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IMPROVING RECOMMENDATION PERFORMANCE WITH 

USER INTEREST EVOLUTION PATTERNS 

Tsang-Hsiang Cheng, Department of Business Administration, Southern Taiwan University 

of Science and Technology, Tainan, Taiwan, R.O.C., cts@stust.edu.tw 

Yen-Hsien Lee, Department of Management Information Systems, National Chiayi 

University, Chiayi, Taiwan, R.O.C., yhlee@mail.ncyu.edu.tw 

Abstract 

Effective recommendation is indispensable to customized or personalized services. Collaborative 

filtering approach is a salient technique to support automated recommendations, which relies on the 

profiles of customers to make recommendations to a target customer based on the neighbors with 

similar preferences. However, traditional collaborative recommendation techniques only use static 

information of customers’ preferences and ignore the evolution of their purchasing behaviours which 

contain valuable information for making recommendations. Thus, this study proposes an approach to 

increase the effectiveness of personalized recommendations by mining the sequence patterns from the 

evolving preferences of a target customer over time. The experimental results have shown that the 

proposed technique has improved the recommendation precision in comparison with collaborative 

filtering method based on Top k recommendation.  
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1 INTRODUCTION 

Internet has become an important way to acquire information nowadays. However, the selectable 

information exceeds the cognitive load capacity of web users, that is to say, the rapid growth of web 

has also brought the problem of information overload (Häubl and Trifts, 2000). In order to reduce the 

search cost of information overload, a variety of collaborative filtering algorithms have been proposed 

to facilitate the development of automatic recommendation systems (Wan et al., 2003). 

Since e-commerce market has been fast-developing, personalized recommendation service is 

absolutely essential for the customer-focused and personalized websites (Adomavicius and Tuzhilin, 

2005; Schafer et al., 2001). Recommendation systems would identify customers’ potential needs from 

their search behaviors and historical preference records, thereby offering customers appropriate 

personalized recommendations. The valuable recommendations not only effectively help users solve 

the information overload problem but also help websites provide personalized service accordingly. As 

a result, the high quality recommendation services have become a powerful tool and a critical strategy 

on the relationship marketing for e-commerce (Strasser and Zugenmaier, 2003; Wei et al., 2005). 

Content-based recommendation and Collaborative filtering recommendation are the two most popular 

techniques. Content-based approach utilizes a series of features related to product descriptions. And 

collaborative filtering makes use of product preferences and similar user evaluations (i.e., neighbor 

users) (Beyah et al., 2003; Balabanovic and Shoham, 1997; Konstan et al., 1997; Mooney and Roy, 

1999). Content-based recommendation analyzes the content descriptions of a customer’s favored 

products, and then creates a product preference profile to provide appropriate recommendations in the 

future. On the other hand, collaborative filtering recommendation firstly searches for a group of users 

with similar product preferences for a target customer, and then  integrates product evaluation of the 

group to provide prediction of product preference for the target customer (Adomavicius and Tuzhilin, 

2005; Lang, K. 1995; Sarwar et al., 2000; Wei et al., 2002). Collaborative filtering technique ignores 

the dimension of time and assumes that the information of customer preference is static (Khatri, 2012). 

However, a customer’s interest may change over time which implies a type of dynamic information 

(Cho et al., 2005; Min and Han, 2005; Ding et al., 2006). Therefore, Cho et al. organized a customer’s 

product items in a sequential order to present how one’s buying behavior changes, and accordingly 

make recommendation with sequential rule (Cho et al., 2005). Besides, Min and Han proposed a 

method to detect the changes in customers’ preferences based on clustering technique. They induced 

the preference changes from a group of users with similar interests to increase the accuracy of 

recommendation (Min and Han, 2005). In addition, some scholars suggested that the evolution pattern 

of customers’ interests should be added into current recommendation techniques to improve the 

recommendation performance (Hijikata et al., 2009; Wei et al., 2009). 

