
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2014 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2014

EFFICIENT APPROXIMATION FOR LARGE-
SCALE KERNEL CLUSTERING ANALYSIS
Keng-Pei Lin
National Sun Yat-Sen University, kplin@mis.nsysu.edu.tw

Yu-Chen Yang
National Sun Yat-Sen University, ycyang@mis.nsysu.edu.tw

Follow this and additional works at: http://aisel.aisnet.org/pacis2014

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2014 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Lin, Keng-Pei and Yang, Yu-Chen, "EFFICIENT APPROXIMATION FOR LARGE-SCALE KERNEL CLUSTERING ANALYSIS"
(2014). PACIS 2014 Proceedings. 366.
http://aisel.aisnet.org/pacis2014/366

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301362982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014/366?utm_source=aisel.aisnet.org%2Fpacis2014%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


EFFICIENT APPROXIMATION FOR LARGE-SCALE
KERNEL CLUSTERING ANALYSIS

Keng-Pei Lin, Department of Information Management, National Sun Yat-sen University,
Kaohsiung, Taiwan, kplin@mis.nsysu.edu.tw

Yu-Chen Yang, Department of Information Management, National Sun Yat-sen University,
Kaohsiung, Taiwan, ycyang@mis.nsysu.edu.tw

Abstract

Kernel k-means is useful for performing clustering on nonlinearly separable data. The kernel k-means
is hard to scale to large data due to the quadratic complexity. In this paper, we propose an approach
which utilizes the low-dimensional feature approximation of the Gaussian kernel function to capitalize
a fast linear k-means solver to perform the nonlinear kernel k-means. This approach takes advantage
of the efficiency of the linear solver and the nonlinear partitioning ability of the kernel clustering. The
experimental results show that the proposed approach is much more efficient than a normal kernel k-
means solver and achieves similar clustering performance.
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1 INTRODUCTION

Clustering is an important data mining task for grouping data into clusters where instances in a cluster are
similar to each other and are dissimilar to those in other clusters. k-means (MacQueen, 1967) is a popular
clustering algorithm for its simple to use and efficient implementations (Han and Kamber, 2006). Since
k-means performs linear partitioning among instances, it is not applicable to linearly non-separable data.
Kernel k-means (Dhillon, Guan and Kulis, 2004) is a kernelized variant of the k-means algorithm, which
enables the nonlinear partitioning of data by applying the kernel trick (Schölkopf and Smola, 2002) to k-
means algorithm. Kernel k-means captures the nonlinear property of the data by the implicitly nonlinear
feature mapping induced by the kernel function.

In the iteration of the k-means algorithm, each instance xi ∈ RN , i = 1, . . . , n is evaluated with all
k clustering centers mc, c = 1, . . . , k to find the nearest cluster center for new clustering assignment:

arg min
c
|xi −mc|2.

The expense of the nonlinear partitioning in the kernel k-means brought by applying the kernel trick is
that the resulting clustering centers can only be represented as linear combinations of kernel evaluations
with all instances but not explicit central points:

mc =
1∑n

i=1 Uc,i

n∑
i=1

Uc,iφ(xi) =
1∑n

i=1 Uc,i

n∑
i=1

Uc,iK(xi, )

where φ() is a kernel-induced implicit feature mapping, K(, ) is a kernel function, and Uc,i ∈ {0, 1},
c = 1, . . . , k, i = 1, . . . , n are the clustering assignments of the n instances to k clusters.

For normal k-means, the computing cost of each iteration in finding the nearest center for all in-
stances increases linearly with the number of instances, i.e., the computing cost is O(n). However, for
the kernel k-means, the evaluation of each instance in each iteration already takes O(n) due to the ker-
nel evaluations with all instances, and therefore each iteration takes O(n2) computing cost in finding
the nearest center point for all instances. With large-scale datasets, the number of instances can be very
large. The heavy computational load of the kernel k-means algorithm causes it to converge slowly, and
hence kernel k-means is still challenged to handle large-scale data.

In contrast, the normal k-means algorithm requires only O(n) evaluations in each iteration since the
center points can be explicitly derived. Compared to kernel k-means, the normal k-means can be much
more efficient for handling large-scale datasets.

