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Abstract  

As a new developed marketing strategy in recent years, viral marketing attracts great attention from 

scholars and enterprises. Many enterprises try to adopt it for marking new product in order to greatly 

improve large sales and to quickly recoup the cost. But how marketing efficiency is actually? How 

fast marketing propagating speed is on earth? Especially for a given deadline, can the enterprise 

predict the sales when viral marketing is used? In this paper, a predicting method based on deadline 

graph is proposed to evaluate the viral marketing efficiency within given deadline. Specifically, two 

methods are first proposed to generate deadline graph, respectively Shortest-Distance methods and 

Time-Iteration method, based on which, a Reverse Tree method is exploited to predict the activated 

(buying) probability of the users. A lot of experiments are made to test our proposed method by using 

three datasets, respectively Twitter, Friendster and Random. The experiment results clearly show that 

deadline graph is a very key and necessary technique for evaluating viral marketing propagating 

efficiency within given deadline since overwhelming advantages over traditional method are gained 

by the method based on deadline graph in our experiment. 

 

Keywords: Viral Marketing, Social Network, Information Diffusion, Social Commerce, Influence 

Delay 

 



 

 

1 INTRODUCTION 

In recent years, social network quickly are developed, such as Facebook, Twitter et al. A lot of 

applications based on social networks are explored. As one of applications based on social network, 

viral marketing has received a great deal of attention from scholars and enterprises (Leskovec et al. 

2006; Cao et al. 2009; Li et al. 2010). In viral marketing, users are encouraged to recommend 

products to their friends, who would also recommend it to other friends, so that the marketing 

information is propagated like a contagious disease or a computer virus.  

Although a lot of studies are made, there still have some key questions to be answered in practice 

application. For example, how to accurately evaluate its marketing efficiency? Especially, how to 

evaluate the efficiency within a limit time span? The evaluation is very important and key when the 

enterprise decides whether the viral marketing is used. In the following, a research scenario is first 

given in order to describe our research issue and motivation.  

Scenario Background 

Tom is a marketing manager employed in a company. One day, one of his friends talked with him 

about viral marketing developed in recent years. As a senior marketing manager, he realizes viral 

marketing is a very important market strategy and hope it is used in his company. Next day, he 

come to his boss’ office and suggests it to his boss for marketing a new kind of cell phone recently 

developed by their company. Their detailed conversation is shown as in following. 

A Conversation Between A Boss and Marketing Manager 

Tom: Boss, recently viral marketing is very hot and popular as a novel marketing strategy for new 

product. I strongly suggest that our company use it for marketing the new kind of recently 

developed cell phone by our company.  

Boss: How good is it? Why it is so hot? Can you quickly detail it? 

Tom: Though viral marketing strategy, starting from some influential users (seed users), then by 

spreading from 1 to 10, and 10 to 100, marketing information about new cell phone can be 

quickly spread, and we will quickly marketing it and gain high profit.  

Boss: It sounds VERY GOOD! Our company will quickly recoup the cost within very short time. 

The capital turnover question will be resolved in our company. (Boss is very EXCITING)... 

(But after being exciting for two minutes, the boss say) It is really so good? (Boss is 

pondering and has some doubt about viral marketing.)  

Tom: (Notice his boss has some doubt, he also not so confident as before, but he still say) Maybe 

it is not so quick as we imagine, but I guess it should be very quick. 

Boss: Don’t guess!!!(It seem that the boss got a little angry, then say) Can you evaluate and 

predict marketing efficient before it is used? For example, can you tell me that after half a 

year when the marketing is used, how many products will be bought?  

Tom: Let me think more carefully… 

Figure 1. An Example for Research Scenario 

In this paper, we try to develop a predicting method on evaluating viral marketing efficiency within a 

given time span in order to help Tom to answer the question proposed by his boss. In order to do it, in 

this paper, the concept on influence time is proposed to reflect the delay of influence propagating 

from a user to another user. Then influence propagating graph with influence time is build. Two 

methods are developed to generate deadline graph and a method is proposed to predict the influence 

level of node user. Based on it, evaluation on viral marketing efficiency within deadline constraint is 

implemented.  



