliance to
temporal conditions during its execution.
However, the execution time of the ser-
vice composition is determined by the re-
sponse times of the services which are ar-

guably uncertain. The service reconfigu-
ration approach proposed by Ramacher
and Mönch (2013) is used to avoid a vi-
olation of a execution time limit in an
uncertain execution environment. A fre-
quent service replacement caused by a
service reconfiguration is undesired in
an environment where the service im-
plementations and contracts with ser-
vice providers cannot be adjusted on de-
mand. A further drawback of existing ser-
vice selection approaches is that the op-
timization of multiple QoS attributes is
neglected. Typically, QoS attributes are
combined to make up an integrated ob-
jective using a simple additive weight-
ing (SAW) approach. However, the inte-
gration requires that a tradeoff between
the QoS attributes is determined prior
to the optimization and hence without
information about possible alternatives.

This article presents a multi-criteria
QoS-aware service selection model that
considers the uncertainty of response
times. According to Bertsimas and Sim
(2004), a solution, i.e. a service selection,
is called robust if it remains feasible with
a certain probabilistic guarantee when
the problem parameters change within a
certain range. A robust service selection
is obtained that ensures a reliable execu-
tion with respect to a constrained execu-
tion time and uncertain response times.
Following Scholl (2001), this type of ro-
bustness is called robustness with respect
to feasibility. Robust approaches have so
far predominantly been neglected in the
related literature. Adopting the princi-
ples of multi-criteria optimization, the
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solution approach aims to generate a set
of alternative solutions with respect to
cost minimization and availability max-
imization objectives. The proposed so-
lution approach combines the NSGA-II
metaheuristic with heuristics that exploit
the particular structure of the service se-
lection problem. In the present article
the heuristics proposed by Ramacher and
Mönch (2012) are extended to deal with
complex process models and uncertain
response times. Computational experi-
ments demonstrate that high-quality ser-
vice compositions are determined in a
few minutes of computing time while the
computational burden caused by an ex-
act solution approach increases to sev-
eral hours just for medium-size service
compositions.

The remainder of the article is orga-
nized as follows. The service selection
problem is formulated in Sect. 2.1. Pos-
sible application domains of the QoS-
aware service selection are presented
in Sect. 2.2. Section 2.3 surveys re-
lated literature. Section 3.1 describes the
metaheuristic-based solution approach
for the examined multi-criteria ser-
vice selection. Section 3.2 elaborates on
problem-specific heuristics and their in-
tegration into the metaheuristic solution
approach, while an exact approach is pre-
sented in Sect. 3.3. The design of the
computational experiments is described,
and the results are discussed in Sect. 4.
Finally, Sect. 5 concludes the paper and
provides some future research directions.

2 Multi-criteria Service Selection
Model

2.1 Service Composition Model

Services are well-defined self-contained
modules that provide business function-
ality. A service is accessible using a pub-
lic interface that is described in terms
of a standard interface description lan-
guage. A task represents an abstract func-
tionality that can be provided by a ser-
vice. The service class Si includes services
that fulfill the functional requirements to
execute a task ti.

If existing services are assembled to
provide a specific functionality we call
the resulting component a service com-
position. A service composition can be
described in terms of a process model
that consists of tasks. The execution flow
of a process model is defined by the se-
quential execution of tasks, conditional

Fig. 1 Process model of a service composition

Fig. 2 Execution routes and paths of a process model

branches, and parallelization. A condi-
tional branch is evaluated during the ex-
ecution of a service composition, and a
certain branch is taken. It is assumed that
the branching probability of each branch
is known or an appropriate estimate is
available. The branches of a paralleliza-
tion are executed in parallel. The paral-
lelized branches are only joined when the
execution of each branch is completed.
A process model that consists of seven
tasks, two conditional branches, and a
parallelization is shown in Fig. 1. Note
that services of seven service classes are
used to provide the requested functional-
ity to execute the tasks ti, i = 1, . . . ,7 in
Fig. 1.

The set of all tasks is denoted by T. The
notation ti → tk is used if ti is a preced-
ing task of tk. The set T̂ ⊆ T is the set
of tasks without any preceding task, while
T̃ ⊆ T is the set of tasks without any suc-

ceeding task. According to Yu et al. (2007)
the execution structure of a service com-
position is described in terms of exe-
cution paths P and execution routes R.
An execution path p ∈ P is a path from
ti ∈ T̂ to tk ∈ T̃ that contains only one
branch of each conditional branch and
one branch of each parallelization. An ex-
ecution route r ∈ R is a sub-model of
the process model that contains only one
branch of each conditional branch but
all branches of a parallelization. The ex-
ecution probability ν(r) of r ∈ R is cal-
culated as the product of the branching
probabilities of the conditional branches
included in r. The notations ti ∈ T[r] and
ti ∈ T[p] are used when a task ti is part
of the execution route r or the execution
path p, respectively. The execution paths
P = {p1,p2,p3} and execution routes R =
{r1, r2} of the service composition from
Fig. 1 are shown in Fig. 2.
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The set of all services is denoted with
S = ⋃

ti∈T Si. A service binding b deter-
mines the service sij ∈ Si that is used
to execute the task ti. Hence, a service
binding is a mapping:

b : T → S, ti �→ sij ∈ Si. (1)

In the remainder of this article, the ser-
vice b(ti) that is bound to ti is abbrevi-
ated as bi. The set of all service bindings
is defined as B := {b|b : T → S, ti �→ bi ∈
Si}.

The cost associated with a service in-
vocation of s ∈ S is denoted with c(s) ∈
IR+. The availability of s ∈ S is repre-
sented by a(s) ∈ [0,1]. The actual re-
sponse time of s is r(s) ∈ IR+. Note that
r(s) is only known after the processing of
s is completed. Hence, an estimate of the
response time r̃(s) ∈ IR+ is considered by
an ex-ante performed service selection.
A reasonable estimate can be obtained
based on historical information provided
by a monitoring system as proposed by
Qiang et al. (2012). An empirical distri-
bution of the response time of sij ∈ Si

is represented by K ∈ IN+ classes. The

left endpoint of the k-th class is rk−1
ij and

the right endpoint is rk
ij. The minimal re-

sponse time is given by r0
ij, while the max-

imal response time is rK
ij . The remaining

k − 1 values rk
ij are chosen equidistantly

between r0
ij and rK

ij . The quantity hk
ij is the

number of service invocations observed
for sij with rk−1

ij ≤ r(sij) < rk
ij.