Despite the efficiency of the linear method of normal k-means for large-scale data, its applicability
is constrained because it is only appropriate to the tasks with linearly separable data. An approach
of leveraging the efficient linear method to perform the nonlinear partitioning of kernel k-means is
explicitly representing the features induced by the nonlinear kernel function K(x,y) = φ(x) · φ(y)
and utilizing the explicit features φ(xi), i = 1, . . . , n as the input to the normal k-means solver. If the
dimensions of the explicit features are not too big, it can be very efficient to perform kernel k-means in
this way. For example, the work of (Chitta, Jin and Jain, 2012) utilizes random Fourier features (Rahimi
and Recht, 2007) to approximate the explicit features of the Gaussian kernel function to speedup kernel
k-means. However, the random Fourier features are dense and a large number of features are needed
to reduce variations in the approximation. The large number of features lowers the efficiency of the
normal k-means solver and requires much memory space. If there are not enough number of random
Fourier features, the large variation will degrade the precision of approximation which results in poor
performance.

In this paper, we utilize Taylor polynomial to approximate the commonly used Gaussian kernel
function (Lin and Chen, 2011; Yang, Duraiswami and Davis, 2004) with a normal k-means solver to
perform kernel k-means. The Gaussian kernel function can be represented as a Taylor series of fea-
tures, and then a low-dimensional approximating feature mapping is obtained by taking a low-degree
Taylor polynomial. The explicitly listed approximated features of the Gaussian kernel function in the



low-degree Taylor polynomial is utilized as input to a normal k-means solver. This takes advantage of
the efficiency of the linear method and achieves close clustering performance to the nonlinear kernel
k-means. Unlike the uniform approximation of utilizing the random Fourier features, the Taylor poly-
nomial of features are compact since the important components are concentrated in low-order terms of
the Taylor series. Furthermore, if the original features are sparse, the Taylor polynomial of features are
also sparse. Therefore, only a few number of features in the low-order terms of the Taylor series are
able to achieve good approximating precision. By approximating the feature mapping of the Gaussian
kernel function with low-dimensional features and leveraging the efficiency of linear solvers, we can
perform large-scale nonlinear clustering by kernel k-means efficiently. The experimental results show
that the proposed method is much more efficient than the kernel k-means and achieves similar clustering
performance.

The rest of this paper is organized as follows: In Section 2, we briefly survey related works. Then in
Section 3, we discuss kernel k-means and the Taylor series features of Gaussian kernel function. In Sec-
tion 4, we describe the approach for utilizing the approximating features in the Taylor polynomial with
a linear solver to efficiently performing kernel k-means clustering. Section 5 shows the experimental
results, and we conclude the paper in Section 6.

2 RELATED WORK

Kernel clustering method such as kernel k-means is hard to scale to large data due to the quadratic
computational complexity and memory requirement of storing the kernel matrix. A popular approach to
tackle the scalability problem of the kernel clustering is based on the Nyström approximation (Williams
and Seeger, 2000) such as the work of (Chitta, Jin, Havens and Jain, 2011), which approximates the
full kernel matrix with a low rank rectangular sub matrix of the full kernel matrix to perform the kernel
k-means.

The work of (Chitta et al., 2012) employs random Fourier features (Rahimi and Recht, 2007), which
uniformly approximates the implicit feature mapping of the Gaussian kernel function to leverage the
efficient linear k-means solver. However, the random Fourier features are dense and a large number
of random Fourier features are required since too few features will have very large variation in the
approximation.

3 BACKGROUND

In this section, we discuss the kernel k-means and Taylor polynomial feature approximation of the
Gaussian kernel function.

3.1 Kernel k-Means

The k-means is a partitioning method for clustering analysis. Given a user specified number of clusters
k, the k-means algorithm partitions a set of instances {x1, . . . ,xn} into k clusters. The kernel trick
can be applied to k-means by replacing the dot product computations between instances with the kernel
evaluations. The kernel function k(xi,xj) implicitly maps xi and xj into a high-dimensional feature
space and computes their dot product there. By applying the kernel trick to k-means algorithm, the
data are implicitly mapped into the kernel induced high-dimensional feature space to find clusters. The
kernel k-means augments k-means algorithm to partition linearly non-separable data to clusters.

Let Uk×n be the clustering membership matrix where Uc,i ∈ {0, 1}, c = 1, . . . , k, i = 1, . . . , n
denotes the clustering assignment of each instance. Let φ(x) denote the feature mapped instance x in



the kernel-induced feature space. The objective of the kernel k-means is

arg min
U

k∑
c=1

n∑
i=1

Uc,i||mc − φ(xi)||2

= arg min
U

k∑
c=1

n∑
i=1

Uc,i

[
1∑n

h=1 Uc,h
∑n

g=1 Uc,g

n∑
h=1

n∑
g=1

Uc,hUc,gφ(xh) · φ(xg)

− 2∑n
h=1 Uc,h

n∑
h=1

Uc,hφ(xh) · φ(xj) + φ(xj) · φ(xj)].