 

 

Although it is a fact that seed uses make great effect on viral marketing efficiency, it is not be studied 

in this paper since a lot of researches are made about how to select seed users to maximize influence 

(Kempe et al. 2003; Leskovec et al. 2007; Chen et al. 2012) . In this paper, we only focus on 

evaluating the marketing propagating efficiency within given deadline when seed uses are selected.  

The remaining parts of the paper are organized as follows. Related work is surveyed in next section. 

In section 3, influence propagation graph with influence time and linear threshold propagation model 

in viral marketing are introduced. In section 4, two methods are proposed to generate deadline graph, 

respectively Shortest-Distance method Time- Iteration method. In section 5, Reverse Tree algorithm 

is exploited to predict activated probability of node user. In section 6, experiments are performed to 

test the proposed method. Finally, conclusions are drawn and directions for future research are 

discussed. 

2 RELATED WORKS 

Viral marketing is a new marketing method that takes advantage of electronic communications (e.g., 

email) and social networks (e.g., Facebook and MySpace) to trigger cascade adoptions throughout the 

internet (Leskovec et al. 2006; Bruyn and Lilien 2008; Cao et al. 2009; Li et al. 2010). It is a very 

controversial field encompassing influence propagation graph, propagating modeling (Kempe et al. 

2003; Leskovec et al. 2006), discovery of influential users (Goyal et al. 2008; Li et al. 2010; Trusov et 

al. 2010), pricing strategies (Arthur et al. 2009; Immorlica and Mirrokni 2010), and influence 

maximization (Wei et al. 2012). Influence propagation graph (Kempe et al. 2003; Bruyn and Lilien 

2008; Grabisch and Rusinowska 2008). Leskovec et al. (2006) first built an influence propagation 

graph (IPG) based on users’ recommendation behaviors. Many succeeding studies are based on this 

directed graph (Goyal et al. 2008; Arthur et al. 2009; Andrew and Toubia 2010).   

Another key element is the propagation model in viral marketing, which describes how marketing 

information is transmitted from seed users to other users. Independent Cascade Model (IC) and linear 

threshold (LT) are two of the most basic and widely studied propagation models today. The 

independent cascade (IC) model proposed by Kempe et al. (2003) is the most widely used model of 

viral marketing. Li et al.(2012) propose k-order propagation model in the context of viral marketing, 

which extends IC model. 

Although a lot of researches on viral marketing are made, influence delay is considered in very few 

researches. However it is key element to predict the viral marketing propagating efficiency. Without 

consideration of influence delay, it is impossible to evaluate marketing propagating efficiency. In fact, 

the time-delay phenomenon in information diffusion has been explored in statistical physics. Iribarren 

and Moro (2009) observed from a large-scale Internet viral marketing experiment in Europe that the 

dynamics of information diffusion are controlled by the heterogeneity of human activities. More 

recently, using time stamped phone call records, Karsai et al. (2011) found that the spreading speed of 

information on social networks is much slower than one may expect, due to various kinds of 

correlations, such as community structures in the graph, weight-topology correlations, and busty event 

on single edges.  

Most similar to my research, Wei et al.(2012) extend Independent Cascade model by incorporating 

time-delayed influence diffusion, and proposed Independent Cascade with Meeting events(IC-M). In 

IC-M model, each edge         is also associated with a meeting probability m(u, v). But it is 

impossible to predict the propagating spread within a given time span when meeting probability is 

only used. In fact, influence delay is not only associated to the probability that two users meet, but 

also related to user’s characteristic and other factors. The most greatest difference from the research 

by Wei et al.(2012) is that influence time is used to describe the influence delay from a user to another 

user in viral marketing, which makes possible to predict propagating spread within given deadline. 