Following Yu et al. (2007), the expected
cost c(b), the availability a(b), and the ex-
ecution time e(b) of a service composi-
tion with respect to the service binding b
are calculated as:

c(b) =
∑

r∈R

ν(r) ·
∑

ti∈T[r]
c(bi), (2)

a(b) = min
r∈R

∏

ti∈T[r]
a(bi), (3)

e(b) = max
p∈P

ep(b). (4)

In (4), ep(b) is the execution time of a
path p ∈ P. Since the tasks of an execu-
tion path are sequentially executed, the
execution time is calculated as:

ep(b) =
∑

ti∈T[p]
r̃(bi). (5)

The execution time of a service compo-
sition must not exceed ē. If the execu-

tion time restriction is violated, the ex-
ecution of a service composition is re-
garded to be failed. Facing with uncertain
response times, the reliability ψ(b) rep-
resents the probability that the execution
time restriction will be fulfilled when the
service composition is executed accord-
ing to b. The minimal reliability that has
to be achieved by a service binding b is
ψmin, i.e., b is feasible only if ψ(b) ≥ ψmin
holds.

The goal of the service selection is
to determine tradeoffs between the con-
flicting cost minimization and availabil-
ity maximization objectives. The prob-
lem is called the multi-criteria stochas-
tic service selection (MCSS). The MCSS
problem can be tackled by standard solu-
tion approaches when the objectives are
combined into the integrated objective
function:

I(b) = a(b) + w · c(b). (6)

The quantity w in (6) is the weight pa-
rameter used to balance the importance
of the cost minimization objective against
the objective to maximize the availabil-
ity. The value of w depends on the scal-
ing of the cost and the availability and
the preferences of the decision maker.
Combining the objectives is called an a-
priori approach since the value of w has
to be determined prior to the optimiza-
tion without knowledge about possible
alternatives.

A multi-criteria service selection avoids
the parameter w to be determined prior
to optimization. Availability maximiza-
tion and cost minimization are conflict-
ing objectives. Hence, each service bind-
ing represents a certain tradeoff between
them and consequently, an unambiguous
solution cannot exist. A feasible service
binding b is called non-dominated when
no other feasible service binding b′ exists
with c(b′) ≤ c(b) and a(b′) ≥ a(b), and at
least one of these inequalities is strict. The
entire set of non-dominated solutions for
a problem instance is called the Pareto
frontier.

2.2 Prospective Application Examples

In this subsection, we discuss some
prospective applications of the tech-
niques proposed in this paper because we
are not aware of real-world applications
of QoS-aware service-selection methods.
Web Services are used to automate busi-
ness processes. The QoS-aware service se-
lection is typically considered in the con-
text of composing Web Services to im-
plement complex business functionality.

The dynamic adaption of service com-
positions based on Web Services is sup-
ported by, e.g., the eFlow environment
proposed by Casati et al. (2000). How-
ever, this subsection shows that the no-
tion of a QoS-aware service selection
can be easily extended to more general
orchestration and deployment scenarios.

Viswanadham and Kameshwaran
(2009) consider the orchestration of a
network of activities in a value chain. An
orchestrator is assumed which does not
own capacities but has access to a large
pool of service providers that can per-
form various activities in a value chain.
Viswanadham and Kameshwaran (2009)
report that the Hong Kong-based trading
company Li & Fung collaborates with
thousands of service providers. These
providers are selected on short notice ac-
cording to the activities required to fulfill
an order. The selection is driven by sev-
eral conflicting attributes such as the ca-
pacities of the service providers, the lead
time, and the production cost. Although
a mixed integer programming (MIP)
solution approach based on SAW is pre-
sented, a heuristic multi-criteria decision
support method will be beneficial for the
orchestration problem to efficiently ob-
tain possible alternative implementations
in the value chain.

Another application of the QoS-aware
service selection can be found in the area
of service deployment in data centers.
The services a business process is com-
posed of are implemented in software
components as, e.g., Enterprise Resource
and Planning (ERP) systems, standard
IT services, such as Directory Services,
or as individually implemented Web Ser-
vices (cf. Fig. 3). The existing software
components can be deployed on inter-
nal servers or with a cloud infrastruc-
ture used as an Infrastructure As A Ser-
vice (IAAS) like Amazon’s Elastic Com-
puting Cloud (EC2). We assume that QoS
estimates are available for each option,
obtained by, e.g., designed experiments
to evaluate a system as proposed by Ja-
moussi et al. (2010). A deployment plan
has to be determined for each software
component in order to meet the QoS re-
quirements of the business process and
optimize QoS attributes.

An example process that consists of
four tasks is shown in Fig. 3. The tasks are
executed by services provided by pack-
aged software like the Lightweight Direc-
tory Access Protocol (LDAP) and ERP
systems and Web Services which can be
hosted on servers inside the enterprise
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Fig. 3 Deployment alternatives of services used to implement a business process

or at IAAS. The costs of a deployment
plan consists of the rental fees for the
IAAS and the operating costs of the in-
ternal servers. In addition to the costs,
the execution time of a business process
and its throughput can be considered as
conflicting QoS objectives.

The last example deals with future lo-
gistics. In the physical internet, physi-
cal objects are packaged in so called π-
containers that are shipped in a multi-
segment manner (Montreuil 2011). The
segments are connected by π-hubs that
allow for an efficient unloading/loading
of π-containers. The transportation re-
questor has to select appropriate trans-
portation providers to ship their goods
from segment to segment to reach the
final destination. The services, offered
by the providers, are differentiated in
terms of transportation time, transporta-
tion cost, and other quality measures.
These services form a service class for
each segment. Considering the transport
on a segment as a task, a QoS-aware ser-
vice selection allows for an identification
of providers for each segment, ensuring
that QoS goals such as minimizing of the
total cost are fulfilled and total traveling
time constraints are not violated.