The dot product of feature mapped instances is obtained from the kernel matrix Kn×n where

Kh,g = k(xh,xg) = φ(xh) · φ(xg), h = 1, . . . , n, g = 1, . . . , n.

The kernel k-means can be implemented by an greedy approach such as Lloyd algorithm (Lloyd,
1982) for normal k-means: In each iteration, update the clustering membership matrix U for each in-
stance xi according to its closest center point mc in the feature space

arg min
c
||mc − φ(xi)||2

until the matrix U does not change or the user-specified maximum number of iterations is reached. The
square sum error is reduced in each iteration. Since the center points mc, c = 1, . . . , k are in the feature
space and can not be derived explicitly, the initial set of random k center points are obtained by randomly
initialize the indicating values of the clustering membership matrix U . The update of the clustering
membership matrix U in each iteration implies the recalculation of center points mc, c = 1, . . . , k in the
feature space.

3.2 Taylor Polynomial Approximation of Gaussian Kernel Function

The Gaussian kernel function is an exponential function of the Euclidean distance between two in-
stances:

K(x,y) = exp(−g||x− y||2)

where g > 0 is a user-specified kernel parameter. The Gaussian kernel function induces infinite-
dimensional implicit feature mapping (Schölkopf and Smola, 2002).

The feature mapping of the Gaussian kernel function can be represented as a Taylor series of mono-
mial features K(x,y) = ΦG(x) ·ΦG(y)(Lin and Chen, 2011; Yang et al., 2004). For an instance x, the
infinite-dimensional feature mapping induced by the Gaussian kernel function can be

ΦG(x) = exp(−g||x||2)

[√
(2g)d

d!
Φd(x)|d = 0, . . . ,∞

]

where Φd(x), d = 1, . . . ,∞ is degree-d monomial features of x (Smola, Schölkopf and Müller, 1998)
which is defined as

Φd(x) =

[

√
d!∏N

i=1mk,i!

N∏
i=1

x
mk,i

i |∀mk ∈ NN with
N∑
i=1

mk,i = d]



Input: Instances xi ∈ RN , i = 1, . . . , n, approximation degree du, Gaussian kernel parameter g.
Output: Clustering assignment matrix Uk×n.

For each instance xi, apply the degree-du Φ̄G feature mapping with kernel parameter g to obtain
Φ̄G(xi), i = 1, . . . , n.

Run a normal linear k-means algorithm on Φ̄G(xi), i = 1, . . . , n to generate the clustering assignment
matrix U .

Figure 1: Approximately performing the kernel k-means by Taylor polynomial features with a linear
k-means solver.

Each mk corresponds to a dimension of degree-d monomial features, and there are totally
(
n+d−1

d

)
features.

From the Taylor approximation, the Taylor series ΦG(x) can be estimated by a low-degree Taylor
polynomial. By keeping only the low-order terms of the Taylor series, we obtain a low-dimensional
approximated feature mapping of the Gaussian kernel function

Φ̄G(x) = exp(−g||x||2)

[√
(2g)d

d!
Φd(x)|d = 0, . . . , du

]

where du is a user-specified approximation degree. The dimensionality of Φ̄G(x) for x ∈ RN is∑du
d=0

(
N+d−1

d

)
=
(
N+du
du

)
. The higher the du is, the closer to the original Gaussian kernel function

the approximation gets. It is noted that the exponential function can be precisely approximated by a
low-degree Taylor polynomial if the evaluating point is not too far from the defined point.

An example of a degree-2 Taylor polynomial approximated feature mapping with two-dimensional
instances for Gaussian kernel function is as follows:

Φ̄G(x) = exp(−g||x||2)

[1,
√

2gx1,
√

2gx2,

√
(2g)2

2!
x21,

√
2

(2g)2

2!
x1x2,

√
(2g)2

2!
x22].

Then the Gaussian kernel function can be approximately computed by

K(x,y) ≈ Φ̄G(x) · Φ̄G(y).

4 EFFICIENT APPROXIMATION OF KERNEL K-MEANS

With the low-dimensional Taylor polynomial feature mapping Φ̄G to approximately compute the Gaus-
sian kernel function, we can utilize an efficient normal k-means solver with the approximated feature
mapped instances to perform kernel k-means. The instances are explicitly and nonlinearly mapped, and
then the normal k-means algorithm partitions the data in the feature space.