Therefore, we proposed a sequential pattern minding-based technique, which takes evolution pattern 

of user’s interest into account. A clustering algorithm is specifically adopted to group the items with 

similar contents. Subsequently, for a target user, the preference rating of each item cluster is the 

average rating in the cluster at the corresponding timestamps. A user’s interest is then represented as a 

vector using the preferences of all clusters. As a result, the generalized Sequential Patterns Mining 

(GSP) method is used to generalize customers’ interest evolution patterns for making 

recommendations. We collect movies from the MovieLens dataset and corresponding contents from 

the International Movie Database (IMDB). Then, we conduct a series of experiments using the 

traditional collaborative filtering approach as the performance benchmark. The experimental results 

demonstrate that our proposed approach could considerably improve the recommendation 

effectiveness in comparison with the traditional collaborative filtering approach. 

The remainder of this paper is organized as follows. In Section 2, we review the literatures related to 

recommendation techniques and sequential pattern mining. In Section 3, the details of our proposed 

approaches are presented. Section 4 reports the evaluation dataset, experimental design and the 

significant experimental results. We make a summary and some future directions in Section 5. 



2. LITERATURE REVIEW 

2.1 Recommendation Technique 

Collaborative filtering is one of the most successful techniques for recommender systems. The major 

concept of collaborative filtering is to utilize the opinions from other users who have the similar tastes 

to predict the preference on a target item for an active user (Balabanovic and Shoham, 1997; 

Herlocker et al, 2004). As shown in Figure 1, in a typical collaborative filtering recommendation 

scenario, there is a set of n users U = {u1, u2, …, un} and a set of m items I = {i1, i2, …, im}. Each user 

ui has a list of items Iui
 (where Iui

  I and Iui
 can be an empty set) on which the user has expressed his 

or her preferences. The preference of a user ui for an item ij (denoted as Oij) can be a subjective rating 

explicitly stated by the user or an implicit measure inferred from the user’s purchased items, browsing 

and navigation behaviors. The recommendation can be made for a specific user ua (where ua  U) on 

those items that have not explicitly been rated or chosen by the user. Alternatively, the recommender 

system may suggest a new item inew (where inew  I) to those users who might be interested 

(Adomavicius and Tuzhilin, 2005; Sarwar et al., 2000). 
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Figure 1. User-item rating matrix used for collaborative filtering approach 

As shown in Figure 2, the process of a typical neighborhood-based (user-based) collaborative filtering 

algorithm can be divided into three phases (Sarwar et al 2000; Wei et al., 2002):  

1 Dimensional Reduction: The process of dimension reduction transforms the original user-item 

rating matrix into a lower dimensional space to address the sparsity and scalability problems.  

2 Neighborhood Formation: This step computes the similarities between an active user and all other 

users to form a proximity-based neighborhood with a number of like-minded users for the active 

user. There is a few number of similarity measure techniques (Herlocker et al, 1999; Sarwar et al., 

2000), such as Pearson correlation coefficient, constrained Pearson correlation coefficient, 

Spearman rank correlation coefficient, cosine similarity, and mean-squared difference.  

3 Recommendation Generation: It generates recommendations based on the preferences of the set 

from nearest neighbors of an active user. The deviation-from-mean method, adopted by 

GroupLens (Konstan et al, 1997), is the most popular method for making recommendation. 
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Generation

Neighborhood

Formation
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Reduction
 



Figure 2. Overall process of collaborative filtering technique 

As we mentioned in Section 1, the traditional collaborative filtering approach mainly relies on the 

assumption that all given preferences are equally important. However, it ignores the time dimension 

once a preference is collected. This assumption may misguide the prediction outcome of the 

traditional collaborative filtering approach. Not many researches have focused on the temporal 

features of the given preferences for making collaborative recommendations (Tang et al., 2003; 

Terveen et al, 2002; Zhao et al., 2005).  

