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Abstract  
Because smartphones are now ubiquitous, it becomes for the first time economically feasible to 
operationalize personalized marketing measures also for physical grocery retailing. A particularly 
interesting and high value target group in this domain is the one of variety seeking, since this group is 
most likely to respond positively to new offers and recommendations. However, present methods in 
identifying variety seekers rely on questionnaires and ignore that variety seeking may differ between 
product categories. In this paper, we present a model for measuring variety seeking behavior on a 
high level of granularity, based on a consumer’s purchases in individual product categories. Our 
study has three main contributions. Firstly, we contribute to the customer segmentation research 
stream by providing a novel way for identifying customers’ overall extent of variety seeking as well as 
their specific variety seeking at a category level. Second, for the most important retail categories we 
characterize the extent of variety seeking and provide a data-driven approach that is easy to 
operationalize by practitioners – especially for deploying large-scale personalized marketing 
measures in social or mobile commerce in physical stores. Finally, we provide a method to reconcile 
the highly granular category-level results with existing per person typologies. 

Keywords: Retail, e-commerce, Consumer Segmentation, Variety Seeking. 
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1 Introduction 

It is widely accepted in online e-commerce that granular marketing is more effective than applying the 
same marketing policy to all consumers (Jiang & Tuzhilin 2006; Changchien et al. 2004). Now with 
the increasing ubiquity of smartphones used in physical stores, it becomes for the first time 
technologically and economically feasible to operationalize personalized marketing also for physical 
retailing via mobile recommender systems (RS). The ability to offer the right product from the right 
category given a consumers’ individual preference requires a fine grained understanding of a 
consumer’s buying behavior. 

However, today in physical retailing, marketing methods mainly depend on typologies or classification 
schemes that segment consumers into different groups according to their overall characteristics 
(Ailawadi et al. 2001; Chandon et al. 2000; Urbany et al. 1996). A particularly interesting and high 
value target group is the one of variety seeking, since this group is most likely to respond positively to 
new offers. To identify these customers, the costly method of deploying questionnaires is often used 
(Garretson et al. 1998; Fisher et al. 2002; Kerin et al. 1992; Wakefield & Inman 2003; Dodds et al. 
1991; Voss et al. 2003; Trijp et al. 1996). However, this approach is not scalable; retailers cannot 
sustainably survey all of their consumers, and thus the standard marketing action is not 
personalization, but rather having all consumers receive the same promotion, typically a price cut. 
Furthermore, current questionnaire approaches neglect that the actual disposition of variety seeking of 
a person might in fact differ from product category to product category.  

Our study is thus motivated to address this gap by giving researchers and in-store retailers the ability 
to finely identify their variety seekers based on in-store purchasing data, and enable RS to use this 
insight for marketing action. As one of the first studies in this area, we present a model for a higher 
resolution classification scheme that allows for measuring a consumer’s different variety dispositions 
on a product category level (Section 3). In contrast to other models (reviewed in Section 2), it does not 
require explicitly stated preferences or motivations and is purely data-driven. It can be easily 
implemented by physical retailers with already available in-store point-of-sale (PoS) data and would 
allow for measuring changes in variety seeking dispositions almost in real-time (shown in Section 4).  

The key contributions of this paper are that we prove that current typologies neglect critical properties 
required for personalized marketing – especially in the context of mobile and social commerce. Also, 
we are one of the first studies to establish a stochastic counting-based model for high resolution 
variety seeking and validate the model fit with real PoS data of over 350,000 transactions (Section 4). 
Finally, we provide a method to reconcile the high resolution and data-driven approach with the 
currently dominant approach of using an aggregated variety typology per customer (Section 4). The 
result is a parsimonious model of variety seeking that can be estimated on observable consumer 
actions, rather than latent motivations, using only consumer purchasing data logged at the PoS  
(discussed in Section 5). Our work also complements current RS, which currently do not factor in 
consumer inclination for variety seeking at the level of individual product categories for their 
recommendation strategy. 

2 Related Work 

2.1 Marketing and IS Motivations for Studying Variety Seeking Behavior 

Out of the different possible questionnaire measures we would like to replicate in an information 
system (ex. such as an RS), we focus in this study on variety seeking behavior. Variety seeking is 
defined as the “biased behavioral response by some decision making unit to a specific item relative to 
previous responses within the same behavioral category, due to the utility inherent in variation per se, 
independent of the instrumental or functional value of the alternatives of items” (Trijp et al. 1996). In 
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other words, in addition to external circumstances (i.e. external situations like discounts, reviewed in 
McAlister & Pessemier (1982), or in stock-piling for future preference uncertainty, as reviewed in 
Kahn (1995)), there is an innate personal characteristic that defines the extent of variety seeking, and 
that this degree of variety seeking is related to the product category.  