For example, we can predict the propagating spread after two months since viral marketing starts. The 

second difference from the research by Wei et al.(2012) is that our research focus on linear threshold 

model while their research focus on independent cascade model. 



 

 

3 VIRAL MARKETING PROPAGATING GRAPH WITH 

INFLUENCE TIME 

3.1 Influence Propagating Graph 

In viral marketing, the purchasing decisions of users are heavily influenced by recommendations and 

referrals from their friends. The influence relationship among users can result in influence 

propagation. Theoretically, it is almost impossible to obtain completely accurate data to describe the 

influence relationship among users. However, such a relationship can be estimated through users’ 

interactive behavior. For example, if Tom always buys a product after knowing that his friend John 

has bought the same product, we can believe that Tom is influenced by John in purchasing certain 

products. In particular, John has an influence on Tom if the following two conditions are satisfied: (i) 

Tom and John have been friends in a social network before they buy a product, and (ii) the time of 

John’s purchase of the product is earlier than that of Tom’s. When many products are involved, we 

can reasonably believe that John has a strong influence on Tom. Based on the above idea, the 

influence propagation graph can be built, as detailed by Leskovec et al. (2007). 

3.2 Influence Propagating Graph with Influence Time  

Including influence probability of a node user on another, in this paper, influence time is incorporated 

to propagating graph. Influence time is a time span which is spent for influence successfully 

propagating from a user to another user, such as two months, three day, five hours etc. I. It could be 

related to the confidence degree of a user to another user, user’ characteristic, and product 

characteristic.  

Considering the influence time, influence propagating graph in this paper is built to a directed graph 

with two edge values, Graph G=(U,E,P,T), where the vertices here the vertices         
          represent individuals, the edges                         represent relationships, 

the orientations of the edges indicate the direction of influence, and                  denotes 

the influence probability of an individual’s influence on another individual while               
   denotes the influence time of an individual’s influence on another individual, as shown in Figure 2. 

Although they are related, they reflect different influence relationship from different views.        

reflects the influence delay of user u on user v while        reflects the influence strength of user u 

on user v.  

 

Figure 2. Viral Marketing Propagating Graph with Influence Time 

3.3 Linear Threshold Propagating Model 

In this paper, Linear Threshold model is a widely used propagating model in viral marketing, where 

user’s influence is propagated by activated users though activating their inactive out-neighbor users. 



 

 

Given that an inactive user u and the set of its activated in-neighbors          , in order to predict 

whether user u will be activated, we need to determine               computed as following 

                ∏         

           

 

Once it is hold that                 , where   is a given activation threshold of user u, which 

means that user u is activated. An example is shown in Figure 3.  

 

Figure 3. An Example of Linear Threshold Model 

4 GENERATE DEADLINE GRAPH 

In order to conveniently describe the proposed method, some definitions are first given in the 

following. Then two methods are proposed to generate deadline graph. 

4.1 Definition 

Definition 1 Deadline:  Deadline is a given special time when viral marketing propagating stops. As 

shown in research scenario described in section 1, viral marketing propagating is often considered 

within a limited time span. In this paper, we call the final time when viral marketing propagating is 

considered as deadline, denoted as  .  

In this paper, we also called the time span from starting time to final time as deadline. In order to 

predict the viral marketing propagating efficiency within a given deadline  , it is important to generate 

candidate nodes and deadline graph based given deadline  . 

Definition 2 Candidate Node: Given a certain deadline  , candidate nodes is all nodes who can arrive 

at all or part of seed nodes S within deadline  . All nodes who are not candidate nodes will not be 

considered in predict viral marketing efficiency within deadline . 

Definition 3 Deadline Graph:  Given a certain deadline  , deadline graph is sub-graph of a viral 

marketing propagating graph G based on the deadline  , whose nodes consist of candidate nodes, and 

whose edge come from graph G, denoted as   . In order to generate deadline graph, it is most key 

step to find the candidate nodes out from all nodes.  

