
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2014 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2014

A CLOUD DEPLOYMENT APPROACH FOR
CONSUMER SUPPORT SYSTEMS
Jyhjong Lin
Ming Chuan University, jlin@mail.mcu.edu.tw

Maria R. Lee
Shih Chien University, maria.lee@mail.usc.edu.tw

Tsairyuan Chang
Ming Chuan University, tychang@mail.mcu.edu.tw

Shinjer Yang
Soo Chow University, sjyang@csim.scu.edu.tw

Follow this and additional works at: http://aisel.aisnet.org/pacis2014

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2014 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Lin, Jyhjong; Lee, Maria R.; Chang, Tsairyuan; and Yang, Shinjer, "A CLOUD DEPLOYMENT APPROACH FOR CONSUMER
SUPPORT SYSTEMS" (2014). PACIS 2014 Proceedings. 358.
http://aisel.aisnet.org/pacis2014/358

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301362974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2014/358?utm_source=aisel.aisnet.org%2Fpacis2014%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A CLOUD DEPLOYMENT APPROACH FOR

CONSUMER SUPPORT SYSTEMS

Jyhjong Lin, Department of Information Management, Ming Chuan University, Taiwan,

jlin@mail.mcu.edu.tw

Maria R. Lee, Department of Information Technology and Management, Shih Chien University,

Taiwan, maria.lee@mail.usc.edu.tw

Tsairyuan Chang, Department of Information Management, Ming Chuan University, Taiwan,

tychang@mail.mcu.edu.tw

Shinjer Yang, Department of Computer Science and Information Management, Soo Chow University,

Taiwan, sjyang@csim.scu.edu.tw

Abstract

Customer relationships have been commonly recognized as a critical factor for enterprises to succeed their

business. Effective customer relationships could help enterprises deliver services to customers based on their

needs, preferences, or past transactions. This model however emphasizes on the use of customer information

for benefiting enterprises; customers in contrast receive less information from enterprises. To address this

issue, the paradigm Consumer Support Systems (CSS) is proposed to support the provision of service

information for customers to help on their decision making. In addition, since Cloud Computing has been

popularity for its rich set of features and their practical applications on business can be expected, it is thus

an envisioned trend for CSS to be deployed on clouds to enhance further its effectiveness on customer

relationships. For this need, we present in this paper a cloud deployment approach for such a cloud-based

CSS. The approach starts from the consideration of CSS and cloud characteristics, through the recognition of

the architectural components in CSS and clouds, and finally ends with the deployment of the architectural

components in CSS on clouds. The approach is illustrated by a cloud-based CSS for travel arrangement

where decision support for travels is provided for satisfying the arrangement needs from travelers.

mailto:jlin@mail.mcu.edu.tw
mailto:maria.lee@mail.usc.edu.tw

1 INTRODUCTION

Customer relationships have been commonly recognized as a critical factor for enterprises to succeed their

business. Effective customer relationships could help enterprises deliver services to customers based on their

needs, preferences, or past transactions. In this context, many discussions have been presented: (1) Customer

Decision Support (CDS) (Ba 1997; Baker 2000); (2) Customer Relationship Management (CRM) (Galbreath

and Rogers 1999; Lin and Lee 2004; O’Keefe and Mceachern 1998; Woodruff 1997); (3) Customer

Knowledge Management (CKM) (Bueren, et al. 2004; Davenport and Klahr 1998; Garcia-Murillo and

Annabi 2002; Lin 2007; Mobasher, et al. 2002; Thomke and Hippel 2002; Wilkestrom 1996); (4)

Recommendation System (O’Mahoney, et al. 2004); and (5) Intelligent Agent (Wagner and Turban 2002). In

general, these approaches focus on benefiting enterprises by collecting customer information; their usefulness

on enhancing customer relationships has already been demonstrated (Bueren, et al. 2004). However, from the

viewpoint of information flow, the reverse delivery of service information from enterprises to benefit

customers is somehow insufficient. This presents a notable problem of information asymmetry that hurdles

customer relationships since customers have no sufficient service information to assist on their decision

making about what they really need. To address this problem, the paradigm Consumer Support Systems (CSS)

has been introduced (Orman 2007) with a 4-layer framework of collaborative mechanisms to support the

provision of service information from enterprises to customers. In addition, a method for its development has

been presented in (Lin 2009) that considers its architecture and characteristics to provide guidance on its

construction.

In terms of the architecture for Web information systems (WIS), client-server patterns were most commonly

used in the past decades; almost all kinds of existing WIS were constructed using this style of architectures.