Ding and Li (2005) first presented an item-based collaborative filtering algorithm that takes the 

changes of user’s purchase interests into account. Their main idea is to predict user future purchase 

interests precisely by deploying time weight. The item which has been rated recently by a user is 

supposed to be much more important than an item has been rated long time ago. Like the traditional 

item-based collaborative filtering algorithm, this algorithm first computes the similarity between two 

items by a specific measure, such as cosine similarity, Pearson correlation coefficient, or conditional 

probability-based similarity. Subsequently, the prediction of the preference on a target item is 

computed by a modified weighted average method. Since Ding and Li (2005) assumed that the user 

purchase interest is time sensitive, the modified weighted average method adopts a function f(t) = e
-t

 

to assign the weight for each involved preference, and the corresponding measure is defined as: 

Oij = 


c=1

k

Oicsim(ij,ic)f(tic)


c=1

k
 sim(ij,ic)

, 

where Oij is the predicted preference of user ui on item ij, k is the number of nearest neighbors of 

item ij, sim(ij,ic) is the similarity between items ij and ic, and f(tic) is the time the preference Oic 

was produced. 

Ding et al. (2006) redesigned an exponential weight Wc to replace the original time weight function f(t) 

because they hope to simplify the parameter  estimates of function f(t).The exponential weight Wc is 

given as: (1  
|Oic-Oir|

|R|
)

 , where Oic is the preference of user ui on item ij, Oir is the customer ui’s latest 

product rating record for product ic in the cluster, |R| is the range of product rating (e.g., it’s a Likert 

5-level scale, then |R| is 5), and  is a parameter of time weight. After induction of Wc, the weighted 

average method which is in use of measuring a target customer’s preference would be modified as:  

Oij = 


c=1

k

Oicsim(ij,ic)Wc


c=1

k
 sim(ij,ic)

, 

where Oij is the predicted preference of user ui on item ij, k is the number of nearest neighbors of 

item ij, sim(ij,ic) is the similarity between items ij and ic, and f(tic) is the time the preference Oic 

was produced. 

Cho et al. (2005) argued that existing collaborative filtering systems are static, and the information of 

the purchase sequences of customers has been thus ignored. Therefore, they proposed a new method 

to enhance the performance of CF recommendation through uses of customer purchase sequences 

(Cho et al., 2005). As for operation procedure, they rearranged a customer profile considering the 

transaction time and a SOM (Self Organizing Map) clustering technique is employed to generate the 

“customer transaction cluster” C={C1, C2, …, Cq}. The change in the transaction, clusters represents a 

customer purchase sequence. Therefore, observing the changes in the transaction clusters of each 



customer over time, a purchase sequence of which can be built for each customer, and the purchase 

sequences are potentially capable of predicting the future purchase interest from a target customer. 

Cho et al. (2005) adopted association rules to extract the most frequent from customers’ purchase 

sequence with the form of Rj: rj,T-l+1,…, rj,T-1rj,T . When making recommendations for the target 

customer ui at the timestamp T, we can find the best matched dynamic behavior Rj
c
=<rT-l+1,…, rj,T-1> 

in the purchase sequence database with the customer ui‘s buying behavior profile at the time T-1, 

Li
c
=<Ci,T-l+1,…, Ci,T-1>. The found best-fit behavior rule rj,T-l+1,…, rj,T-1rj,T can help determine the 

products the target customer ui would most likely to buy. 

2.2 Sequential pattern mining 

Sequential pattern is a sequence of itemsets that frequently occurred in a specific order, all items in 

the same itemsets are supposed to have the same transaction-time value or to be within a same time 

gap. Usually a serial transactions of a customer are viewed as a sequence, usually called 

customer-sequence. In a customer-sequence S, each transaction is represented as an itemset in the 

sequence and all the transactions are listed in a certain order regarding to the transaction-time. For 

example, if the given transaction-itemsets are (a1,a2), (b) and (c), the customer-sequence S will be 

represented as: <(a1,a2), (b),(c)>. Using customer-sequence to describe customer behavior may help 

e-shops apply recommendation mechanism to increase customers’ service satisfaction or the overall 

sales performance. 