2.3 Related Literature

A service selection model for service
compositions with sequentially executed

tasks that accounts for globally con-
strained QoS attributes is presented by
Yu and Lin (2004). SAW is used to com-
bine the QoS attributes to be optimized
into an integrated objective function. The
service selection is modeled as a com-
binatorial optimization problem and as
a graph-based problem. The optimiza-
tion problem is a special case of the
NP-hard multiple choice knapsack prob-
lem (MCKP). Several exact solution ap-
proaches are studied for both the com-
binatorial and graph-based formulation
with respect to their computational per-
formance. The algorithm proposed by
Pisinger (1995) outperforms the remain-
ing approaches considered in Yu and Lin
(2004) with respect to computing time.

Aggregation functions are used to es-
timate the QoS of a service composition
that consists of conditional branches and
parallelization. Jaeger et al. (2004) and
Cardoso et al. (2004) propose a set of ag-
gregation patterns that are used to define
appropriate aggregation functions. Ag-
gregation functions to estimate costs, to
calculate the availability, and to aggregate
the total execution time of a service com-
position are provided. Yu et al. (2007)
propose a QoS-aware service selection
model that relies on the QoS aggrega-
tion functions proposed by Jaeger et al.
(2004). Multiple QoS attributes to be op-
timized are combined into an integrated
objective function utilizing SAW. Several
exact solution approaches are studied.

The computational burden to obtain
an optimal service binding increases ex-
ponentially with an increasing number
of tasks. Therefore, research effort was
spent to develop efficient heuristic solu-
tion approaches to address the increas-
ing computational complexity of large-
scale service compositions. QoS-aware
service selection approaches based on ge-
netic algorithms (GAs) are developed by
Jaeger and Mühl (2007) as well as Can-
fora et al. (2005b) independently from
each other. It is shown that a service bind-
ing that is feasible with respect to given
QoS constraints can be determined ef-
ficiently. However, the optimization of
QoS attributes is not well addressed.

The uncertainty of QoS attributes is
neglected by the service selection mod-
els discussed so far. Canfora et al. (2005a)
consider uncertain QoS values and their
impact on QoS requirements. They aim
to determine the tasks of the process
model, i.e., workflow slices that are not
executed so far. A new service selection
is performed for the identified workflow
slices if the deviation exceeds a prede-
fined threshold. This approach is refined
by Ramacher and Mönch (2013) by fo-
cusing on uncertain response times and a
globally constrained execution time.

The aforementioned service selection
models are solely devoted to optimize
a single objective function. In the case
of multiple QoS attributes to be opti-
mized, an integrated objective function
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is derived by SAW. However, determin-
ing the weights required for an integra-
tion of the objectives is a non-trivial task
especially in absence of further informa-
tion, e.g., on the range of alternative so-
lutions. Therefore, service selection mod-
els that are based on the principles of
multi-criteria optimization are desired.

Liu et al. (2005) consider a NSGA-II
approach for a multi-criteria service se-
lection. However, they neither provide
a problem encoding nor were compu-
tational experiments performed. A fur-
ther approach that utilizes a GA to
solve the service selection problem in a
multi-criteria sense is proposed by Wada
et al. (2011). Facing a cost minimization
and throughput maximization objective,
the determination of the set of non-
dominated service bindings is addressed.
A canonical GA is tailored to determine
a set of non-dominated service bind-
ings. A fitness function, similar to the
one used by NSGA-II, evaluates a chro-
mosome with respect to its domination
rank and its distance to other solutions of
the same population and thus fosters the
generation of a non-dominated solution.

A multi-criteria optimization based on
integer programming (IP) is proposed by
Wiese et al. (2008). The service selec-
tion model considers uncertain response
times and uncertain costs. The goal of
the service selection is to minimize the
Average Value at Risk of costs and the
duration of a service composition while
the availability of a service composition
is globally constrained. The objectives
are optimized independently from each
other so that a set of non-dominated
solutions is obtained.

With the rare exception of Wiese et al.
(2008), multi-criteria service selection
approaches do not account for uncertain
QoS attributes. Considering the uncer-
tainty of response times, the service se-
lection aims to identify a robust service
binding that allows a reliable execution of
the service composition. Although other
QoS attributes are considered, a similar
goal is pursued by Wiese et al. (2008).
However, as a solution approach they
use IP which is not able to deal with
large-scale service compositions in a rea-
sonable amount of time because of the
NP-hardness of the problem. Thus, the
goal of the present article is to provide
a heuristic solution approach that deter-
mines the Pareto frontier in a reason-
able amount of time even for large-scale
service compositions. Besides the multi-
criteria optimization, the approach pro-
posed in this article is the first approach

that exploits problem specific heuristics
of the service composition problem to
improve the efficiency of the underlying
metaheuristic.

3 Framework for Multi-criteria
Service Selection

3.1 NSGA-II-Based Solution Approach

3.1.1 NSGA-II Principles

The NSGA-II scheme proposed by Deb
et al. (2002) is a state-of-the-art meta-
heuristic used to determine an approx-
imation of a Pareto frontier of com-
binatorial optimization problems. How-
ever, in principle, other metaheuristics
are also possible as discussed by Talbi
et al. (2012). NSGA-II relies on selection,
crossover, and mutation to generate new
populations of chromosomes. The selec-
tion mechanism is designed to foster the
generation of Pareto optimal solutions.
As part of the selection mechanism, a
crowding operator improves the diversi-
fication of the solutions obtained for the
Pareto frontier. A problem encoding and
an appropriate assessment method have
to be specified for the MCSS problem.

3.1.2 Problem Encoding and Genetic
Operators

The MCSS problem allows for the follow-
ing natural encoding scheme. A service
binding for a service composition with n
tasks is encoded by a chromosome that
consists of n genes. The i-th gene iden-
tifies the service sij ∈ Si that is bound to
task ti. The i-th gene takes a value of the
allele set {1, . . . , |Si|}.