However, a new paradigm, Cloud Computing and its three SaaS (Software-as-a-Service), PaaS (Platform-as-

a-Service), IaaS (Infrastructure-as-a-Service) service models (Dubey and Wagle 2007; Hayes 2008;

Hutchinson, et al. 2009), has been established and popularity in recent years for its rich set of features. Its

advantage includes that users can utilize software services in a low cost-, threshold-, and risk-way; these

services can be quickly deployed on the Internet without duplication of work such that developers can focus

on their QoS (Quality of Service) to improve core competitiveness. Therefore, its practical applications on

business with promising values can be expected. As such, a cloud-based version is recognized as a trend for

the next generation of WIS, and hence how to deploy existing WIS on clouds becomes a desired field in the

literature (Hutchinson, et al. 2009). As a WIS, therefore, CSS can be envisioned to evolve into its next

generation on clouds to enhance further its effectiveness on customer relationships.

Thus, we extend in this paper the previous work for CSS by focusing on the deployment of CSS on cloud

environments. The resultant cloud-based CSS is identified from the consideration of CSS and cloud

characteristics, through the recognition of the architectural components in CSS and clouds, and finally ends

with the deployment of the architectural components in CSS on those in clouds. To illustrate, the approach is

applied to a cloud-based CSS for travel arrangement where decision support for travels is provided for

satisfying the arrangement needs from travelers.

This paper is organized as follows. Section 2 presents the approach with respective description diagrams,

including package, deployment, and sequence ones. The approach is then illustrated in Section 3 by applying

it to a cloud-based CSS for travel arrangement. Finally, Section 4 has the conclusions and our future work.

2 THE DEPLOYMENT APPROACH

The approach has the following three steps where respective diagrams are used for descriptions:

1. Requirement Identification, described in an abstract package diagram, that clarifies CSS and cloud

characteristics, and then identifies the desired cloud requirements for CSS (i.e., the desired requirements

for the cloud-based CSS).

2. Architecture Identification, described in a detailed package diagram that determines the architectural

components in CSS and prospective clouds.

3. Deployment Specification, presented in a deployment diagram that specifies the deployment of the

architectural components in CSS on the intrinsic configuration elements in selected clouds.

Consumer
Knowledge

Agent

Figure 1: the architecture for Consumer Support Systems

Task Service
ProviderCommunityshared info.

re-structured knowledge

task request

evaluated service info.

re-structured knowledge

task request

evaluated service info.

task request

service info.

shared info.

re-structured knowledge

Consumer1

ConsumerN

Enterprise1

EnterpriseM

2.1 Requirement Identification

2.1.1 Identification of CSS characteristics

Initially, consider the characteristics of CSS (Orman 2007) as follows.

1. Consumers would enroll into a community where they may share information about their desired tasks

(e.g., buy or rent services from enterprises).

2. Such shared information is re-structured by a knowledge agent into specific styles of knowledge

(Mobasher, et al. 2002) which will be captured by prospective enterprises (via a cooperative task service

provider) to provide information about task-relevant services useful for these consumers.

3. The community cooperates with the task service provider to accomplish the task requests issued by

consumers.

4. Based on the requests received, the task service provider helps to collect and evaluate information about

task-relevant services from prospective enterprises, and then presents (via the community) to consumers

for their possible recognition and comparisons.

5. With the evaluated information about task-relevant services, consumers can recognize and compare

available services that may satisfy their desired tasks.

As a result, CSS has the architecture as shown in Figure 1.

1. It has a 4-layer architecture of five collaborative components where Consumers interact with Enterprises

via three intermediaries: Community, Consumer Knowledge Agent, and Task Service Provider.

2. Community is organized for Consumers to share information about their desired tasks. In addition, it is

also responsible for forwarding the shared information to Consumer Knowledge Agent for re-structuring

into specific styles of knowledge. It then sends the re-structured knowledge to Task Service Provider for

forwarding to Enterprises to catch their needs (e.g., provide services satisfying their desired tasks).

Finally, it also cooperates with Task Service Provider to receive service information relevant to these

requests for Consumers to make recognition and comparisons.

3. Task_Service_Provider is used to receive the knowledge from Community and then forwards it to

Enterprises for providing service information useful for Consumers. In addition, based on the task

requests received from Community, it cooperates with Enterprises to provide information about these

tasks. Furthermore, with the task-relevant information, it also helps to evaluate the information in a

comparative model for presenting to Consumers (via Community) to aid on their decision making.