Considering the fact that influence propagating between two nodes need to spent time, a node will be 

deleted if the influence of seed nodes can arrive at the node within a given deadline. In the following, 

two methods are proposed to find candidate nodes for generating deadline graph, respectively 

Shortest-Distance method and Time-Iteration method. Although both influence probability        
and influence time       exist in propagating graph, only influence time is used to generate deadline 

graph.  



 

 

4.2 Shortest-Distance Method for Generating Deadline Graph 

In Shortest-Distance method, shortest distance of all seed nodes from seed nodes is firstly computed. 

Since Dijkstra is widely used method to compute shortest distance between two nodes in a graph. In 

this paper, the method is also employed. Firstly, for each no-seed node u, its shortest distance from 

seed nodes is computed using by Dijkstra method, noted as                             . Based 

on       , candidate nodes will generated according the following rule. If        is lower or equal to 

deadline  , then node u will be added into candidate nodes. Detailed algorithm is shown in Figure 4. 

Shortest-Distance Algorithm 

Input:  Graph G=(U, E, P, T), |U|=N, Seed_Users: S, Deadline:   

Output:  Deadline Graph:    

1. For each  s  S  

2.     Checked[s] ←TRUE;  D s[ ]←0;    Push(Q,s);  

3. End For 

4. For each      𝑆  

5.     Checked[u] ←No;   D s[ ] ←+∞;     previous[u] ← undefined; 

6. End For 

7. Repeat 

8.     u←Pop(Q)； 

9.     For each   Nout u   
10.          If v is not Q then Push(Q,v); 

11.          If D s[ ] > D s[ ] +         

12.              D s[ ] ← D s[ ]] +        ;    previous[v] ← u;  

13.          End If 

14.     End For 

15.     Checked[u] ←TRUE; 

16. Until Q is NULL; 

17. For each  u     

18.     If           then  Candidate_Nodes←{u} 

19. End For 

20.   ←Generating_Deadline_Graph(G, Candidate_Nodes) 

Figure 4. Shortest-Distance Algorithm 

All nodes whose shortest distance from all seed nodes is larger than deadline will be candidate nodes. 

As shown in Table 1, including three seed nodes A, G and H, there are another 10 candidate nodes, 

respectively B, C, D, E, F, I, J, K, M and N. Rest 7 nodes and their edges will be deleted from original 

propagating graph. As shown in Figure 5, the part within red dotted line circle is deadline graph with 

deadline   . 

  Seed Nodes 

  

All Nodes 
A G H 

Candidate 

Nodes 

Seed Nodes 

  

All Nodes 
A G H 

Candidate 

Nodes 

A 0 +∞ +∞ Yes K 5 4 5 Yes 

B 1 +∞ +∞ Yes M 7 6 7 Yes 

C 2 3 +∞ Yes N 7 6 6 Yes 

D 2 +∞ +∞ Yes O 7 +∞ +∞ No 

E 3 2 3 Yes P 7 +∞ +∞ No 

F 4 3 4 Yes Q 9 8 9 No 

G 1 0 +∞ Yes R 7 8 +∞ No 

H 2 1 0 Yes S 11 10 11 No 

I 3 2 2 Yes T 9 8 7 No 



 

 

J 4 3 2 Yes U 9 8 9 No 

Table 1. Candidate Node Based on Shortest-Distance from Seed Nodes (   ) 

 
Figure 5. Deadline Graph based on Shortest-Distance (   ) 

4.3 Time-Iteration Method for Generating Deadline Graph 

Different from Shortest-Distance method, in Time-Iteration method, candidate node for deadline 

graph is generated by repeatedly adding nodes day by day until deadline is due. Detailed algorithm is 

shown in Figure 6, where            means all nodes at which influence of the seed nodes can reach, 

which   s    t      set  s    .             denotes the time which be spent from seed node s to 

another node x, which it    t       s set  s  .  