Offspring chromosomes are deter-
mined using the uniform crossover op-
erator. The offspring o1 is derived from
two parents c1 and c2 that are chosen by
tournament selection from the current
population. For each gene of o1 a cer-
tain parent chromosome is selected from
{c1, c2} with a probability ps. The value
of the gene is set according to the value
of the corresponding gene of the selected
parent.

The mutation operator is used to ran-
domly change the service binding of a
chromosome selected with a certain mu-
tation probability to avoid a premature
convergence of the algorithm. The mu-
tation operator selects the genes consid-
ered for mutation by chance. A gene is se-
lected with a probability pg . The value of

the chosen gene is set to a randomly de-
termined value of its allele set. The chro-
mosomes of the initial population are de-
termined by selecting at random the gene
values from their allele sets.

3.1.3 Chromosome Assessment

The fitness of a chromosome c that en-
codes the service binding bc is repre-
sented by the values ocos t(c) and oavail(c).
The expected cost c(bc) and the expected
availability a(bc) are derived according to
(2) and (3), respectively. In addition, the
reliability ψ(bc) has to be considered to
decide whether c is feasible or not.

A Monte Carlo Simulation (MCS) is
used to estimate ψ(bc). The finite set of
scenarios Ω is considered to sample the
response times. A scenario ω ∈ Ω repre-
sents the response time rω(s) ∈ IR+ for
each s ∈ S that is sampled from the re-
sponse time distribution of s. The exe-
cution time of the service composition
with respect to bc and the scenario ω is
e(bc,ω). The value e(bc,ω) is calculated
according to (4) and (5) where r̃(s) =
rω(s) is used. The reliability ψ(bc) is
estimated by:

ψMCS(bc) =
∑

ω∈Ω κ(ω)

|Ω| , (7)

where κ(ω) is 1 if e(bc,ω) ≤ ē holds and
0 otherwise.

The chromosome c is infeasible if
ψMCS(bc) < ψmin is obtained. A com-
mon mechanism to deal with infeasi-
ble solutions is to introduce penalties.
The penalty P(c) of a chromosome c is
defined as:

P(c) = max
{
ψmin − ψMCS(bc),0

}
. (8)

Following Deb (2000), the fitness of a
chromosome c is calculated as:

ocos t(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(bc),

if no violation,

cmax + P(c),

otherwise,

(9)

oavail(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(bc),

if no violation,

amin − P(c),

otherwise.

(10)

In (9) and (10), cmax and amin are the
largest cost value and the smallest avail-
ability value in the entire population,
respectively.
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Our tailoring of the NSGA-II approach
that incorporates the encoding of the
service binding and the corresponding
evaluation method is called MCS-GA.

3.2 Heuristic Extension

A service binding encoded by a chro-
mosome can be improved by replacing
the services bound to tasks. The selection
of appropriate services is driven by two
heuristics which incorporate characteris-
tics of the MCSS problem. As proposed
by Ramacher and Mönch (2012), the
heuristics are integrated into the meta-
heuristic to improve the performance of
the algorithm.

3.2.1 MCSS Heuristics

The heuristics are related to a determinis-
tic version of the MCSS problem. There-
fore, the uncertain response time of a ser-
vice s ∈ S is represented by a suitable esti-
mate rH(s) ∈ IR+. The estimate is derived
based on the mean and a risk factor η ≥ 0
dependent standard deviation term as:

rH(s) = E[R] + η
√

Var[R], (11)

where R is a random variable for the re-
sponse time of s. The risk factor is ad-
justed during the optimization procedure
to ensure feasibility for the stochastic
problem.

Considering the response time esti-
mates, a service binding b is feasible
if e(b) ≤ ē holds and infeasible other-
wise. Distinguishing these two cases, two
heuristics are proposed:
• Repair heuristic: An infeasible service

binding is adjusted such that the exe-
cution time of the service composition
is decreased.

• Improve heuristic: A feasible service
binding is adjusted such that the objec-
tives are improved unless the execution
time restriction is violated.

Each of the heuristics replaces a service
bi bound to ti with a suitable service sij ∈
Si. The replacement is carried out by the
rebinding function RB that is defined as:

RB : B × T × S → B, (b, ti, sij) �→ b′,

(12)

where

b′(tk) :=
{

bk, if tk ∈ T\{ti},
sij, otherwise.

(13)

The suitability of a service sij is a mea-
sure to identify the services that are con-
sidered to replace the service bi. Con-
sidering the suitability of an element is
common in optimization procedures that
tackle the MCKP. For example, Pisinger
(1995) calculates the likelihood of an el-
ement to be included in an optimal so-
lution as the ratio of its utility and its
weight. The suitability of a service is cal-
culated depending on two weight factors
wcos t(b) and wavail(b) as:

μb(sij) = [
wcos t(b)

(
c(sij) − c(bi)

)

+ wavail(b)
(
a(bi) − a(sij)

)]

× [
rH(bi) − rH(sij)

]−1
. (14)

The quantity μb(sij) estimates to which
extent the cost and the availability of a
service composition are changed with re-
spect to a time unit when the service sij is
used to execute the task ti instead of bi.

The set Di of dominating services for
the task ti is

Di = {
sij ∈ Si|c(sij) ≤ c(bi),

a(sij) ≥ a(bi), rH(sij) ≤ rH(bi)
}
.

(15)

Each service sij ∈ Di can be used to re-
place bi without increasing the execu-
tion time of the service composition and
without deteriorating the values of the
QoS attributes to be optimized.

3.2.2 Repair Heuristic

The goal of the repair heuristic is to re-
place a service bi with a service sij ∈ Si

that has a lower response time to decrease
the total execution time of the service
composition. The tasks contribute differ-
ently to the reduction of the execution
time. The suitability of a task ti is cal-
culated as the task weight 	R

b (ti) that is
defined for the repair heuristic as:

	R
b (ti)

=
∑

{p∈P|ti∈T[p]} max{eb(p) − ē,0}
∑

p∈P max{eb(p) − ē,0} .

(16)

The task weight 	R
b (ti) is well-defined

in the case that at least one execution
path exceeds the execution time restric-
tion. A value of 	R

b (ti) = 0 is obtained if
ti only belongs to execution paths that do
not violate the execution time restriction.