Sequential pattern mining is a process of extracting certain sequential patterns whose support exceeds 

a predefined minimal support threshold (Bettin et al., 1998; Zhao et al., 2003). Since the number of 

sequences can be very large, and users may have different interests and requirements, to get the most 

interesting sequential patterns, usually a minimum support is pre-defined by users. By using the 

minimum support, we can prune those uninteresting sequential patterns, and thereby make the mining 

process more efficient. Obviously a higher support of sequential pattern is desired for more useful and 

interesting sequential patterns. Most sequential pattern mining algorithms are based on the Apriori 

property proposed in association mining; the property states that any sub-pattern of a frequent pattern 

must be frequented. AprioriAll, AprioriSome, DynamicSome (Agrawal and Srikant, 1995), GSP 

(Srikant and Agrawal 1996) and SPADE (Zaki, 2001) are the series of Apriori-like algorithms. The 

representative Apriori-like algorithm was GSP (Generalized Sequential Patterns) proposed by Srikant 

and Agrawal (Srikant and Agrawal, 1996). GSP integrates with time constraints and relaxes the 

definition of transaction. For time constraints, maximum gap and minimal gap are defined to specify 

the gap between any two adjacent transactions in the sequence. If the distance is not in the range 

between maximum and minimal gap, the two transactions cannot be taken as two consecutive ones in 

a sequence. This algorithm relaxes the definition of transaction by using a sliding window, which 

means if the distance between the maximal transaction time and the minimal transaction time of those 

items is no bigger than the sliding window then those items can be taken as in the same transaction.  

GSP contains two main sub-processes: candidate pattern generation and frequent pattern generation. 

In the candidate generation process, candidate k-sequences are generated based on the large 

(k-1)-sequences (Bettini et al., 1998; Mannila et al., 1995; Srikant and Agrawal, 1996; Zhao and 

Bhowmick, 2003). GSP performs relatively better than AprioriAll, in GSP the number of candidate 

sequences is much smaller. In addition, time constraints, taxonomies are integrated during the 

sequential patterns mining process to produce more knowledge (Pei et al, 2001; Rolland, 2001; Zaki, 

2001; Zhao and Bhowmick, 2003). Therefore, to implement the sequential pattern mining task for 

extracting the dynamic profile on customer preferences, this study adopted the sequential pattern 

mining tool based on GSP algorithm provided by Weka platform (Hall et al, 2009).  



3 RECOMMENDATION TECHNIQUE WITH USER INTEREST 

EVOLUTION (SPIE)  

The traditional collaborative filtering mainly relies on the assumption that all the given preferences 

are equally important. However,  the time dimension is ignored  once a preference is collected. The 

traditional approach only considers users’ newest preferences and overlooks the other occurred 

preferences. As we mentioned in Section 1, user’s interests may be changed over time and the 

preferences given at different time could provide the information of users’ preference evolution. To 

catch the users’ interest patterns, we propose a novel recommendation approach (SPIE) with the 

sequential pattern mining technique which takes user interest evolution into account. The proposed 

approach also concerns the data sparsity problem and item heterogeneities. As shown in Figure 3, 

there are three major phases in the proposed approach, i.e., item clustering, preference templates 

construction, and template selection & recommendation generation.  

The first phase of item clustering is to group the items with similar contents by adopting a specific 

cluster algorithm. Next, the phase of preference template construction first estimates the favorite 

status of each item-cluster for each user according to the given item preferences, and then the 

sequential pattern mining technique, GSP, is employed to construct users’ dynamic preference 

templates for recommendation. Finally, the third phase finds the best-fit preference profiles for the 

active user according to his/her interest change and generates the recommendation contents.  
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Figure 3. Overall structure of our proposed technique 

3.1 Item Clustering 

We assumed that customers have same preferences for similar products, and item clusters were 

constructed to simplify complexity of sequential pattern mining on recommendations. Due to the fact 

that all of items to be recommended can be described with text content (plot keywords from The 

Internet Movie DataBase (IMDB)), the text-processing tasks (i.e., keyword extraction, keyword 

selection, and item representation) can be performed in advance to estimate content similarities 