2.1.2 Identification of cloud characteristics

Based on the architecture and service models of clouds (Hutchinson, et al. 2009), their characteristics can be

identified as follows.

1. The architecture of a cloud may have a wide variety of configuration elements, including for example

virtual machines, data storages, a/synchronous message queues, Web service interfaces, and user action

portals/gadgets. Cloud applications may integrate the use of these elements to provide services.

2. Most of the elements in this architecture are dynamic and leverage a SOA (Service-Oriented

Architecture). It is therefore possible for clouds to interoperable among each other (i.e., interoperability

via Web services among clouds).

SaaS@
Consumer
Knowledge

Agent

Figure 2: the candidate clouds for Consumer Support Systems

shared info.

re-structured knowledge

task request

evaluated service info.

re-structured knowledge

task request

evaluated service info.

task request

service info.

shared info.

re-structured knowledge

Consumer1

ConsumerN

IaaS@

Community

PaaS@
Task Service

Provider

SaaS@

Enterprise1

SaaS@

EnterpriseM

3. Service elements such as virtual machines, data storages, a/synchronous message queues, and Web

service interfaces may be used together to enable the customizations of services by encapsulating the

desired services from prospective clouds (either local or interoperable clouds).

4. Interface elements such as user action portals and gadgets may be used to provide rich user interface

controls that enable the customizations of user interfaces by encapsulating the desired portals or gadgets

in different user panels.

2.1.3 Identification of requirements for cloud-based CSS

With CSS and cloud characteristics, it is then good time to identify the desired requirements for the

cloud-based CSS; that is, considering the five architectural components in CSS, various cloud environments

may be selected for their respective deployments on these clouds to support the functional/non-functional

purposes of CSS. Further, for the purposes of collecting consumer knowledge for enterprises and delivering

service information to benefit consumers, it may require such QoS about the usage and user actions on these

clouds as customized user interfaces and access modes, performance, reliability, security, and scalability.

For this, therefore, it is common to consider all available cloud environments that may satisfy the cloud

requirements. As one may conceive, there is usually more than one cloud that satisfies the requirements; such

clouds hence become the candidates from which specific ones are then selected for the realization of the

deployment. As an example, Figure 2 shows some candidate clouds identified for CSS where

1. For Consumer_Knowledge_Agent and Enterprises, some SaaS clouds (i.e., clouds denoted as SaaS@....

that provide SaaS services) are considered since their desired behaviors may be satisfied by the SaaS

services provided by these clouds.

2. For Task_Service_Provider, some PaaS clouds are identified (i.e., clouds denoted as PaaS@.... that

provide PaaS services) since its desired behaviors may be well supported by the platform services

provided by these clouds with the following features: (1) the inter-cloud interaction capability for the

cooperation with Enterprises to forward knowledge/receive information; and (2) the intra-cloud analysis

capability for the evaluation of the received service information into a comparative model for consumers

to make recognition and comparisons.

3. For Community, some IaaS clouds are identified (i.e., clouds denoted as IaaS@.... that provide IaaS

services) since its desired behaviors may be well supported by the infrastructure services provided by

these clouds with the following features: (1) the storage and manipulation capability for the large volume

of information shared among Consumers; and (2) the inter-cloud interaction capability for the

cooperation with Consumer_Knowledge_Agent for re-structuring the shared information into specific

styles of consumer knowledge.

2.2 Architectural Identification

With the above mentioned requirements, the architectural components in CSS should be deployed on selected

cloud environments that address these requirements by the interactions between Consumer1…N and

Enterprise1…M through collaborative clouds; it is therefore necessary to identify the constituents in the CSS

architectural components and also the configuration elements in candidate cloud environments such that the

constituents in CSS can be smoothly deployed on the configuration elements in selected clouds. The

following illustratively presents the constituents in CSS and also the elements in specific cloud environments.

2.2.1 The Community component in CSS

As mentioned above, Community is organized for Consumers to share information about their desired tasks

(e.g., buy or rent services from Enterprises). In addition, it is also responsible for forwarding the shared

information to Consumer Knowledge Agent for re-structuring into specific styles of knowledge (i.e.,

knowledge of consumers). It then sends the re-structured knowledge to Task Service Provider for forwarding

to Enterprises to catch their needs (e.g., provide services satisfying their desired tasks). Finally, it also

cooperates with Task Service Provider to receive service information relevant to these requests for

Consumers to make recognition and comparisons.