Apparently, in this situation a task ti can-
not contribute to reduce the execution
time. The value 	R

b (ti) increases if ti is
part of one or more execution paths that
violate the execution time restriction.

The repair heuristic consists of two
phases. In the first phase, only the ser-
vices in Di are considered. For each task
ti, the service sij ∈ Di with the lowest re-
sponse time is selected from Di and is
used to replace bi where ties are randomly
broken. If the service binding is still in-
feasible, the heuristic proceeds with the
second phase. In the second phase, the re-
pair heuristic considers the combined in-
dex μR

b (sij) = μb(sij)/	
R
b (ti) to calculate

the suitability of a service sij. The value of
μR

b (sij) is positive and small for sij when
the cost compared to bi is only slightly
increased, the availability is only slightly
decreased, and ti has a high contribu-
tion to reduce the total execution time.
The second phase is implemented by the
following steps:
• Step 1: Determine the execution paths

that violate the execution time restric-
tion, i.e.

Pb = {p ∈ P|eb(p) > ē}. Stop the
heuristic if Pb = ∅ holds. In this case,
the service binding is feasible.

• Step 2: Determine the services that re-
duce the execution time of the service
composition, i.e.

SR
b = {

sij | rH(sij) < rH(bi), ti ∈ T[Pb]
}
.

(17)

Stop the heuristic if SR
b = ∅ holds. In

this case, no feasible solution exists.
• Step 3: Randomly select the service sij ∈

SR
b with the lowest value for μR

b (sij) and
derive b′ = RB(b, ti, sij).

• Step 4: Set b = b′ and proceed with
Step 1.

Note that the calculation of the value
μR

b (sij) in Step 3 is possible for all sij ∈
SR

b because rH(sij) 
= rH(bi) is ensured

and 	R
b (ti) > 0 holds because only tasks

are considered that belong to an execu-
tion path that violates the execution time
restriction.

3.2.3 Improve Heuristic

This heuristic aims to improve the cost
and the availability for a feasible service
binding. The improved heuristic again
consists of two phases. In the first phase,
the service sij ∈ Di with the lowest value
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for wcos t(b)c(sij) − wavail(b)a(sij) is se-
lected and bound to ti to improve the ob-
jectives. The total execution time cannot
be increased by selecting a service from
Di and thus the service binding remains
feasible after the first phase.

In the second phase, the positive differ-
ence (called slack) between the execution
time of an execution path and the execu-
tion time restriction is exploited to fur-
ther improve the objectives. Analogously
to the repair heuristic, the suitability of
a task to contribute to an improvement
without violating the execution time re-
striction is considered. The weight of a
task ti is calculated with respect to the
slack of the execution paths it belongs
to:

	I
b(ti)

= min{p∈P|ti∈T[p]} max{ē − eb(p),0}
∑

p∈P max{ē − eb(p),0} .

(18)

The value 	I
b(ti) is high for a task ti that

only belongs to execution paths with a
high slack. The task weight is 0 for a
task that belongs to at least one execu-
tion path whose execution time is greater
than or equal to ē. The task weight is
considered in conjunction with μb in the
combined index μI

b(sij) = μb(sij) ·	I
b(ti).

The value μI
b(sij) is higher for sij the more

the cost is reduced and the availability is
increased per time unit that the service
composition is delayed by sij.

The improve heuristic consists of the
following steps. The set CS ⊆ S is con-
sidered as a set of services that are
not considered by the heuristic anymore.
Initially, CS = ∅ is used.
• Step 1: Determine the set of all ser-

vices that improve the cost and the
availability, i.e.

SI
b = {

sij | c(sij) < c(bi), a(sij) > a(bi),

sij ∈ S\CS
}
. (19)

Stop the heuristic if SI
b = ∅ holds.

• Step 2: Randomly select sij ∈ SI
b with

the largest μI
b(sij) value and derive the

binding

b′ = RB(b, ti, sij).

• Step 3: If e(b′) ≤ ē holds set b = b′ and
proceed with Step 1. Otherwise add sij

to CS and proceed with Step 1.

Note that for each service sij ∈ SI
b

the inequality rH(sij) > rH(bi) holds be-
cause of the first phase of the heuris-
tic. Hence, the combined index μI

b(sij) is

well-defined for all sij ∈ SI
b.

3.2.4 Hybridization of MCS-GA

The repair and improve heuristics are
integrated into the MCS-GA to im-
prove the service bindings encoded by
the chromosomes. The integration de-
termines the weight parameters wcos t(b)
and wavail(b), adjusts the risk factor
η, and identifies the chromosomes on
which the heuristics are applied.

Applying the heuristics on each chro-
mosome is not appropriate since the
heuristics implement a greedy search
technique. Different solutions might be
mapped to a single solution and thus, the
diversification of a population is reduced.
The chromosomes on which the heuris-
tics are applied are selected according to a
selection probability that is derived from
a temperature parameter Θ ∈ [0,1] and
a characterization ξ(Pi) of a population.
The value of Θ is initially set to Θ = 1.
It linearly decreases after each generation
such that Θ = 0 is reached at the end of
the algorithm. The population Pi is char-
acterized with respect to the fraction of
feasible service bindings:

ξ(Pi) = |{bc|c ∈ Pi,ψ
MCS(bc) ≥ ψmin}|
|Pi| .

(20)

The probabilities PR and PI of apply-
ing the repair and the improve heuristic,
respectively, are set as:

PR = (
1 − ξ(Pi)

)
Θ, (21)

PI = ξ(Pi)Θ. (22)

Two random numbers rR, rI ∈ [0,1] are
determined independently after a chro-
mosome c is generated. The heuristic h
is applied on c if rh ≤ Ph holds for h =
R or h = I. In a situation where many
solutions are infeasible, the probability
PR is high. Hence, the repair heuristic
is frequently applied and finally feasi-
ble solutions will be established in the
population. On the other hand, when
many solutions are feasible, the probabil-
ity PI is increased and positive slacks are
exploited to improve the objectives.