This innate variety seeking has implications on other aspects of consumer behavior that is of relevant 
to retailers. For example, it was shown that consumers who pursued higher variety tend to increase 
overall consumption quantity (i.e. variety consumption has an additive rather than a substitutive effect) 
(Kahn & Wansink 2004; Simonson 1990; Read et al. 1995). Variety seekers also tend to be open to 
promotions (Ailawadi et al. 2001). As such, variety seekers form a potentially valuable group for 
individual segmentation and marketing initiatives delivered through smartphones. Identifying variety 
seekers would also be valuable to recommender systems, and complement existing paradigms in that 
field. Recommender systems (RS) are information systems that identify consumers’ product interests 
and preferences, either explicitly or implicitly, and make recommendations accordingly (Xiao & 
Benbasat 2007). Many RS attempt to offer consumers products which they have not yet tried (the 
“cross-sell” paradigm) (Adomavicius & Tuzhilin 2005; Schafer et al. 1999), an appeal to the 
consumer’s desire for variety. RS have focused mainly in the area of e-commerce (rather than physical 
grocery stores) and generate recommendations based on the content of what consumers have bought or 
what others have bought (the so called content-based vs. collaborative-based paradigm in RS; for a 
review see Adomavicius & Tuzhilin (2005) and Xiao & Benbasat (2007)). Content-based systems rely 
on the consumers’ purchase histories and the characteristics (represented as meta-data) of the bought 
products to infer the right recommendation (for example, recommending products with similar 
characteristics to ones bought frequently), while collaborative-based systems recommend products 
based on the purchasing histories of other customers who bought similar products (for example, 
recommending a product that others buy frequently and is similar to what you buy). Current research 
in content-based RS focuses on consumer profile building and expanding the set of product 
characteristics which RS algorithms can infer consumer preferences (Lops et al. 2011), to include also 
user-generated (i.e. collaborative) content like social tags (Shepitsen et al. 2008; Milicevic et al. 2010); 
These are dubbed hybrid methods since they are both collaborative and content-based (Burke 2002). 
However, while these methods try to estimate what products a consumer might like, as a 
methodological and research gap, they ignore the dispersion of the consumer’s purchases and hence 
the consumer’s variety seeking inclination, and also ignore for which product categories this would 
occur. Our approach addresses this and thus focuses on the consumer profile building phase of RS, and 
complements content-based systems by adding the valuable dimension of variety seeking. 

2.2 Questionnaire measures in Marketing and IS 

The tradition of psychometric questionnaire measures in physical retailing marketing research is well 
established; frameworks and measures exist for different dimensions of consumers’ shopping 
orientation, such as their price-quality orientation (Garretson et al. 1998; Fisher et al. 2002; Kerin et al. 
1992), their price sensitivity (Wakefield & Inman 2003; Dodds et al. 1991), their openness to useful 
vs. hedonic goods (Voss et al. 2003) and their extent of variety seeking (Trijp et al. 1996; Baumgartner 
& Steenkamp 1996). The majority of these frameworks and measures have been empirically verified 
against purchase intentions and in some cases, real purchase data (Baumgartner & Steenkamp 1996) to 
evaluate their predictive validity. Similarly, recent research in information systems (i.e. mobile 
shopping aids) have incorporated the influence of consumer beliefs on behavior (van der Heijden 
2006; Lee & Benbasat 2010; Kamis et al. 2008), as measured by questionnaire-based constructs.  

In spite of the ubiquity of questionnaires in both research and practice, the implementation problems 
are recognized, as evident by the body of research dealing with non-participation: these range from 
survey length reduction (Childers & O. C. Ferrell 1979; Bergkvist & Rossiter 2007) to methods of 
analyzing unanswered questions (Porter 2004; Bosnjak et al. 2005). As noted by Nulty (2008), 
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participation rate is roughly 30% for online surveys. As such, from an information systems point of 
view, there is a motivation for having a data-driven method of replicating select insights of the 
questionnaire measures. 