(Larsen and Aone, 1999; Roussinov and Chen, 1999). For feature extraction process, a set of nouns 

and noun phrases from the textual description of each item is first extracted. Subsequently, feature 

selection selects representative features from the feature a set of all textual documents based on a 



chosen feature selection metric. Specifically, we employ TF×IDF as the feature selection method to 

select the top-f keywords with the highest TF×IDF scores from the textual descriptions. Afterwards, 

each item is represented as a feature (i.e., keyword) vector composed by the top-f features with the 

corresponding TF×IDF scores (Pazzani and Billsus, 1997). To assess the content similarity between 

two items, the cosine similarity measure is adopted. Then, we employ the famous k-means clustering 

algorithm to group the similar items into n clusters, and n is a pre-specified constant. 

3.2 Preference Template Construction 

Since the changes of customers’ interest were retained in preferences at different timestamps, we 

employed sequential pattern mining method to analyze the preference records to discover the change 

patterns of customers’ preference to construct “the dynamic preference templates”. With the 

constructed templates, we can understand the changes in customers’ interests and predict their 

purchase tendency in the future in order to help make recommendations. This phase contains three 

tasks: (1) Generation of summarized preference matrix, based on item clusters at different timestamps, 

(2) Transformation of the summarized preferences for mining, (3) Generation of the dynamic 

preference templates. The details of the three tasks are described as follows: 

 

(1)Generation of summarized preference matrix: with clustering technique, all items are clustered 

into r clusters C1, C2, …, Cr. Then, the original customer preference matrixes, as shown in figure 

4, should be transformed into summarized preference matrix on item clusters as shown in figure 

5. In the figure 5, the summarized preference of customer ua’s on cluster Ck at timestamp Ti is 

described as ra,t,k and the value of ra,t,k is estimated as the average value of ua’s preference for all 

the items in the cluster Ck. The calculation of preference ra,t,k is defined as follows: 

    ra,t,k 
iCk

1
RNk

(ra,i),  

where RNk is the number of the items in the cluster Ck, ra,i is ua’s preference value for the item 

i at the timestamp t.  
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Figure 4. Original preference matrix for customer ua 
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Figure 5 Summarized preference matrix for customer ua 



(2)Transformation of the summarized preferences for mining: traditional collaborative 

recommendation method considers every rating from customers is the same weight regardless of 

values of the ratings. However, Mobasher et al. (2001) proposed that recommendation systems 

should pay more attention to items with higher ratings when making recommendations 

(Mobasher et al., 2001). Symeonidis et al. (2008) also suggests that simply by using items with 

high ratings would increase recommendation performance. Thus, we transformed the rating ra,t,k 

in the summarized preference matrix as shown in figure 5 into a binary value scale(1 for like; 0 

for others) according a threshold 2.5 (for the Likert 5-level scale). Then, all the elements of 

summarized preference matrix of figure 5 are transformed as binary value for sequential pattern 

mining.  

 

(3)Generation of the dynamic preference templates: After the mentioned matrix transformations, 

we adopted a sequential pattern mining module on Weka platform, according to GSP sequential 

pattern mining algorithm proposed by Srikant and Agrawal (Srikant and Agrawal, 1996), to 

mine the dynamic preference templates for recommendation. 

3.3 Template Selection and Recommendation Generation 

This phase also includes three tasks: (1) Creation of target user’s interest evolution from his/her 

existing preferences, (2) Search for the best-fit dynamic preference profiles, (3) Generating 

recommendations for the target user. The main part of this phase is the second task which aims to find 

the best-fit dynamic preference templates for recommendation generation. We employed a modified 

similarity measure proposed by Saneifar et al. (Saneifar et al, 2008) to find the best-fit dynamic 

preference templates. The modified similarity measure is a combination of weight of itemset 

mappings between two sequence patterns, and a mapping weight between two itemsets, itemset i of 

sequence Seq1 and itemset j of sequence which are defined as:  

Weight(i,j) = 
|Seq1(i)∩Seq2(j)|

(|Seq1(i)||Seq2(j)|)/2
. 