In summary, these requirements for Community can be described as: (1) Share consumer information that

helps on the information sharing among Consumer1…N; (2) Process shared information that forwards the

shared information to Consumer_Knowledge_Agent for re-structuring into the consumer knowledge, and then

send the re-structured knowledge to Task_Service_Provider; (3) Process task request that receives the task

requests from and return the evaluated information about task-relevant services to Consumer1…N; (4)

Cooperate with task service provider that cooperates with Task_Service_Provider to receive the evaluated

information about task-relevant services; and (5) Present services information that provides Consumer1…N

with the rich user interface controls for visualizing the information from Task_Service_Provider.

Based on the above requirements for Community, Figure 3 shows its five constituents that realize these

requirements. In particular, ‘Interface Manager’ is imposed to realize the customization of user interfaces for

Consumer1…N where Consumer Profiles are used to determine which interface portals are preferred by them;

in addition, with such customized user interfaces, their containing gadgets may withhold by ‘Portal Manager’

the visualized information for sharing or about the task-relevant services to form the customized portals (under

available Portal Frameworks) that deliver to Consumer1…N their desired information according to their

interactive requirements. Further, ‘Info. Manager’ accesses Community Member Profiles and Shared

Consumer Info. to help on information sharing among the interested consumers; Shared Consumer Info. is

also retrieved for re-structuring into specific styles of knowledge by Consumer_Knowledge_Agent. In

addition, ‘Task Request Manager’ forwards the task requests from Consumer1…N to ‘Cooperation Manager’

that cooperates with Task_Service_Provider to receive the evaluated information about these requests; the

evaluated information is then visualized and returned to Consumer1…N through ‘Portal Manager’. Finally,

‘Web Service Manager’ is responsible for interoperating with two external architectural components through

Web Service Client APIs for accessing any remote services provided from these two components.

2.2.2 The Task_Service_Provider component in CSS

For another example, Task_Service_Provider receives the consumer knowledge from Community and then

forwards that knowledge to Enterprises that utilizes it to provide service information useful for Consumers.

In addition, based on the task requests received from Community, it cooperates with Enterprises to provide

information about these tasks. Furthermore, with the task-relevant information, it also helps to evaluate the

information in a comparative model for presenting to Consumers (via Community) to aid on their decision

making. In summary, these requirements for Task_Service_Provider can be described as: (1) Process

consumer knowledge that receives the consumer knowledge from Community and forwards the knowledge

to Enterprise1...M; (2) Process task request that receives the task requests from and return the evaluated

information about task-relevant services to Community; (3) Cooperate with enterprise that cooperates with

Enterprise1...M to provide the information about task-relevant services; and (4) Evaluate service information

that evaluates into a comparative model the information about task-relevant services from Enterprise1...M.

Based on the above requirements for Task_Service_Provider, Figure 4 shows its five constituents that realize

these requirements. Particularly, ‘Task Request Manager’ forwards the task requests to ‘Cooperation

Manager’ that cooperates with Enterprise1...M to provide information about task-relevant services; the service

information from Enterprise1...M is then evaluated by ‘Evaluation Manager’ for returning to Community.

Finally, ‘Web Service Manager’ is responsible for interoperating with various external architectural

components through Web Service Client APIs for any remote services provided in these components.

Figure 3: the Community for Consumer Support Systems

Info. Manager

task request

evaluated service info.

shared info.

shared info.

re-structured knowledge

re-structured knowledge

task request evaluated service info.

community member shared info.

shared info.

task request

visualized service info.

Interface

ManagerPortal

Manager
Consumer
Profiles

Interface
Widgets

interface
widget

consumer
preference

interface

Portal
Frameworks

portal framework

Task Request

Manager

Cooperation

Manager

evaluated service info.

task request evaluated service info.

Community
Member
Profiles

Shared
Consumer

Info.

Community

Web Service

Manager

task request

evaluated service info.

Web Service
Client

Profiles

Evaluated
Service Info.

service client

Consumer1

ConsumerN

Task Service
Provider

consumer
Knowledge

Agent

shared info.

Figure 4: the Task Service Provider component for Consumer Support Systems

Consumer

Knowledge

Manager

Task Request

Manager

Web Service

Manager
task request

service info.

Evaluation

Manager

consumer knowledge

evaluated service info.

task request

Task Service Provider

consumer knowledge

task request

service info.

task request Cooperation

Manager

service info.

evaluated service info.