2.3 The Unit of Analysis for Variety Seeking 

In terms of the unit of analysis for variety seeking, until recently, past marketing studies have focused 
on variety seeking as a characteristic trait, independent of product categories (reviewed in Steenkamp 
& Baumgartner (1992)). The study by Trijp, Hoyer & J. Inman (1996) was an early attempt in 
developing a psychometric scale that defined the consumer’s extent of variety seeking with respect to 
a particular product category; however, as we will see in Section 4, since a typical grocery retailer can 
have several hundred distinct product categories, it is not yet possible to practically administer this 
questionnaire for every single product category for every single consumer. Nor has it been practically 
possible in the past to be able to take individual action at the product category level with this 
knowledge. Indeed, past empirical studies of variety seeking have limited their focus on arbitrary and 
often merely convenient samples of product purchase data available to the researchers; as such their 
insights on individual levels of variety are arguably not generalizable across all categories. For 
example, the study by Kahn et al. (1986) examined sandwich bags, wraps, margarine, cereals and soft 
drinks while the study by Trijp, Hoyer & J. Inman (1996) focused on beer, coffee, hand rolled tobacco 
and cigarettes, and finally the study by Trivedi (1999) focused on hypothetical purchases of cola. 
These could hardly be called representative samples of a consumer’s product space; indeed, there is an 
acknowledged research gap in investigating product-category influences on variety seeking (Roehm & 
Roehm 2004; Tang & Chin 2007; Michaelidou & Dibb 2009).  This gap becomes important with 
smartphones, since we are able to analyze and take marketing action at the granularity of consumers 
and product categories. In line with this, our approach will characterize individuals’ degree of variety 
seeking for the different product categories in which he shops in. 

2.4 Approaches in Enumerating Variety Seeking 

In this section we discuss some existing approaches to numerically model variety seeking and their 
appropriateness for our information system context. Our work is closest in application to the studies 
from Kumar & Trivedi 2006 and Trivedi (1999), where a variety index was defined for individuals, 
which described the variation in products a person bought in a product category at a given time. This 
was then combined with intensity – the number of purchases made in a product category – in order to 
identify customer typologies.  

However, there are two shortcomings with the Trivedi (1999) approach, which we aim to overcome in 
ours. The first is that the variety index comes from estimating a mathematical model that requires a 
consumer’s stated preference of the different brands; while this could be solicited from a consumer via 
technology (i.e. a smartphone survey) for some categories, it would be still difficult to scale this for all 
categories. The second is that the model was estimated in a controlled experimental setting for one 
product category (soft drinks), which runs counter to our objective of having a lightweight and 
generalizable description of consumer variety seeking for different categories. The Trivedi model 
conceptually belongs to what McAlister & Pessemier (1982) notes as the class of models based on 
attribute satiation. The idea is that by purchasing and consuming a brand, the consumer is “satiated” 
with that brand’s attributes, and therefore seeks out a much different brands. However, this class of 
model is not easily implemented in practice since consumer perception of attributes is latent and 
unobservable to the retailer. Accordingly, our approach aims to avoid such requirements in modelling 
and estimation. 

A further class of models for variety seeking are the first order and second order models, which model 
variety seeking as a changing with time according two competing processes of variety-seeking and 
inertia seeking, with a state dependency on the most recent purchase (Bawa 1990; Kahn et al. 1986)). 
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These models differ from earlier zero-order models which assume an individual’s variety seeking is 
state-invariant (Bass et al. 1984; Bass et al. 1976). Although the high order models provide a finer 
granular description of individual variety seeking, in practice one has to assume a two brand market in 
order to assure enough degrees of freedom for estimating the model parameters (Bawa 1990; Kahn et 
al. 1986); as such their model is not appropriate for our multi-brand reality. Furthermore, Bawa (1990) 
showed that in practice, the descriptive power of the models did not differ much by assuming a higher 
order; the main advantage of a high order model was added research insight in the underlying 
mechanisms of variety seeking. As such, our approach will be similar in spirit to the zero-order 
models.  

3 Research Framework 

Given the aforementioned conceptual motivation, our work aims to develop a method for estimating 
an individual’s extent of variety seeking in a given product category. We thus need to answer the 
question: “How many unique products must a customer buy in a product category in a given period of 
time to be considered a variety seeker?” To address this, we employ two assumptions: 

1. Consumers’ extent of variety seeking in a given product category can be described with a 
zero-order model, that is, independent of state (i.e. previous purchases).  

2. We assume also that a consumer’s pattern of variety seeking in a given product category can 
be described by counting the number of distinct products that they have bought in a period of 
time, conditioned against the extent of variety exhibited by other consumers.  

In the first assumption, it was noted by Bawa (1990) that in practice, the descriptive power of the 
models did not differ much by assuming a higher order (i.e. state dependence); the main advantage of 
a high order model was added research insight in the underlying mechanisms of variety seeking. 
Hence, we assume a zero order model. In the second assumption, we propose conditioning the variety 
seeking on the product category, the time period and the behavior of others in the population because 
in the domain of grocery retailing, it is known that the inter-purchase time (and hence, frequency and 
variety) of product purchases varies by product category (Rhee & Bell 2002; Leszczyc et al. 2004). 
For example, a product like milk may have only one to two substitutes and on average a consumer 
may stick to one variant; as such, a person buying three varieties of milk would be considered variety 
seeking, whereas for fruit yoghurt, buying three varieties per year might not be considered to be 
variety seeking, if on average people buy eight distinct flavors per year out of twenty available. Thus, 
by evaluating the variety of an individual’s purchases against the variety shown by the overall 
population in that category, we are able to control for category-level differences.  