Time-Iteration Algorithm 

Input:  Graph G=(V, E, P, T), |V|=N, Seed_Users: S, Deadline:   

Output:  Deadline Graph:    

1. For each   𝑆  

2.             ←      
3.   For each    V  

4.                    

5.   End For 

6. End For 

7. For each   𝑆  

8.   For t 𝑚   →    
9.     For each              

10.        For each   Nout    𝑆               
11.                          ←       +             

12.              If            ≤   𝑚  Then            ←           ∪     
13.        End For 

14.     End For 

15.   End For 

16. End For 

17.   ←   ′:  𝑉′  ′  ′  ′  𝑉′  ⋃                 ′ ⊂    

Figure 6. Time-Iteration Algorithm 

In above algorithm, if        s v ≤  , it means it is possible that node v arrive seed node s. These 

nodes will be added into           . In this algorithm, steps from line 1 to line 6 are used to initially 

set            and            . From line 8 to line 16, the out-neighbor nodes of each seed node 

will be iteratively extend and checked day by day until deadline is due. One deadline is due, 

           will be got. The union of Arrival nodes of all seed nodes is candidate nodes. 



 

 

Let’s look an example again as shown in Figure 5. Also supposed that deadline is set as     days. 

As done by Time-Iteration algorithm, starting from seed nodes, seed node A can arrive at node A and 

B after one day while it can arrive node A, B, C and D after two days. After deadline, the seed node A 

can arrive 6 nodes, that is to say,            {A、B、C、D、F、E}, as shown in Table 2. 

 

Time                                  

0 A G H 

1 A、B G H 

2 A、B、C、D G、I、E H、I、J 

3 A、B、C、D G、I、E、F、J、C H、I、J、E、 

4 A、B、C、D、F G、I、E、F、J、C、K H、I、J、E、F 

5 A、B、C、D、F G、I、E、F、J、C、K、M H、I、J、E、F、K 

6 A、B、C、D、F、E G、I、E、F、J、C、K、M、N H、I、J、E、F、K、N 

Candidate Nodes {A, B, C, D, E, F, G, H, I, J, K, L, M, N}=          ∪           ∪
           

Table 2. Arrival Nodes of Seed Node A Within Deadline Based on Time-Iteration  

5 REVERSE TREE ALGORITHMS  

In this section, a Reverse Tree algorithm (RTA) is proposed to compute the activated level of all 

nodes in deadline graph. In order to do it, reverse tree for each candidate node is first build, then 

activated level is reversely computed based the activated level of its son nodes . 

 

Figure 7. Reverse Tree Rooted with Node D  

5.1 Build Reverse Tree for Candidate Node 

In order to build reverse tree for each candidate node, the candidate node is added as tree boot of its 

reverse tree, then its in-neighbor nodes is added as its son nodes. For conveniently, each node in 

reverse tree is denoted as the format AP(Node, Latest_Time(Node)), as shown in Figure 7 where AP 

mean activated probability, Latest_Time(Node) means the most latest activated time when current 

node make influence on its father node in reverse node, computed as following equation, 

         𝑚     {
                                                                                       

         𝑚 (         )                                       
 



 

 

For example, supposed deadline    , in reverse tree rooted by candidate node D, the node D is 

denoted as        , and its son node B will be denoted as A       because the time be delayed 3 

day when the influence of node B arrive at node D. That is to say, if activated probability of node D 

within deadline wants to be computed, then activated probability of its son node B within 1 day (4 

days – 3 days) must be firstly computed. In fact, in the example, in order to compute        , we 

need to compute        ,        ,        ,                and           Starting from 

candidate node, its son nodes are travelled by breadth-first-search until the most latest activated time 

of a node is zero or negative.  