Web Service
Client

Profiles

service client

consumer knowledge

Service
Information

Enterprise1

EnterpriseM

Community

2.2.3 The elements in candidate clouds

With the constituents in the CSS architectural components, the configuration elements in candidate clouds

also need to be identified such that the constituents in CSS can be smoothly deployed on the elements in

selected clouds. For this, three situations are necessarily discussed:

1. For those SaaS clouds on which Customer_Knowledge_Agent and Enterprises are considerably

deployed, their SaaS services would satisfy the desired behaviors of these two CSS components. The

deployment of these two CSS components on the SaaS clouds is thus not necessary and hence the

identification of the configuration elements in the SaaS clouds is also extra.

VM1

Elastic Compute Cloud

Simple Queue Service

mount

Figure 6 : the Amazon EC2 IaaS cloud

VM2

VM3

E
la

st
ic

 B
lo

ck
in

g
 S

to
re

VM4

VM6

VM5

S3 Storage Service

AMIs

Simple DB

boot

access

M
an

ag
em

en
t

C
o

n
so

le
L

o
ad

 B
al

an
ci

n
g

,
A

u
to

S

ca
le

,
C

lo
u

d
 W

at
ch

…
…
…
…

Virtual Server

QueuesGoogle Datastore

G
o

o
g

le
 F

il
e

S
y

st
em

M
em

ca
ch

e

S
ch

ed
u

le
rs

Application Code

G
A

E
 fro

n
t en

d

Figure 5 : the Google GAE PaaS cloud

Application

Developed

and

Deployed

by SDK

Google Cloud SQL

2. For those PaaS clouds on which Task_Service_Provider is considerably deployed, their PaaS services

would support well the desired behaviors of the CSS component. The deployment of this CSS component

on the PaaS clouds is thus necessary and hence the configuration elements in the PaaS clouds need to be

identified. Currently, there are plenty of available PaaS clouds such Google GAE (GAE 2013) and

Microsoft Azure (Azure 2013); Figure 5 shows the elements in GAE that supports well the inter-cloud

interaction and intra-cloud analysis capabilities.

3. For those IaaS clouds on which Community is considerably deployed, their IaaS services would support

well the desired behaviors of the CSS component. The deployment of this CSS component on the IaaS

clouds is thus necessary and hence the configuration elements in the IaaS clouds need to be identified.

Currently, there are also plenty of available IaaS clouds such Google GCE (GCE 2013) and Amazon EC2

(EC2 2013); Figure 6 shows the elements in EC2 that supports well the storage manipulation and

inter-cloud interaction capabilities.

2.3 Deployment Specification

With the constituents in CSS components and the elements in candidate clouds, it is good time to determine

from the candidate clouds which ones are selected for the deployment of these components. In general, this

can be achieved by means of specific evaluation criteria that may rank these candidates in the context of the

satisfaction of the cloud requirements. For example, based on the QoS features of the service models provided

by these clouds, a candidate whose service models gain best weighted assessments may be selected as the

cloud environment for a CSS component to be deployed.

1. For those SaaS clouds on which Customer_Knowledge_Agent and Enterprises are considerably deployed,

any ones hosted by the prospective agents/enterprises with SaaS services most satisfying the desired

behaviors of these two CSS components would be selected for replacing the provision of the services

provided by these two CSS components.

2. For those PaaS clouds on which Task_Service_Provider is considerably deployed, many available ones

such as Google GAE and Microsoft Azure can be considered. Among them, however, GAE as shown in

Figure 5 would be selected since its platform supports well the inter-cloud interaction capability for the

cooperation with Enterprises to forward knowledge/receive information and the intra-cloud analysis

capability for the evaluation of the received service information into a comparative model for consumers

to make recognition and comparisons. Figure 7 shows the deployment of the five constituents in

Task_Service_Provider on the three virtual servers (i.e., Mashup, Analysis, and Web Service) in GAE

where some data storages such as Datastore and Cloud SQL are specifically used.

Figure 7: the Google GAE-based deployment of the PaaS@Task Service Provider

Consumer

Knowledge

Manager

Task Request

Manager

Web Service

Manager
task request

service info.

Evaluation

Manager

consumer knowledge

evaluated service info.

task request

PaaS@Task Service Provider

consumer knowledge

task request

service info.

task request Cooperation

Manager

service info.

evaluated service info.