3.1 Probabilistic Model Fit for Variety of Goods Purchased 

Consequently, the second assumption leads naturally into stochastic counting-based models (Andersen 
et al. 1993), employed previously in consumer base analysis to successfully predict customer lifetime 
(Fader et al. 2005; Fader & Hardie 2009). In the models described by Fader et al. (2005), an individual 
consumer’s frequency of purchases at a retailer are counted and used as an input to estimate how long 
they are likely to continue buying from that retailer. We will use a similar idea by using the count of 
distinct products bought in a time period to describe variety seeking. To our knowledge, such models 
have not been applied to the area of variety seeking.  

Since count data is discrete, non-negative and has no upper limit, it follows that our probabilistic 
distribution for modeling the population’s variety seeking should be a discrete and positive skewed 
distribution. For parsimony, we aim for a univariate probability mass functions (PMFs), since this 
lends itself easily towards an interpretable, one dimensional variety index. PMFs of this type include 
Poisson, geometric and negative binomial distribution (NBD).  
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Conceptually, the Poisson distribution is the probability of a given number of events occurring in a 
fixed interval of time and/or space if these events occur with a known average rate and independently 
of the time since the last event; modeled on variety seeking, this implies individuals have differing 
rates of variety seeking and satiation, subject to some stochastic process, and some probability of 
consuming a certain amount of variety – in-line with the evidence on satiation (McAlister & Pessemier 
1982a; Chintagunta 1999). This conceptualization is also in-line with Wood & Neal (2009), which 
noted that individual consumers tend to be habitual in their purchases (i.e. implying the population’s 
variety seeking is positively skewed).  The Poisson distribution is given by:   

  (1) 

Where k = 0,1,2… and λ is the Poisson shape parameter, with  λ  > 0. The distribution gives the 
probability a consumer has bought k products, given the behavior of the overall population in that 
product category. 

Other distributions are possible, with similarly plausible storylines: The geometric distribution is the 
probability distribution of the number X of Bernoulli trials needed to get one “success” event, 
supported on the set of natural numbers. A Bernoulli trial is a random experiment in which there are 
exactly two outcomes, “success” or “failure”, with the probability of success defined the same way 
each trial (by a fixed parameter). Applied to variety seeking, the Bernoulli trial would be a check at a 
given time of whether someone is satiated (the “success” event) and will seek no more variety, and the 
geometric distribution would tell us, in the whole population, how many “failure” events this would 
take before satiation. The geometric distribution is given by:  

 (2) 

Where k = 0,1,2… and p is the probability of “failure” (i.e. non-satiation/ desire for continued variety). 

The NBD proposes a similar story. It models the number of successes in a sequence of Bernoulli trials 
before a specified (non-random) number of failures (denoted r) occur. For NBD, if we consider 
“success” to be non-satiation, and “failure” to be satiation, then by letting r = 1, then NBD provides 
the k number of events before satiation for the population. The negative binomial distribution is given 
by:  

 (3) 

We will test the fit of these models in our study for each product category. Accordingly, we propose 
the following research question: 

 RQ1: Which discrete probability distribution best captures the population’s variety seeking? 

3.2 Consumer Variety Seeking Heterogeneity across Product Categories  

It was reviewed in Section 2 that variety-seeking is a personal characteristic – as such one would 
expect the degree of variety seeking for a given person to be the same across product categories (i.e. 
the null hypothesis would hold true for the variety indices of a person). However, we argue that 
consumer variety seeking will differ between product categories. It is known that the inter-purchase 
time of product purchases varies by product category (Rhee & Bell 2002; Leszczyc et al. 2004), and 
hence we argue, so would variety seeking. Furthermore, the attribute-based theory of variety seeking 
(reviewed in McAlister & Pessemier (1982)) suggest that since different product categories have 
different attributes which are “consumed”, it follows that some categories are more prone to satiation 
(and hence variety seeking) than others.  
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Our study would confirm comprehensively whether the variety seeking varies from category to 
category. Accordingly our research question is: 

RQ2:  Does the variety-index of a customer differ from category to category? 

3.3 Consumer Typologies 

As discussed in Section 2, questionnaires are used by marketers to develop customer typologies for 
better targeting consumers with offers and products. In the case of questionnaires, the variety seeking 
typology applies at a general level, irrespective of product category. We had argued that our variety 
seeking indices of a given person at the category level will be heterogeneous across categories. 
However, in spite of this heterogeneity, it is possible that there is a high-level similarity between 
consumers, leading to typologies or groups of similar consumers which marketers can address at a 
coarser granularity. Thus we propose: 

RQ3:  What are higher level similarities between people in spite of their heterogeneous 
variety seeking between categories? 