When computing the mapping weights, a selected itemset j from sequence Seq2 corresponding to the 

itemset i of sequence Seq1 may have already been mapped with another itemset p. This situation is 

called “mapping conflict”, that we must find another itemset mapping to solve the conflict problem. 

Therefore, a local relevance evaluation localSim is adopted to evaluate possible mappings. The 

mapping pair with the highest local relevance is chosen to solve the conflict. The calculation of 

localSim would vary from different  types of mappings: 

itemsets mapping candidate are  , re       whe                              

cross are mappings  when the,2/)),(),((
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


  

After solving all the mapping conflicts, the similarity degree between two sequences is calculated 

with the following equation: 

Sequence_Simlarity =


q=1

k
weightq

max(|Seq1|,|Seq2|)
, 

Let us take Seq1={(bc)(df)(e)} and Seq2={(abc)(mn)(de)(egh)(fg)} as an example to show the 

computation of similarity degree between the two sequences. For each itemset Seq1(i), we firstly look 

for the most similar itemset Seq2(j) in the second sequence Seq2. The best mapping for the 1st itemset 

(bc) in Seq1 is itemset (abc) in Seq2, and the mapping weight is calculated as: 2/((3+2)/2)=0.8. Then, 

we continued to search the mapping with the 2nd itemset (df) in Seq1 and found that (de) and (fg) are 

two mapping candidates of (df). After computing the second run mapping weight, we obtained 

weight((df),(de))=1/((2+2)/2)=0.5 and weight((df),(fg))=1/((2+2)/2)=0.5. Since the two mapping 



weights are equal, we chose the itemset (de) with lower timestamp to map with the itemset (df) in 

Seq1.  

We did another search for the 3rd itemset (e) in Seq1, and found that (de) in Seq2 is the best mapping 

itemset with weight((e),(de))=0.6. However, this itemset (de) has already been associated with the (df) 

of Seq1. Thus a mapping conflict happens, then the conflict-solving procedure is activated to find new 

mapping pairs for itemsets (df) and (e). The possible mapping itemsets, which is located before or 

after the current mapped itemset (de) in Seq2, has become the new candidates by then. So (fg) and 

(egh) are the possible mapping candidates for (df) and (e). Consequently, the new possible mappings 

for the conflict are: <((df),(de)); ((e),(egh))> and <((df),(fg)); ((e),(de))>. Using the local relevance 

evaluation and considering case of cross-mapping, the calculations of localSim are as followings: 

localSim((df),(de))((e),(egh))=(0.5+0.5)/2=0.5 

localSim((df),(fg))((e),(de))=1/2(0.6+0.5)/2=0.27 

The mapping pairs <((df),(de)); ((e),(egh))> with the highest localSim are selected to solve the 

conflict and the new mapping of itemset (e) is (egh). The final itemset mappings between the two 

sequences are: (abc),(ab); (df),(de); (e),(egh). Finally, the estimation of the similarity degree laid 

between Seq1 and Seq2 is: (0.8+0.5+0.5)/max(3,5)=0.36. 

After selecting the best-fit dynamic preference profiles for the target user, the recommendation 

content is generated according to the selected dynamic preference profile with the Top-k method. 

4 EMPIRICAL EVALUATON 

With taking user interest evolution patterns into account and implementing the traditional 

collaborative filtering approach as the performance benchmark, we conduct an empirical evaluation 

for the proposed recommendation approach.. First, the evaluation dataset is depicted in Section 4.1. 

Then, the evaluation procedure and performance criteria are presented in Section 4.2. Next, the tuning 

experiments on the effects of related parameters for the proposed approaches are provided in Section 

4.3. Finally, the comparative performance of the two approaches is presented in Section 4.4. 

4.1 Data Collection and description 

We use the MovieLens dataset collected by the GroupLens Research Project at the University of 

Minnesota to conduct a series of experiments. There are 100,000 ratings (with a scale from 1 to 5) 

from 943 users on 1,682 movies (from 20 Sep., 1997 to 22 Apr., 1998). All of the users in the original 

dataset have rated at least 20 movies. Averagely, each subject offered 106 preference records. 