Web Service
Client

Profiles

service client

SaaS@

Enterprise1

SaaS@

EnterpriseM

IaaS@
Community

consumer knowledge

Enterprise1

Service
Information

GAE Mashup Server

GAE Web Service ServerGAE Analysis Server

EnterpriseM

Service
Information

Datastore Datastore Cloud SQL

Figure 8: the Amazon EC2-based deployment of the IaaS@Community

SaaS@
Consumer
Knowledge

Agent

PaaS@Task
Service

Provider
Info./Knowledge

Manager

task request

evaluated service info.

shared info.

shared info.

re-structured knowledge

task request evaluated service info.

shared info.

task request

visualized service info.

Interface

ManagerPortal

Manager
Consumer
Profiles

Interface
Components

interface
component

consumer
preference

interface

Portal
Frameworks

portal framework

Task Request

Manager

Cooperation

Manager

evaluated service info.

task request evaluated service info.

IaaS@Community

Web Service

Manager

task request

evaluated
service info.

Web Service
Client

Profiles

Evaluated
Service Info.

service client

VM for Portal Server

VM for Web Service Server

VM for Mashup Server

S3 Storage

EBS Storage

S3 Storage

Simple DB

EBS Storage

Consumer1

ConsumerN

re-structured knowledge
shared info.

community member shared info.

Community
Member
Profiles

Shared
Consumer

Info.

EBS Storage EBS Storage

3. For those IaaS clouds on which Community is considerably deployed, many available ones such as

Google GCE and Amazon EC2 can also be considered. Among them, however, EC2 as shown in Figure 6

would be selected since its infrastructure supports well the storage and manipulation capability for the

large volume of information shared among Consumers and the inter-cloud interaction capability for the

cooperation with Consumer_Knowledge_Agent for re-structuring the shared information into specific

styles of consumer knowledge. Figure 8 shows the deployment of the six constituents in Community on

the three virtual machines (VMs) in EC2 and some storages such as S3 storage, EBS storage, and Simple

DB are specifically used.

3 APPLYING TO TRAVEL ARRANGEMENT

Providing travelers with services about travel arrangement is very important for travel agents. Many existing

agents offer relevant services such as searching, viewing, and ordering tours via their own web sites or

intermediary agents (e.g., EzTravel). However, these ordinary functions are not sufficient for many travelers

who desire more sophisticated services (e.g., knowledge-based decision support) for their advanced purposes

such as arranging new tours after sharing related experiences with other travelers. For these limits, a CSS for

travel arrangement is devised to provide these sophisticated services; further, for enhancing its effectiveness

on satisfying the arrangement needs from travelers, the aforementioned deployment approach is applied to

deploy it on cloud environments.

3.1 The Cloud Requirements of CSS for Travel Arrangement

In our example, prospective travelers may desire sophisticated knowledge-based decision support services

about travel arrangement after sharing information with other travelers. Therefore, four functions below are

often desired to satisfy their needs.

1. Share travel experiences - a traveler shares travel experiences with other travelers.

2. Share tour site thoughts - a traveler shares tour site thoughts with other travelers.

3. Arrange a new travel - a traveler arranges a new travel by organizing its transportation, accommodation,

tour sites, and so on.

4. Recommend a new tour site - a traveler recommends a new tour site by specifying its specialties.

With the above desired functions, the characteristics about CSS for travel arrangement can be identified as

below.

1. Travelers would enroll into Traveler Community where they may share such information about travel

arrangement as travel experiences, tour site thoughts, travel arrangement, and tour site recommendation.

2. The shared information is re-structured by Traveler Knowledge Agent into specific styles of knowledge

that is then captured by Travel Agents (via Travel Service Provider) to provide Travelers with useful

travel arrangement information.

3. Traveler Community cooperates with Travel Service Provider to accomplish the travel arrangement

requests issued by Travelers.

4. Based on the requests received, Travel Service Provider helps to collect and evaluate the information

about travel arrangement from prospective Travel Agents, and then presents (via Traveler Community)

to Travelers for their possible recognition and comparisons.

5. With the evaluated information about travel arrangement, Travelers can recognize and compare available

services that may satisfy their desired tasks.

As a result, CSS for travel arrangement has the architecture as shown in Figure 9.

1. It has five architectural components where Travelers are interacting with Travel Agents through three

intermediaries, Traveler Community, Traveler Knowledge Agent, and Travel Service Provider.

2. It helps Travelers to share the information about travel arrangement via Traveler Community and then

re-structure it by Traveler Knowledge Agent into summarized knowledge for Travel Agents to catch

their needs.

3. It helps Travelers to make possible recognition and comparisons by delivering the evaluated information

about travel arrangement from Travel Agents.