In answering this question, by finding a higher level typology of variety seekers, we would achieve the 
same result as the traditional questionnaire. Hence we would be able to offer information systems such 
as mobile RS and marketers different granularities of analyzing their customers. 

4 Method and Results 

4.1 Dataset for Estimation 

To address our research questions, we examined a year of point of sale data from our physical grocery 
retailer partner. The receipt data comes from a complete set of all transactions from a single store, and 
consists of over 150,000 unique receipts covering a total of two million transactions, with a total of 
19,374 unique products sold that year. A transaction refers to the purchase of an item as it appears on 
the receipt; each transaction event records the name of the item, a timestamp of when it was bought, 
the European article number (EAN), a receipt ID, the number of units bought, the price per unit, the 
loyalty card ID of the household who bought it and the product’s category as defined by the retailer. 
Although the customer’s age distribution and gender are not known, it is the full dataset of one 
particular store and was deemed “typical” by our retail partner. Therefore, from this data we are able 
to construct the purchasing histories of the households, and identify how many items, unique or in 
total, they bought per category and at what time.  

We acknowledge that loyalty card holders might be different from the larger population of all 
customers and that a given loyalty card might represent a household with different people with 
different tastes; furthermore it is well acknowledged that consumers often split their purchases 
between multiple retailers (Rhee & Bell 2002; Leszczyc et al. 2000); these external purchases are 
unobservable to the retailer. However, since retailers only have measurable data about their own 
loyalty card holders, our study is relevant and in-line with a retailer’s practical limitations. Given the 
unobservable purchases, in order to determine the “natural” (from the point of view of the consumer) 
amount of variety and frequency of purchases for different product categories, we estimate our models 
on consumers who have shopped more than 51 times in our store (N=852). This is based on the 
observation that across all stores, consumers shop weekly (Rhee & Bell 2002; Leszczyc et al. 2000). 
We furthermore focus our analysis on products which were available all year around (defined as 
having been sold at least once per week in the entire store). Since many products are only available 
few days a year, if we treated these products as "available all year around", this would inflate the 
apparent number of products available for a consumer (and hence variety) to choose from. We thus 
analyse 350,000 transaction events. The minimum purchase and product availability filtering are in 
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line with past models estimated on consumer scanner panel data (Bawa 1990; Gupta 1991; Guadagni 
& Little 1983; Bucklin et al. 1998).  

4.2 Product Categories Definitions 

The product categories of the retailer are defined at four hierarchical levels. At the highest (first) level, 
there are ten categories: “meat and sausages”, “fruits and vegetables”, “fresh goods”, “ingredients”, 
“preserved food”, “drinks”, “baked goods and sweets”,  “washing material”, “perfume”, and “non-
food items”. These are then broken down into subcategories at the second level – for example, 
“drinks” would be broken down into the subcategories of beer, coffee, tea, etc., which in turn can be 
broken down into a third level category (“bottled beer”, “canned beer”) to finally the fourth and lowest 
level (different variants of beer such as “draught beer”, “wheat beer”, etc.). The number of categories 
at each level is as follows (in brackets we have the number of categories which are sold all year 
around): there are 66 (50) second level categories, 277 (146) third level categories and 900 (308) 
fourth level categories. 

Although each retailer could have their own arbitrary classification scheme, we note that these 
categories are mappable to reference categories defined by the widely adopted and open Global 
Product Classification (GPC) international standard1. As such, our results are applicable and can be 
“translated” across all grocery retailers. 

We acknowledge that even the GPC standard categories can seem arbitrary to consumers and might 
not necessarily match the mental model of the consumer in terms of defining substitutes; hence, the 
amount of apparent variety seeking can be inflated due to the way the categories themselves are 
defined, (i.e. a category is too broad). We note however that our model accounts for this because the 
very definition of “variety” is evaluated with respect to the rest of the population-wide behaviour in 
that category. We thus test our model fit at the different four levels of product categories to assure its 
generalizability. 

4.3 Probabilistic Model Fit for Variety of Goods Purchased 

In order to answer RQ1, we tested the fit of the three proposed models (Poisson, geometric and NBD) 
to our POS data. Given a product category that is sold all year round, we counted the total number of 
unique products bought by each consumer in our one-year data set – we denote this vector of 
frequencies as X. We then fitted a Poisson, geometric and negative binomial distribution to X using 
maximum likelihood estimation. We computed for each distribution fit the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) in order to compare the goodness of fit of 
the models. We found that both AIC and BIC gave nearly identical conclusions, so for parsimony the 
following results show conclusions derived from the AIC. The AIC is also well established for 
comparing goodness of fit models in various disciplines (Bozdogan 1987; Kamakura & Russell 1989; 
Andrews & Currim 2003). It measures of how well the model fits (relative to other models) – but there 
is a logarithmic penalty on the complexity of the model. In other words, AIC balances parsimony with 
goodness of fit, which is appropriate to our goal of having a parsimonious model. 