The value of the risk factor η, initially
set to 0, is adjusted by taking into account

the feasibility of the solutions obtained by
the heuristics. Each time a heuristic is ap-
plied on a chromosome c, the feasibility
of c is evaluated according to the penalty
term P(c) defined by (8). Afterwards, η is
adjusted by η = η + P(c) · Θ . The adjust-
ment accounts for the feasibility of the
MCSS problem because the risk factor η

is increased relatively to the degree of vio-
lation of ψmin that is represented by P(c).
The dependency on the temperature pa-
rameter ensures that the step size of the
adjustment is decreased at the end of the
algorithm to ensure the convergence of η.

The weights wcos t(b) and wavail(b) are
selected following Deb and Goel (2001)
depending on a current service binding b
as:

wcos t(b) = (cmax − c(b))

(cmax − cmin)2
, (23)

wavail(b) = (a(b) − amin)

(amax − amin)2
. (24)

The values cmax and cmin are the maxi-
mal and minimal cost of a service binding
in the current Pareto front. Analogously,
amax and amin are the maximal and min-
imal availability. We assume cmax 
= cmin

and amax 
= amin. Otherwise, the weights
are set to one. This weight selection forces
the heuristics to favor the objective that
is closer to its individual optimum. The
hybridized version of MCS-GA is called
MCS-GA-H.

3.3 Optimal Solution Approach

The ε-constraint method allows for an
independent optimization of multiple
objectives to obtain a Pareto frontier (cf.
Ehrgott 2010 for more details). Instead
of combining the objectives into an inte-
grated objective function, a single objec-
tive is optimized in a certain step while
the remaining objectives are transformed
into constraints. An ε-constraint prob-
lem with K objectives fk, k = 1, . . . ,K to
be minimized is given as:

min fk (25)

subject to:

fj ≤ εj, j = 1, . . . ,K, j 
= k. (26)

The ε-constraint formulation for the
MCSS problem is stated in (27)–(30).
The quantities Ecos t,Eavail ∈ {0,1} and
εcos t, εavail ∈ IR are the parameters of
the model. For Ecos t = 1 and Eavail = 0
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the model pursues the cost minimiza-
tion whereas the availability is restricted
to εavail . In the other case of Ecos t = 0
and Eavail = 1, the model aims for the
availability maximization where the cost
is restricted to εcos t . We obtain:

min
b∈B

Ecos t c(b) − Eavaila(b) (27)

subject to:

(1 − Ecos t)c(b) ≤ εcos t, (28)

a(b) ≥ (1 − Eavail)εavail, (29)

P
(
e(b) ≤ ē

) ≥ ψmin. (30)

The inequalities (28) and (29) are the
ε-constraints. The reliability constraint
is formulated as a chance constraint
through (30). The calculation of a(b)
can be linearized by a logarithmic trans-
formation. The probability P(e(b) ≤ ē)
can be approximated by a scenario-based
approach in which the response times
used to calculate e(b) are sampled from
their response time distributions as pro-
posed by Wiese et al. (2008). Hence, the
model (27)–(30) can be implemented as
a linear IP.

The model (27)–(30) is iteratively
solved to obtain the set of Pareto opti-
mal service bindings. The first iteration is
started with Ecos t = 0, Eavail = 1, εavail =
0 and εcos t = M where M is the sum of
the cost of all services in S. The solution
is the service binding with the availability
acur where the cost is restricted to M. Af-
terwards, the IP is solved a second time
with Ecos t = 1, Eavail = 0, εavail = acur ,
and εcos t = M, leading to the Pareto op-
timal service binding with the availabil-
ity acur and the cost ccur . The next itera-
tion is started with Ecos t = 0, Eavail = 1,
εavail = 0, and εcos t = ccur − δ where δ is
a value smaller than the cost difference of
two arbitrary services in S. The procedure
is repeated until the IP becomes infeasible
for the parameters εavail and εcos t . The
generation of the problem instances tack-
led by the ε-constraint method ensures
that no two services exists with the same
cost such that δ > 0 is always achieved.
However, in a practical setting, δ = 0 can
occur leading to a situation in which the
ε-constraint method is not applicable.

4 Computational Experiments

The performance of the MCS-GA and
MCS-GA-H is evaluated with respect

Table 1 Design of experiments

Factor Design Level Count

Composition type (CTyp) SMALL Small, medium 2

LARGE Large 1

Number of services (m) SMALL 4, 6, 8 3

LARGE 10, 20, 30 3

Reliability restriction (ψmin) SMALL 0.94 1

LARGE 0.92, 0.94, 0.96, 0.98 4

Variance factor of response time (mr) SMALL 0.25 1

LARGE 0.15, 0.25, 0.35 3

Execution time restriction (me) SMALL 0.20 1

LARGE 0.10, 0.15, 0.20, 0.25, 0.30 5

to the solution quality and the com-
putational effort compared to the ε-
constraint method presented in Sect. 3.3.
Randomly generated problem instances
are used. Although the problem instances
are synthetic, they are generated ac-
cording to a design of experiments that
captures a large range of factors.

4.1 Design of Experiments

The factors for the problem instance gen-
eration are summarized in Table 1. Two
designs, namely SMALL and LARGE, are
distinguished. The factor CTyp identi-
fies the process model of the service
composition. The process model shown
in Fig. 1 is referred to as the medium
process model. The small (large) pro-
cess model is derived from the medium
model by removing (adding) tasks. The
small process model consists of five tasks
whereas the large process model includes
25 tasks. Overall, 186 factor combina-
tions are considered. For each of them,
three independent problem instances are
generated.

For each service class, m services are
generated. The cost and the availability
of a service sij ∈ Si are determined as
c(sij) = 100(1.5 − r1) and a(sij) = 0.9 +
0.1r2 where r1, r2 are realizations of the
uniformly distributed random variables
R1,R2 ∼ U[0,1].