Therefore, based on the above architecture, the desired requirements for the cloud-based CSS for travel

arrangement can be identified. For example, as shown in Figure 10, four clouds IaaS@Traveler_Community,

SaaS@Traveler_Knowledge_Agent, PaaS@Travel_Service_Provider, and SaaS@Travel_Agent1...M, may be

considerably imposed to provide the two kinds of clients, Traveler1…N and Travel Agent1…M, with respective

travel arrangement information and traveler knowledge.

Traveler
Knowledge

Agent

Travel Service
Provider

Traveler
Community

Travel Agent1

Travel AgentM

Figure 9: the architecture of CSS for travel arrangement

traveler info.

re-structured traveler knowledge

travel arrangement request

evaluated travel info.

re-structured traveler knowledge

travel arrangement request

evaluated travel info.

travel arrangement request

travel arrangement info.

traveler info.

re-structured travel knowledge

Traveler1

TravelerN

Figure 10: the cloud-based architecture for CSS for travel arrangement

traveler info.

re-structured traveler knowledge

travel arrangement request

evaluated travel info.

re-structured traveler knowledge

travel arrangement request

evaluated travel info.

travel arrangement request

travel arrangement info.

traveler info.

re-structured travel knowledge

SaaS@
Traveler

Knowledge
Agent

IaaS@
Traveler

Community

PaaS@Travel
Service

Provider

SaaS@

Travel Agent1

Agent1

travel
arrangement
info.

travel arrangement request
traveler knowledge

Traveler1

TravelerN

AgentM

SaaS@

Travel AgentM

travel
arrangement
info.

travel arrangement request
traveler knowledge

3.2 The Deployment of CSS for Travel Arrangement

In the cloud-based CSS for travel arrangement, Traveler1…N may issue the travel arrangement requests via

IaaS@Traveler_Community to acquire from prospective SaaS@Travel_Agent1...M the information about

travel arrangement that is earlier collected and evaluated by PaaS@Travel_Service_Provider. In particular,

bi-directional information flows between Traveler1…N and Agent1…M where (1) the information shared among

Traveler1…N is re-structured into summarized knowledge and then captured by SaaS@Travel_Agent1...M (via

PaaS@Travel_Service_Provider); and (2) reversely, information about the travel arrangement from

SaaS@Travel_Agent1...M is structured and evaluated by PaaS@Travel_Service_Provider for possible

recognition and comparisons (via IaaS@Traveler_Community) by Traveler1…N. Therefore, based on the

generic CSS architecture in Figure 2, Figure 10 shows the cloud-based architecture of CSS for travel

arrangement where the two clouds PaaS@Travel_Service_Provider and IaaS@Traveler_Community would

contain the same deployed CSS constituents as those in Figures 7 and 8).

4 CONCLUSIONS

In this paper, we present a method for the deployment of CSS on cloud environments. The method addresses

first the identification of CSS and cloud characteristics. After then, the architectural components in CSS and

candidate clouds are recognized in a step-by-step manner to support a smooth deployment. Finally, the

deployment is realized by imposing the constituents in CSS components on the configuration elements in

selected clouds. As a result, for such a deployed cloud-based CSS, four clouds are imposed with inter-cloud

interactions to support both of the information from consumers to enterprises (i.e., for enterprises, capturing

knowledge from consumers) and the reverse delivery of information from enterprises to consumers (i.e., for

consumers, receiving service information from enterprises). For illustration, the method is applied to a cloud-

based CSS for travel arrangement. In the CSS, a IaaS-based traveler community is imposed for information

sharing among travelers. Further, a SaaS-based knowledge agent is used to re-structure the shared information

into various styles of traveler knowledge that is then captured by prospective SaaS-based travel agents. Since

travelers may issue the travel arrangement requests to these SaaS-based travel agents, a PaaS-based travel

service provider is imposed to help on collecting and evaluating the information about travel arrangement

from SaaS-based travel agents, and then presenting (via the IaaS-based traveler community) to travelers for

their possible recognition and comparisons.

Since cloud applications have been recognized in recent years as a trend for the next generation of business

applications, how to deploy the many existing business applications on the clouds for taking advantage of

cloud computing has thus become a desired field in the literature. However, current discussions about this

mainly focus on some important issues about the deployment on a cloud environment and then present

respective tips for addressing such issues. For a formal process, any methods that take into considerations of

the architecture and characteristics of both business applications and clouds to provide guidance on their

deployment are still missing. Such methods, in our opinion, should not be negligible since a well-guided

process is critical for directing the deployment of the many existing applications in a systematic and managed

manner. The method presented herein provides an effort on this need.