We fitted the models using first the lowest level product categories, and then repeated the process for 
the higher level. For each level, there were also categories for which all consumers only bought one 
item; these categories were not considered in the model fit, since no distribution could be 
meaningfully fitted. The results are summarized in Table 1, which show that best fitting distribution, 
irrespective of product category level used, was the Poisson distribution. We therefore adopt the 

1 Defined in http://www.gs1.org/gdsn/gpc/what 
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Poisson distribution for all subsequent analysis. Notably, the geometric function did not emerge once 
as a best fitting function. RQ1 is addressed. 

 
 % Categories 

fitted best to: # of Categories where no fit was possible (all 
consumers bought 1 variety of item) Category level used Poisson NBD 

4th (223 categories fitted) 97% 3% 65 
3rd (129 categories fitted) 86% 14% 17 
2nd (47 categories fitted) 68% 32% 3 

Table 1. Summary statistics of best fitting distributions using different category levels. 

The next step was to determine which category level to choose for subsequent analysis. We note from 
Table 1 that the lowest level (4th level) category had a high (28%) number of categories for which 
consumers bought only one variant of a product; we checked then if each of these categories had only 
one product available. They did. This suggests the 4th level category is too fine and overfits a category 
1:1 to a single product. At the same time, we find that the 2nd level is too coarse; for example, the 
“milk products” category encompasses yoghurt, pudding and butter, which are arguably not substitutes 
for each other. We therefore choose the 3rd level category (146 categories).  

In order to give a more descriptive snapshot and reference point of what the data looks like at a 
category level, we present in Table 2 a sample of the 146 categories, showing the top 5 product 
categories in terms of sales volume and the top 5 categories in terms of absolute variety. Table 2 also 
shows the Poisson parameter, λPoisson, which describes the population mean variety seeking. We 
observe also that these categories with high variety seeking also have a large assortment of available 
products. 

 
Product Category # Unique 

Products µVariety (σ) µUnits Bought (σ) Top 5 by variety Top 5 by sales volume 

Soft Drinks 48 3.8 (2.9) 12.0 (16.6) yes no 
Yoghurt 78 7.2 (5.2) 28.8 (35.1) yes yes 
Cheese 54 6.1 (4.3) 16.5 (17.6) yes yes 

Baked Goods 35 4.7 (3.1) 17.7 (21.7) yes yes 
Milk 11 2.6 (1.4) 33.0 (30.9) no yes 

Cream 14 3.6 (2.0) 22.3 (22.3) yes yes 

Table 2. Sample of variety seeking categories. Note that λPoisson = µvariety 

4.4 Consumer Variety Seeking Heterogeneity across Product Categories 

4.4.1 Computing the Consumer-Product Variety Index 

In order to answer RQ2 and check whether consumer variety seeking is heterogeneous across product 
categories, we first need to compute the variety index for each person for each product category. With 
λPoisson computed for each product category, the Poisson distribution (Eq. 1, Section 3.1) would give us 
the probability a consumer has bought k unique products in that category. The higher the k, the more 
improbable it is. However, this probability would not be a direct surrogate of variety seeking: ideally, 
an individual variety seeking index should be monotonically increasing and would describe the 
person’s relative propensity to seek variety compared to the population. The Poisson cumulative 
distribution function (CDF) fits this and describes the probability someone bought less than or equal to 
k products. It is given by: 
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 (4) 

Thus someone who has bought a large variety of products relative to the population will also have a 
high probability, given by (4), that the rest of the population has bought a lesser number of products. 
As such, the CDF captures the relative degree of variety seeking at the individual level. Using (4), we 
computed this variety index for all consumers for all product categories.  

By using this variety index instead of a raw value of variety of goods purchased, we are therefore able 
to compare a consumer’s variety seeking across product categories, and compare consumers within the 
same product category. 

4.4.2 Confirming Heterogeneity of Variety Seeking Across Product Categories 

Having computed the variety indices of a consumer, it follows that if variety seeking was a trait that 
was category independent, then a given person should have the same extent of variety relative to the 
rest of the population for each product category (i.e. their variety index should not be significantly 
different across categories). Furthermore, this would also imply that the population distribution of 
variety indices for each category would be similar between categories. 