Because the MovieLens dataset does not contain the description of each movie, we adopted the plot 

keywords from IMDB movie database to represent each movie as a feature (keyword) vector 

accordingly. 

4.2 Evaluation Procedure and Criteria  

In the collected dataset, we use the preferences given before 11 Jan., 1998 as the training dataset 

(namely Dtraining) and the remaining preferences as the testing dataset (namely Dtesting). There are about 

80,000 preferences in Dtraining and 20,000 preferences in Dtesting. The preferences in Dtraining are 

regarded as the given preferences and the preferences in Dtesting are used for the preference prediction 

tasks. Moreover, to avoid possible bias, the experiments in section 4.3 are performed 30 times by 

randomly selecting 80% preferences from Dtraining as the given preferences and 80% preferences from 

Dtesting for predictions to get the average performance. Besides, the traditional collaborative 

recommendation was adopted as the comparative recommendation technique. Meanwhile, the Top k 

method was applied to generate recommendation results. 

Furthermore, we adopt precision as the performance evaluation criteria to evaluate the prediction 

accuracy of our proposed approach (namely SPIE) and the traditional collaborative filtering approach 



(namely CF) for the recommendation results. The precision criterion is a widely adopted measure to 

evaluate the prediction accuracy according to intersection percentage between the actual user’s favor 

items and the recommended items. The calculation is defined as: 

|Actual_Preference∩Recommendatons|

| Recommendatons|
. 

4.3 Parameters Tuning Results 

In the designed 30 evaluation experiments, each Dtraining averagely includes 582 users and each Dtesting 

averagely includes 500 users. There are averagely 139 users which appear in both Dtraining and Dtesting 

in each experiment, thus the 139 users, intersection of Dtraining and Dtesting, are employed to evaluate the 

performance of personalized recommendation in each experiment. 

This study adopted the k-means clustering method to create item clusters and the number of item 

clusters will range from 4 to 15. The analysis of Dtesting in 30 experiments shows that each user 

included in the Dtesting had rated 2.00 to 6.47 item clusters based on the mentioned 4 to 15 

item-clusters as shown in Table 1. 

 

Item clusters 4 5 6 7 8 9 10 11 12 13 14 15 

Rated clusters of 

each user in Dtesting 
2.00 2.17 2.70 3.17 3.69 4.11 4.31 5.06 5.28 5.83 6.47 6.47 

Table 1. Average number of rated item clusters for each user 

We also examined the effects of the support setting of GSP on number of mined sequential patterns, 

ranging from 0.9 to 0.1 at decrement of 0.1 by given the number of item clusters as 4, 5, 6, and 10. As 

shown in Table 2, the number of sequential patterns (i.e., users’ dynamic profile) has a positive 

relationship with the number of item clusters and a negative relationship with the support setting. For 

example, when the number of item cluster is fixed to 4, 5 or 6, the support should be lowered (e.g., 0.2) 

in order to acquire more sequential patterns (e.g. at least 10 patterns). Accordingly, the support rate of 

GSP is set as 0.2 in the following experiments in order to obtain sufficient dynamic profiles.  

 
Support 

Cluster 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 

4 1 3 3 3 3 3 3 10 

5 1 3 3 3 3 5 7 10 

6 3 3 7 7 7 7 7 20 

10 6 8 15 23 31 43 63 95 

Table 2. Effects of support on number of mined sequential patterns 

When the support is set as 0.2 for GSP, there are 10 to 903 dynamic preference profiles extracted 

according to various item cluster settings as shown in Table 3. We then examined the effects of 

selected templates on recommendation precision performance, ranging 4 to 10 at increment of 2. As 

shown in Table 4, when item cluster settings are larger than 7, the proposed approach SPIE could 

achieve about 70% prediction accuracy while the number of selected templates is set as 10. Taking the 

richness of recommendation content and recommendation performance into account, we set the 

number of selected templates as 10 for the following comparative evaluations. 