As our future work, we will continue to explore the realization of the cloud-based CSS for travel arrangement.

Thereafter, in addition to travel arrangement, we will look also forward to the practical use of our work in

other domains like e-Book management and e-Learning arrangement; its usability on such cloud-based

decision support systems will also be carefully experienced. As one may conceive, while deploying these

systems, experiences about the application can be collected correspondingly for validating the usefulness and

effectiveness of the method.

Acknowledgements

The work in this paper is supported by Ministry of Science and Technology in Taiwan under Grant NSC

102-2410-H-130 -032.

References

Ba, S., et al. (1997). Using client-broker-server architecture for Intranet decision support, Decision Support

Systems, 19(3), 171-192.

Baker, M. (2000). Creating An Alliance between Employees and Customers, Knowledge Management

Review, 3(5), 10-11.

Galbreath, J. and Rogers, T. (1999). Customer Relationship Leadership: A Leadership and Motivation Model

for the 21th Century Business, The TQM Magazine, 11(3), 161-171.

Lin, J. and Lee, M. (2004). An OO Analysis Method for CRM Information System, Journal of Information

and Software Technology, 46(7), 433-443.

O’Keefe, R. and Mceachern, T. (1998). Web-based Customer Decision Support Systems, Communications of

the ACM, 41(3), 71-78.

Woodruff, R. (1997). Customer Value: The Next Source for Competitive Advantage, Journal of the Academy

of Marketing Science, 25(2), 139-153.

Bueren, A., et al. (2004). CKM – Improving Performance of Customer Relationship Management with

Knowledge Management, 37th Annual Hawaii International Conference on System Sciences, p. 70172.2.

Davenport, T. and Klahr, P. (1998). Managing Customer Knowledge, California Management Review, 40(3),

195-208.

Garcia-Murillo, M. and Annabi, H. (2002). Customer Knowledge Management, Journal of the Operational

Research Society, 53(8), 875-884.

Lin, J. (2007). An OO Development Method for Customer Knowledge Management Information Systems,

Journal of Knowledge-Based Systems, 20(1), 17-36.

Mobasher, B., et al. (2002). Five Styles of Customer Knowledge Management, and How Smart Companies

Use Them To Create Value, European Management Journal, 20(5), 459-469.

Thomke, S. and Hippel, E. (2002). Customers as Innovators, Harvard Business Review, April 2002, 5-11.

Wilkestrom, S. (1996). The Customer as Co-Producer, The European Journal of Marketing, 30(4), 6-19.

O’Mahoney, M., et al. (2004). Collaborative Recommendation: A Robustness Analysis, ACM Transactions

on Internet Technology, 44(11), 344-377.

Wagner, C. and Turban, E. (2002). Are Intelligent e-Commerce Agents Partners or Predators?,

Communications of the ACM, 45(5), 84-90.

Orman, L. (2007). Consumer Support Systems, Communications of the ACM, 50(4), 49-54.

Lin, J. (2009). An Object-Oriented Development Method for Consumer Support Systems, International

Journal of Software Engineering and Knowledge Engineering, 19(7), 933-960.

Dubey, A. and Wagle, D. (2007). Delivering Software as a Service, The McKinsey Quarterly, http://

ai.kaist.ac.kr/~jkim/cs489-2007/Resources/DeliveringSWasaService.pdf.

Hayes, B. (2008). Cloud Computing, Communications of the ACM, 51(7), 9-11.

Hutchinson, C., et al. (2009). Navigating the Next Generation Application Architecture, IEEE IT Pro, 11(2),

18-22.

Google App Engine (GAE). (2013). https://appengine.google.com/

Windows Azure (Azure). (2013). http://www.windowsazure.com/zh-tw/

Google Compute Engine (GCE). (2013). https://cloud.google.com/products/compute-engine

Amazon EC2 (EC2). (2013). http://aws.amazon.com/ec2/

https://appengine.google.com/
http://www.windowsazure.com/zh-tw/
https://cloud.google.com/products/compute-engine
http://aws.amazon.com/ec2/

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2014

	A CLOUD DEPLOYMENT APPROACH FOR CONSUMER SUPPORT SYSTEMS
	Jyhjong Lin
	Maria R. Lee
	Tsairyuan Chang
	Shinjer Yang
	Recommended Citation

	十五、計畫中文摘要：請於五百字內就本計畫要點作一