The classical test for this statement would be a repeated measures ANOVA, since a consumer is 
subjected to multiple “treatments” (i.e. shopping in product categories) as stimuli, and the resultant 
outcomes (i.e. the variety indices) are compared between the treatment groups (the product 
categories). However, as shown in Section 4.3, since we do not have normally distributed variety 
indices within groups (the product categories), the assumptions of ANOVA are violated. As discussed 
in Field et al. (2012), a non-parametric test which can be used in this instance is the Friedman test 
(Friedman 1937); however a requirement of the Friedman test is completeness of data. In our data set, 
since not every consumer purchased from every product category, there will be consumer-product 
category pairs for which no variety index exists. We therefore do the analysis with the Skillings-Mack 
test (Skillings & Mack 1981), which generalizes the Friedman test to allow for missing data. We found 
the Skillings-Mack statistic to be significant, T = 10205, p < 0.05; the product category did 
significantly change a person’s degree of variety seeking. RQ2 is addressed. This therefore justifies 
the need of computing a variety index at the granularity of person’s interaction with a specific 
category. 

4.5 Consumer Typologies 

While the findings of RQ2 prove that an overall consumer typology is not sufficient to explain the 
heterogeneity of variety indices on a category level, we now look at the other way around. In order to 
answer RQ3, we show that we can use a combination of a consumer’s variety indices per category to 
establish an overall aggregated consumer typology. 

Since the variety index of a single category cannot be used to predict the index of another category, we 
calculate the mean variety index of each customer, based on their category level variety indices. For 
ease of illustration in this paper, as an example we focus on a subset of the POS data: In particular, we 
select the top five categories in terms of purchase frequency and only select those customers (N = 547) 
that have purchased products in all five categories. The selected five categories account for 22% of all 
purchases and 11% of the revenue – a large and managerially relevant set of categories. We calculate 
the aggregated mean variety index of the selected five categories per person and visualize the result as 
histogram on Figure 1(a). 
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Figure 1. (a) A histogram of the customer’s average variety index. (b) A plot of the customer’s 

mean and standard deviations of their variety indices.  

In the µvariety distribution of Figure 1(a), the mean of µvariety (the grand mean) was 0.59, and the 
standard deviation 0.18. We characterize those one standard deviation or more below the grand mean 
to be overall low variety seekers, those one standard deviation or more above the grand mean as 
overall high variety seekers, and those in between as medium variety seekers. As a result, we have 347 
(63.4%) medium variety seekers, 95 (17.4%) low variety seekers and 105 (19.2%) high variety 
seekers. These proportions are consistent with questionnaire typology data (Trijp et al. 1996), and 
show that there are some higher level similarities between consumers that can be leveraged for 
traditional, coarse-granular marketing methods. We also tested whether the distribution of µvariety can 
be generalized with a normal distribution. We conducted the Kolmogorov-Smirnov test of normality, 
which found that the distribution of µvariety, D(547) = 0.048, p < 0.05 was significantly different from a 
normal distribution, so the result is not generalizable with a parametric normal distribution. The 
distribution was also platykurtic (-0.744) and wider than the normal distribution.  

To explain the effect of the heterogeneity, we then visualize the population as a scatter plot in Figure 
1(b). Each dot corresponds to an individual customer. The x-axis shows the computed mean of the 
aggregated variety index for each customer, and the y-axis shows the corresponding standard 
deviation. The result is once again consistent with the findings of RQ2 and shows especially that there 
are some significant differences between customers and also within customers, especially in the group 
of “medium” variety seekers. This means that some average variety seekers are actually high variety 
seekers in some categories and low variety seekers in others, which has significant implication on the 
success of marketing measures. Meanwhile, we see that customers who exhibit high or low variety 
seeking are also more consistent in their behaviour, shown by their lower standard deviations. To 
further illustrate the point, we pick four different customers (shown as coloured dots in Figure 1(b)) 
and elaborate on their differences in terms of their typology. 

 
Figure 2. Four examples of customers with their overall variety seeking typology and their 

variety indices in the top five categories. For convenience, variety seeking behavior is 
marked as L=low, M=medium, and H=high depending on the index value 
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As Figure 2 shows, customer A and D are fairly consistent in their behavior. In all five categories they 
exhibit the same level of variety seeking. However, customer B and C are completely different. While 
their overall typology both amount to medium variety seeking, they do not have a single category on 
which they show the same behavior. Customer B is a medium variety seeker in four of the five 
categories whereas customer C is a high variety seeker in two categories and a low variety seeker in 
three categories. 