 

Item cluster 4 5 6 7 8 9 10 11 12 13 14 15 

Extracted 

Profiles 
10 10 20 28 54 95 98 183 279 470 888 903 

Table 3. Number of mined dynamic profiles with various cluster settings 



 

Number of profiles 

Item cluster 
4 6 8 10 

4 64.97% 53.61% 52.92% 52.92% 

5 66.19% 56.26% 55.34% 55.34% 

6 67.82% 66.71% 65.79% 65.62% 

7 70.00% 69.06% 67.96% 67.89% 

8 74.14% 74.12% 73.85% 73.86% 

9 71.75% 71.69% 71.56% 71.56% 

10 70.70% 70.65% 70.45% 70.45% 

11 68.53% 68.50% 68.46% 68.46% 

12 69.58% 69.57% 69.54% 69.54% 

13 70.95% 70.94% 70.93% 70.93% 

14 70.28% 70.27% 70.27% 70.27% 

15 70.34% 70.35% 70.35% 70.35% 

Table 4. Recommendation performance with various templates settings 

4.4 Comparative Evaluation Results 

To evaluate the performances of the proposed approach (SPIE), we use the traditional collaborative 

filtering approach (CF), a widely used recommendation technique, as the performance benchmark. 

We set support of GSP as 0.2 and the number of selected templates for recommendation as 10 for 

SPIE. For CF, we set the number of neighbors as 3 according to the parameter tuning experience on 

the same dataset (i.e., MovieLens) based on a recommendation research related to collaborative 

filtering (Cheng etc., 2011). Meanwhile, both techniques employ Top-k (k=3) strategy to generate 

recommendation contents. The comparative evaluation results are shown in Table 5. 

We adopted a two-tailed T test to assess the diversity of two techniques on recommendation 

performance, the unveiled result is that all the comparison results of p-value are less than 0.01 and 

close to 0. The statistical results show that SPIE significantly outperforms CF on recommendation 

precision on various item cluster settings. In summary, the results have strongly suggested that our 

proposed approach does improve recommendation accuracy with users’ interest change pattern. 

Besides, with this approach, recommendation would not be easily misguided simply  because the 

basis of some preferences at a latest timestamp as traditional collaborative filtering approach does. 

Moreover, our approach also considers the item heterogeneities such as the preferences on the 

irrelevant items (i.e., the items with dissimilar contents) will not be utilized. As a result, our proposed 

approach avoids utilizing unreliable preferences which might have decreased the recommendation 

accuracy. 

 
Technique 

 

Item cluster 
SPIE CF 

4 52.92% 50.33% 

5 55.34% 48.14% 

6 65.62% 55.15% 

7 67.89% 58.41% 

8 73.86% 62.71% 



9 71.56% 63.46% 

10 70.45% 62.16% 

11 68.46% 64.71% 

12 69.54% 64.84% 

13 70.93% 64.41% 

14 70.27% 61.80% 

15 70.35% 62.36% 

Table 5 Comparative evaluation results of SPIE and CF 

5 CONCLUSION 

Collaborative recommendation is one of the most successful and most widely adopted 

recommendation techniques. The traditional collaborative recommendation technique assumes that 

customers’ preferences obtained at different timestamps would have had the same value of importance.  

However, the fact that customers preference might change over time has not been in its consideration. 

Consequently, traditional collaborative technique fails to fully utilize the changing information of 

customers’ purchase interest that is used in predicting customers’ preference items. Therefore, we 

proposed the SPIE technique based on users’ interest evolution patterns. The SPIE can extract the 

customer’s dynamic preference profile from their historical purchase records to describe how their 

preferences change at different timestamps. Meanwhile, the SPIE also uses item clustering method to 

solve the sparsity problem on traditional collaborative recommendation technique. In this study, we 

adopted MovieLens datasets to implement empirical evaluation. The results of the empirical 

evaluation showed that the application of users’ interest evolution patterns could significantly 

improve the recommendation process. Thus, SPIE’s recommendation performance is better than CF’s 

in precision. The result of this research also verified the assumption that the use of changes in 

customers’ preferences will enhance the performance of recommendation system.  
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