5.2 Computing Activated Probability Based on Reverse Tree  

Once the reverse tree is built for a candidate node, its activated probability within deadline can be 

computed as following. 

        

{
 
 

 
 

                                                                                            𝑆     
                                                                                             𝑆     
                                                                                             𝑆   ≤  

  ∏ (    (          )      )

        

  S  t   

 

Where        mean all in-neighbor node of node u in deadline graph,        mean influence 

time while        denotes influence probability. Detailed algorithm is described in Figure 8.  

Reverse Tree Algorithm 

Input:  Network    (𝑉′       ), |V|=N, Seed Users: S, Threshold: , Deadline:   

Output: Activated User: Activated_User 

1   ct v ted User ← ∅ 

2 Foreach u  V′ do 

3    IF u  S       I f ro s ←   

4    Else     I f ro s ←   

5 End do 

6 Foreach u  V′  S do 

7        u t ←   ∏ (    (w t  T w u )  w u )w Nin u  /* recursive*/ 

8     I f ro u ←    u t  

9     If I f ro u    

10          ct v ted User ←  ct v ted User ∪  u  
11 End do 

Figure 8. Reverse Tree Algorithm 

6 EXPERIMENTS 

In this section, two group experiments are made to show the performance of proposed methods for 

viral marketing propagating with deadline. The first group experiment is made to test and compare the 

performance of Time-Iteration method and Shortest-Distance method for generating deadline graph. 

The second group experiment is made to check whether if performance will be improved when 

deadline graph is considered. Although based on deadline graph, only candidate nodes, not all nodes, 

are needed to predict their activating level, which can save much time, but it spend a lot of time for 

generating deadline graph. We want to know it is worth generating deadline graph.  

6.1 Experiment Dataset 

In this paper, three datasets are used to make experiment. Twitter is a social news website. It can be 

viewed as a hybrid of email, instant messaging and SMS messaging all rolled into one neat and simple 

package. It's a new and easy way to discover the latest news related to subjects you care about. In the 

dataset, there are 11316811 nodes and 85331846 edges. Friendster is a social networking website. 



 

 

The service allows users to contact other members, maintain those contacts, and share online content 

and media with those contacts. This is the data set crawled by Stephen Booher 

(stephen.booher@asu.edu) on Nov, 2010 from Friendster. It includes 100199 nodes and 14067887 

edges. In addition to Twitter and Friendster dataset, a Random dataset is randomly generated for our 

experiments.  

 

Experiment Dataset Num. of Nodes Num. of Edges Ave. Influ. Time 

Experiment 1 

Twitter_1000 1000 14015 2 

Friendster_1000 1000 14268 4 

Random_1000 1000 14482 8 

Experiment 2 

Random_500 500 3720 4 

Random_2000 2000 22425 4 

Random_5000 5000 69400 4 

Table 3. Experiment Datasets 

Considering that if the edge is too few, it is hard to propagate from seed nodes, so we extract sub-

dataset with 1000 user nodes including dense edge from both original Twitter and Friendster dataset. 

Randomly generated Random dataset also includes 1000 nodes. They are named according to the size, 

respectively named as Twitter_1000, Friendster_1000 and Random_1000. For each dataset, influence 

probability and influence time corresponding to each edge are generated randomly. Influence 

probability is set ranging from 0 to 1. In order to show the effect of influence delay on influence 

propagating, different influence delay are given to the edges of above three dataset. In Twitter_1000 

dataset, average influence time of edges is equal to 2 (days), while average influence time of edges in 

Friendster_1000 and Random_1000 are respectively 4 (days) and 8 (days).  In addition, another three 

Random dataset with different size are generated for check the effect of deadline graph when it is used 

or not. They are named according to the size, respectively named as Random_500, Random_2000 and 

Random_5000, which means they include respectively 500, 2000 and 5000 nodes. Average influence 

time of the edges in these three datasets is 4 days. 