The response time of sij is represented
by an empirical distribution that consists
of K = 10 classes. The minimal and max-
imal response time of sij ∈ Si is set to
r0

ij = 100(1−mr)
√

r1r2 and rK
ij = 100(1+

mr)
√

r1r2. The frequency of each class is

selected as hk
ij = 100rk where rk is a real-

ization of an uniformly distributed ran-
dom variable Rk ∼ U[0,1] for each k =
1, . . . ,K . The execution time restriction

is set to ē = (1 − me)r + mer̄, where r and
r̄ are the minimal and maximal execution
time of the service composition accord-
ing to the response times of the generated
services.

4.2 Results

The ε-constraint method is implemented
using the solver LPSolve 5.5. The MCS-
GA and MCS-GA-H are implemented
using the C++ programming language
upon the NSGA-II implementation of
the MOMHLib class library. The exper-
iments were conducted on an Intel Pen-
tium IV CPU with 3.6 GHz and 4 GB
RAM. The Pareto front determined by an
approach A ∈ {MCS-GA,MCS-GA-H, ε}
is denoted by yA. MCS-GA and MCS-
GA-H are performed for five indepen-
dent runs. A Pareto front is evaluated
against a near-to optimal Pareto front de-
noted with ytrue that is derived as the
union of the non-dominated solutions of
all Pareto frontiers obtained for a prob-
lem instance. The quality of a Pareto
front yA is evaluated using the following
measures:

ONVG(yA) = |yA|, (31)

ONTVG(yA) = ∣
∣
{

b|b ∈ yA ∩ ytrue
}∣
∣,

(32)

Iε(yA) = max
b∈ytrue

min
b′∈yA

max

{
c(b′)
c(b)

,
a(b)

a(b′)

}

,

(33)

error(yA) = ONTVG(yA)/ONVG(yA),

(34)

dist(yA)

= 1

ONVG(yA)

∑

b∈yA

min
b′∈ytrue

d
(
b,b′),

(35)
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Table 2 Computational results for the SMALL design

Factor m error dist ONVG Iε Time (s)

MCS-GA MCS-GA-H MCS-GA MCS-GA-H MCS-GA MCS-GA-H MCS-GA MCS-GA-H

Small 4 0.000 0.000 0.000 0.000 6.660 6.660 1.000 1.000 1

6 0.000 0.000 0.000 0.000 4.870 4.870 1.000 1.000 4

8 0.018 0.012 0.051 0.029 15.030 15.710 1.001 1.001 25

Medium 4 0.000 0.000 0.000 0.000 10.330 10.330 1.000 1.000 1265

6 0.134 0.072 0.914 0.121 75.930 73.040 1.014 1.005 3688

8 0.279 0.174 7.603 1.517 122.730 81.530 1.207 1.137 35362

Table 3 Computational results for the LARGE design

Factor error dist ONVG Iε

MCS-GA MCS-GA-H MCS-GA MCS-GA-H MCS-GA MCS-GA-H MCS-GA MCS-GA-H

m 10 0.635 0.593 1.141 0.561 162.670 156.150 1.127 1.007

20 0.651 0.589 2.176 0.325 163.780 165.920 1.183 1.007

30 0.611 0.601 3.212 0.354 157.120 172.180 1.206 1.005

ψmin 0.92 0.636 0.596 1.354 0.402 161.290 166.270 1.170 1.005

0.94 0.627 0.591 2.749 0.428 172.810 181.330 1.173 1.006

0.96 0.641 0.594 1.699 0.407 158.150 156.440 1.167 1.006

0.98 0.625 0.597 2.692 0.405 152.520 154.960 1.166 1.006

mr 0.15 0.637 0.595 1.876 0.242 169.390 175.880 1.172 1.006

0.25 0.644 0.582 1.899 0.423 139.920 135.930 1.169 1.006

0.35 0.613 0.607 2.728 0.645 174.270 182.450 1.164 1.006

me 0.10 – 0.541 – 0.059 0.000 17.680 – 1.007

0.15 0.670 0.555 9.893 0.088 24.020 61.900 1.158 1.007

0.20 0.672 0.582 4.238 0.335 125.740 138.770 1.170 1.007

0.25 0.632 0.628 1.036 0.560 262.700 256.210 1.171 1.005

0.30 0.598 0.617 0.319 0.705 393.500 349.200 1.168 1.005

where

d2(b,b′) = (c(b) − c(b′))2

(cmax(ytrue) − cmin(ytrue))2

+ (a(b) − a(b′))2

(amax(ytrue) − amin(ytrue))2
.

(36)

ONVG measures the size of yA while
ONTVG is the number of non-
dominated solutions in yA. The error
measure evaluates the ratio of dominated
solutions and Pareto optimal solutions
in yA. The multiplicative ε-measure Iε
determines the factor by which the front
yA is worse than ytrue with respect to all
objectives (Zitzler et al. 2003). Finally,
d(b,b′) measures the distance between
two solutions b,b′. This distance is used

by dist that evaluates the average distance
between yA and ytrue.

The parameterization of the MCS-GA
and MCS-GA-H are determined based on
some preliminary experiments. The pop-
ulation sizes {50, 75, 100, 150} and the
mutation probability {0.1, 0.2, 0.3} were
tested by trial runs. A population size of
100 and a mutation probability of 0.1
turned out to be the most efficient con-
figuration of the algorithms in the ma-
jority of the considered trial runs. In ad-
dition, we also performed some exper-
iments to determine appropriate values
for ps within the uniform crossover and
for pg in the mutation operator. We select
pg = 0.5 and ps = 0.5, i.e., tossing a bi-
ased coin is not necessary, based on a trial
and error strategy. Moreover, trial runs
are used to determine the number of sce-
narios considered by MCS-GA and MCS-
GA-H to estimate ψMCS(b). It turns out

that 100 scenarios are sufficient to reduce
the error |ψMCS(b) − ψ(b)| to less than
0.002.

The problem instances of the SMALL
design are solved by the MCS-GA, MCS-
GA-H, and the ε-constraint method.
MCS-GA and MCS-GA-H are restricted
to 600 seconds of computing time per
problem instance. The results are shown
in Table 2. The results are average val-
ues obtained for the problem instances
with the characteristic stated in the factor
column.