Figure 1 shows the algorithm for performing kernel k-means by the Taylor polynomial features with
a linear k-means solver. First, all instances are transformed to Taylor polynomial features by a user-
specified approximating degree. Then a linear k-means solver is utilized to compute explicit clustering
central points in each iteration and update the clustering membership assignment according to the closest
central point of each feature mapped instance.

Compared to utilizing the uniformly random Fourier features (Rahimi and Recht, 2007) for approx-
imation, the Taylor polynomial-based approximation of the Gaussian kernel function is non-uniform.
Significant information is concentrated in low-degree terms due to the property of the Taylor approxima-
tion. Hence we can utilize a few low-degree features to precisely approximate the infinite-dimensional



feature mapping of the Gaussian kernel function. Then the kernel k-means can be approximately per-
formed via the linear k-means solver. This approach leverages the fast linear solver to perform the
nonlinear kernel-based algorithms.

5 EXPERIMENT

In the experiments, we compare the clustering performance of the proposed Taylor polynomial-based
kernel k-means with a normal kernel k-means algorithm to evaluate the efficiency and the performance
of the proposed scheme. All the programs are implemented in Matlab. Our testbed features an Intel
Core i5-3210M CPU at 2.5 GHz and 16GB RAM. The datasets utilized in the experiments are available
from the UCI machine learning repository (Bache and Lichman, 2013). We choose two datasets for
experiments: Pen Digits and Forest Cover Type. Since the normal kernel k-means algorithm consumes
lots of memory to store the full kernel matrix, we sampled 40, 000 instances from the Forest Cover
Type dataset to enable the execution of the normal kernel k-means algorithm. All feature values are
normalized to [0, 1] in pre-processing steps to prevent the effect that features in a large value range may
dominate smaller ones. The statistics of the datasets are shown in Table 1.

Dataset Instances Features Classes
Pen 10, 992 16 10

Forest 40, 000 54 7

Table 1: Dataset Statistics.

In the whole experiments, we use the degree-2 Taylor polynomial feature mapping which results
in low-dimensional features and the instances can be transformed very fast. In both the normal kernel
k-means and the Taylor polynomial-based kernel k-means, the Gaussian kernel parameter g is set to the
inverse of dimensions, i.e., g = 1

16 for Pen Digits and g = 1
54 for the Forest Cover Type. There are

heuristics to set the Gaussian kernel parameter (Alzate and Suykens, 2010; Perona and Zelnik-Manor,
2004). We simply use the rule-of-thumb inverse of dimensions to set the Gaussian kernel parameter.

5.1 Clustering Performance

The labels provided in the datasets are utilized as the external criteria to compare the clustering results.
We adopt the normalized mutual information (NMI) (Strehl and Ghosh, 2002) to evaluate the clustering
performance. The NMI measure has values in [0, 1]. A value 0 means that the two clusterings are in-
dependent and share no information, and a value 1 indicates that the two clusterings are the same. The
experimental results are shown in Table 5.1. All the results are average values of 10 random repeti-
tions and the standard deviations are shown in the parentheses. The experimental results show that the
Taylor polynomial kernel k-means achieves similar clustering performance to a normal kernel k-means
algorithm.

5.2 Clustering Efficiency

The comparison of execution time is shown in Table 3. It is seen that the Taylor polynomial kernel
k-means consumes much less time than the normal kernel k-means algorithm due to the efficiency of
the linear k-means solver.

6 CONCLUSION

In this paper, we propose the Taylor polynomial-based kernel k-means algorithm which precisely ap-
proximates the infinite-dimensional implicit feature mapping of the Gaussian kernel function by low-



Normal Taylor polynomial
Dataset kernel k-means kernel k-means

Pen 0.6775 0.6773
Digits (0.0165) (0.0145)
Forest 0.1339 0.1384
Covery (0.0180) (0.0183)

Table 2: Clustering performance (NMI) comparison.

Normal Taylor polynomial
Dataset kernel k-means kernel k-means

Pen 25.6 1.5
Forest 116.2 16.4

Table 3: Clustering efficiency comparison (in seconds).

dimensional features, and leverage the linear k-means solver to approximately perform the nonlinear
kernel k-means. The experimental results show that the Taylor polynomial-based kernel k-means algo-
rithm can achieve similar clustering performance like a normal kernel k-means algorithm and is much
more efficient.
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