6.2 Experiment Setup 

In the first group experiment, we guess that, including the average influence delay, the different 

number of seed nodes can also make effect on the performance of proposed method. So, the 

performancef0r for of proposed method in each dataset is check when different numbers of seed users 

is given. In our experiment, the number of seed users is respectively 2, 5, and 10. In each experiment, 

seed nodes are randomly chosen. For each number of seed users, we choose randomly and make 

experiment five times, and average value of experiment result in five times experiment is seen as final 

experiment result. In addition, we test the performance for three different deadlines, respectively 3 

days, 6 days and 9 days. So, in the first group experiment, altogether 135 experiments are made. In 

each experiment, we show the spent time and the number of candidate nodes for deadline graph. 

 

Experiment 1 Experiment 2 

Three Datasets 

Twitter_1000 

Friendster_1000 

Random_1000 

Three Datasets 

Random_500 

Random_2000 

Random_5000 

Five Numbers of Seeds 2, 5, 10 Five Numbers of Seeds 2, 5, 10 

Times of Choosing Seeds 5 Times of Choosing Seeds 5 

Three Different Deadlines 3, 6, 9 Fixed Deadlines 6 



 

 

Propagating Model Linear Threshold Propagating Model Linear Threshold 

Threshold  =0.3 Threshold  =0.3 

Table 4. Experiment Setup 

Based on the results from the first group experiments, in the second group experiment, in order to 

show advantage of deadline graph in predicting propagating spread with deadline, the one with worse 

performance is selected from Time-Iteration and Shortest-Distance as the baseline of method based on 

deadline graph. It is used to compare with the original method where no deadline graph is generated. 

For this experiment, three randomly generated dataset with different size are used, respectively 

Random_500, Random_2000 and Random_5000. Same as the first group experiment, experiments for 

five numbers of seeds are made, and five times experiments are made for each number of seeds. Only 

experiments for a fixed deadline ( =6 days) are made. So, there altogether 45 experiments are made. 

In all experiment, linear threshold model with threshold  =0.3 is used. The program for all 

experiments are wrote in JAVA and run in a laptop computer with Intel Core i5 2.50Ghz CPU and 4G 

Memory.  

6.3 Experiment Result 

6.3.1 Comparing of Time-Iteration with Shortest-Distance for Deadline Graph 

Detail experiment result is shown in Table 5. Seeing from the experiments result, we can get the 

following findings. First, same candidate nodes are generated by Time-Iteration and Shortest-Distance 

methods. When deadline is larger, more candidate nodes are generated for two methods. Secondly, 

shortest-Distance method has an advantage over Time-Iteration method when deadline is large, as 

shown for  =6 and  =9 in Table 5. And larger the deadline is, more obvious the advantage is. But 

when deadline is small, its disadvantage is obvious. As shown in Table 5(a), running time of Time-

Iteration is 0.008 second while running time of Shortest-Distance is 0.015 second. It is explained that 

when Time-Iteration method is used, all nodes will be checked at each time unit, so the computing 

complex increase with increasing of deadline. On the contrary, for Shortest-Distance method, the 

increasing does not scale up the deadline. Considering the deadline could be often larger in practical 

application, it is reasonable to conclude that Shortest-Distance method is better than Time-Iteration 

method on the whole.  

 

(a) For Twitter_1000 Dataset (Ave. Influ. Time=2 days) 

Method 
Deadline  =3 days  =6 days  =9 days 

Num of Seeds 2 5 10 2 5 10 2 5 10 

Time 

Iteration 

Running time  (s) 0.008 0.013 0.028 0.024 0.042 0.075 0.024 0.047 0.088 

Num of Candidate Nodes 368 756 930 1000 1000 1000 1000 1000 1000 

Shortest 

Distance 

Running time  (s) 0.015 0.028 0.051 0.019 0.027 0.055 0.017 0.039 0.055 

Num of Candidate Nodes 368 756 930 1000 1000 1000 1000 1000 1000 

(b) For Friendster_1000 Dataset (Ave. Influ. Time=4 days) 