The problem instances of the LARGE
design are only solved by MCS-GA
and MCS-GA-H because of the increas-
ing computational burden of the ε-
constraint method. The results are shown
in Table 3 as average values in the same
way as in Table 2. Again, the computing
time per problem instance is 600 seconds.
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Fig. 4 Pareto frontier for a single problem instance

4.3 Discussion of the Results

The results obtained for the SMALL de-
sign show that both the MCS-GA and
the MCS-GA-H are able to identify the
true Pareto frontier for m = 4 and m = 6.
The values for error, Iε , and dist increase
only slightly when the search space is en-
larged by considering more than four ser-
vices for each task for the medium pro-
cess model. However, the measures in-
dicate that the Pareto frontiers obtained
for all problem instances are close to the
true Pareto frontier generated by the ε-
constraint method. The MCS-GA-H al-
ways leads to better results than the MCS-
GA with regard to the error and dist
measure.

The advantage of MCS-GA-H com-
pared to MCS-GA increases with a larger
search space. MCS-GA is almost always
outperformed by MCS-GA-H with re-
gard to experiments performed accord-
ing to the LARGE design. It turns out that
the MCS-GA-H is in particular benefi-
cial if the response time restriction is se-
vere. For the experiments with me = 0.1
the MCS-GA is not able to identify any
feasible solution.

The size of the search space is influ-
enced by m. The values for error, Iε , and
dist obtained for MCS-GA increase, re-
vealing that the approximation of ytrue
deteriorates with an increasing value of
m. The uncertainty of the response times
determined by mr turns out to have only
a minor impact on the results.

The results clearly show that both al-
gorithms described in this article are ap-
plicable to obtain appropriate approxi-
mations of a true Pareto frontier where
the computational burden is significantly
decreased compared to an optimal solu-
tion approach. However, if the response
time restrictions are severe, heuristic ex-
tensions are required to obtain a feasi-
ble service binding. In almost all other

cases, the performance of the MCS-GA is
improved by the heuristic extensions.

The value of the robust service selec-
tion is pointed out in Fig. 4. A prob-
lem instance for the medium-type pro-
cess model is solved by the MCS-GA-H
and a MCS-GA version that only consid-
ers the expected values of the response
times (MCS-GA-E). It turns out that the
Pareto front obtained by MCS-GA-H is
very close to the frontier of MCS-GA-
E. Hence a low price is paid for ensur-
ing robustness with respect to feasibil-
ity since the objective function values de-
teriorate only slightly compared to the
model with mean response times. Eval-
uating the solutions of MCS-GA-E by a
simulation of 100.000 requests, however,
shows that none of the solutions obtained
by MCS-GA-E fulfill the reliability con-
straint whereas the reliability constraint
is satisfied by the MCS-GA-H solutions
in 98 % of all solutions.

In addition, five problem instances are
solved by MCS-GA-H and MCS-GA-E
for each type of process model, and the
ratio of the solutions that fulfill the re-
liability constraint is calculated. We find
that only 10 %, 4 %, and 1 % of the
solutions determined by MCS-GA-E sat-
isfy the reliability constraint for the small,
medium, and large process model respec-
tively. In contrast, 98 %, 95 %, and 93 %
of the solutions computed by MCS-GA-
H fulfill the reliability constraint.

5 Conclusions and Future
Research

A QoS-aware service selection involves
multiple, usually conflicting and possibly
uncertain QoS attributes. Implementing
a service composition based upon exist-
ing services requires a tradeoff between

the conflicting objectives. Hence, expos-
ing the set of possible alternative im-
plementations supports a decision maker
in finding such a tradeoff. This article
studies a multi-criteria QoS-aware ser-
vice selection problem with uncertain
response times. The considered service
selection accounts for a robust service
selection that ensures a reliable execu-
tion. A solution approach to determine
the Pareto frontier of alternative service
bindings based on the NSGA-II meta-
heuristic is proposed. The metaheuristic
is extended by heuristics that exploit par-
ticular characteristics of the service selec-
tion problem. The computational experi-
ments demonstrate that our solution ap-
proach is suited for an operational ser-
vice selection because near Pareto op-
timal solutions are obtained in a few
minutes. In addition, we show that it
is worthwhile to anticipate uncertainty
when QoS-aware service selection deci-
sions are made. This feature of our ap-
proach is important from a managerial
point of view. We believe that this will
allow for applications in value chains,
supply chain management, and multi-
segment intermodal transportation. In
addition, we are confident that the com-
bination of improved data availability
and algorithmic advances will lead to new
types of decision support systems.

Although the proposed service selec-
tion model aims for a robust service se-
lection with respect to uncertain QoS
attributes, future research will be di-
rected to extend the proposed multi-
criteria service selection model to ac-
count for service failures and unavail-
able services. Necessary adjustments of
the service compositions have to be iden-
tified to ensure a feasible service selec-
tion also in the case of a volatile environ-
ment in which service failures have to be
considered.
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Abstract
René Ramacher, Lars Mönch

Robust Multi-criteria Service
Composition in Information
Systems

Service compositions are used to im-
plement business processes in a variety
of application domains. A quality of ser-
vice (QoS)-aware selection of the ser-
vice to be composed involves multiple,
usually conflicting and possibly uncer-
tain QoS attributes. A multi-criteria so-
lution approach is desired to generate
a set of alternative service selections.
In addition, the uncertainty of QoS-
attributes is neglected in existing so-
lution approaches. Hence, the need for
service reconfigurations is imposed to
avoid the violation of QoS restrictions.
The researched problem is NP-hard.
This article presents a heuristic multi-
criteria service selection approach that
is designed to determine a Pareto fron-
tier of alternative service selections in a
reasonable amount of time. Taking into
account the uncertainty of response
times, the obtained service selections
are robust with respect to the con-
strained execution time. The proposed
solution approach is based on the Non-
dominated Sorting Genetic Algorithm
(NSGA)-II extended by heuristics that
exploit problem specific characteristics
of the QoS-aware service selection. The
applicability of the solution approach is
demonstrated by a simulation study.

Keywords: Service composition, QoS-
aware service selection, Genetic algo-
rithm, Uncertain QoS
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