Method 
Deadline  =3 days  =6 days  =9 days 

Num of Seeds 2 5 10 2 5 10 2 5 10 

Time 

Iteration 

Running time  (s) 0.004 0.006 0.009 0.025 0.054 0.095 0.044 0.088 0.169 

Num of Candidate Nodes 87 190 322 872 961 987 1000 1000 1000 

Shortest 

Distance 

Running time  (s) 0.011 0.027 0.055 0.015 0.029 0.060 0.016 0.032 0.061 

Num of Candidate Nodes 87 190 322 872 961 987 1000 1000 1000 

(c) For Random_1000 Dataset (Ave. Influ. Time=8 days) 

Method Deadline  =3 days  =6 days  =9 days 



 

 

Num of Seeds 2 5 10 2 5 10 2 5 10 

Time 

Iteration 

Running time  (s) 0.003 0.004 0.006 0.012 0.017 0.033 0.048 0.096 0.155 

Num of Candidate Nodes 36 59 104 241 352 511 765 852 932 

Shortest 

Distance 

Running time  (s) 0.011 0.026 0.062 0.015 0.034 0.050 0.018 0.033 0.065 

Num of Candidate Nodes 36 59 104 241 352 511 765 852 932 

 Table 5. Comparing of Time-Iteration with Shortest-Distance for Deadline Graph  

6.3.2 Checking the Effect of Deadline Graph 

In this group experiment, we want to test the effect of deadline graph. Based on the above experiment, 

we select Time-Iteration method as the baseline method of deadline graph to compare when deadline 

graph method is not used. Here, we shortly denoted the former as DL_Yes while the later is denoted as 

DL_No. As shown in Table 6, it is clear that DL_Yes method has overwhelming advantage over 

DL_No method at all satiations. And the advantage is more obvious when ratio of nodes who need to 

be predicted to original nodes is smaller, as shown for Num_of_Nodes=500, Num_of_Seeds=2 where 

the time is saved 95% by DL_Yes method than by DL_No. The experiment result firmly shows that it 

is very key and necessary step to generate deadline graph for predicting viral marketing with deadline. 

 

Opinion 

Datasets Random_500 Random _2000 Random _5000 

Num of Nodes 500 2000 5000 

Num of Seeds 2 5 10 2 5 10 2 5 10 

DL_No 
Running time (s) 0.043 0.037 0.032 10.030 9.479 9.688 132.996 130.162 122.654 

Num. of Pred_Nodes 500 500 500 2000 2000 2000 5000 5000 5000 

DL_Yes 
Running time (s) 0.002 0.009 0.028 0.401 3.127 6.189 5.179 35.964 73.372 

Num. of Pred_Nodes 186 299 413 849 1402 1683 2152 3494 4175 

Saved Time (s) 0.041 0.028 0.004 9.629 6.352 3.499 127.817 94.198 49.282 

Saved Percentage 95% 75% 13% 96% 67% 36% 96% 72% 40% 

Table 6. Results when Deadline Graph Is Used or Not Used (for  =6) 

7 CONCLUSIONS 

Viral marketing is an important marketing strategy developed during recent years, where the users are 

encouraged to recommend products to their friends, who would also recommend it to other friends, so 

that the marketing information is quickly propagated. In this paper, viral marketing propagating 

spread with given time span is predicted. In order to do it, deadline graph is introduced, and two 

methods are proposed to generate deadline graph. A reverse tree method is proposed to predict the 

activated probability of the node users. A lot of experiments are made and firmly show that deadline 

graph is a very key and necessary step to evaluate viral marketing propagating efficiency within 

deadline. In the future, larger dataset will be used to test the performance of proposed method. A viral 

marketing simulating and predicting system will be developed based the proposed method for 

practical application.  
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