5 Discussion 

Our findings confirm the need for a higher resolution perspective on variety seeking behavior. We 
prove that the currently dominant approach of using a per-person typology is not sufficient to explain 
the differences in variety seeking behavior per category. These differences are, however, critical for 
successful marketing measures in mobile or social commerce. Our presented approach allows for 
measuring variety seeking behavior on a category level and comparisons between consumers and 
across categories. We showed that a variety index can be modeled nicely with a Poisson distribution 
and we provided both confirmation and some characteristics of reference categories based on real 
point-of-sale data. We acknowledge that often a high-level typology of a consumer is already 
sufficient for decision making and therefore also provided an method for reconciling the highly 
granular, consumer-product category perspective with the overall typology used in research and 
practice today. 

5.1 Applicability at Different Granularity Levels of Categories 

We confirmed that the variety of goods purchased in a product category for a customer fits a Poisson 
distribution. This relationship holds true even when we conducted the analysis across different 
granularity levels of product categories. As such, our relationship is robust against the arbitrariness of 
product categories as set by the retailer and therefore can be generally applied in different grocery 
retail settings. The Poisson “storyline” is also intuitive; individuals have differing rates of variety 
seeking and satiation, subject to some stochastic process, and some probability of consuming a certain 
amount of variety - in-line with the evidence on satiation (McAlister & Pessemier 1982a; Chintagunta 
1999). We also saw that the categories where variety seeking was high also had a large assortment of 
goods available, which confirms past psychological studies that merely having a wide assortment of 
goods can drive variety seeking (Diehl & Poynor 2010; Kahn & Wansink 2004; Read et al. 1995; 
Simonson 1990). The product categories which showed high variety of goods sold (ex. soft drinks and 
fruit yoghurt) also matched the categories selected for study in the literature (Trivedi 1999) 

5.2 From Category Level Variety Seeking to Overall Variety Seeking 

We finally showed that the category variety indices can also be generalized to determine a person’s 
overall inclination to seek variety, thus replicating the insights of a psychometric questionnaire. Where 
our approach differs from the questionnaire is that in addition to the overall picture, we are able to 
quantify individual variety seeking at the category level, thus characterizing the heterogeneity we saw 
in the spread of standard deviations of µvariety. This means that we expect that our model will be able to 
better explain consumer receptiveness to try a variety of goods, and also for designing category-level 
recommendations that cater to a consumers’ extent of variety seeking in a particular category.     

5.3 Accuracy of results 

Although the results are already very promising and the effects are clearly visible, we are convinced 
that the results can be further improved. In addition to studying the effects in different stores and 
industries, we consider three factors that are relevant for future research.  
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In particular, we came across four factors that future studies might include. First, we base our 
customer identification on the loyalty card number. We acknowledge that this card might be shared 
within a whole family and thus increase the noise level of our findings. A future study might control 
for this noise by attempting to identify the demographics behind the loyalty card holder. Second, we 
assumed that variety seeking behavior remains constant over time on a category level. We took the full 
data set for twelve months and did not allow for changes over time yet. A future study can try different 
estimation periods. Thirdly, we excluded seasonally offered products for the analysis and focused only 
on the top five categories for RQ3. We acknowledge that it might also be of interest to consider 
seasonal products and all product categories when studying variety seeking behavior, and that 
extending the automated measuring of variety-seeking to the whole population would be for future 
work. Finally, in our overall variety seeking aggregation, we used a simple (unweighted) aggregation 
of variety indices; since consumers have a finite budget, a consumer can only explore a finite number 
of categories at depth, and as such, the overall variety index could appear much lower due to the 
presence of many sparsely explored categories. A future study could propose and evaluate a weighted 
aggregation scheme, where for example categories with low relative spending are weighted less.  

6 Conclusion and Future Work 

In this paper, we presented one of the first studies to develop a model for measuring variety seeking 
behavior on a high level of granularity. In particular, we showed how to obtain a high resolution 
classification based on individual consumers’ purchases in individual product categories that is more 
powerful than established psychological per person typologies. Our study has the following main 
contributions. Firstly, we contribute to the customer segmentation research stream by providing a 
novel way for identifying variety-seeking customers and their specific variety-seeking behavior on a 
category level. Second, for the most important retail categories we characterize the extent of variety 
seeking and provide a data-driven approach that is easy to operationalize by practitioners – especially 
for deploying large-scale personalized marketing measures in social or mobile commerce in physical 
stores. For practitioners, our model is parsimonious and can be estimated on observable consumer 
purchasing data logged at the PoS; it does not depend on demographics, which are not always 
available to every retailer due to privacy regulations, nor does it depend on unobservable motivations. 
Thirdly, we provide a method to reconcile the granular category-level results with per person 
typologies used today, and thus provide also a starting point for further research. Finally, our work 
addresses a gap in RS research, which until now was largely based on based on the content of what 
consumers have bought or what others have bought; our model of characterizing consumers’ extent of 
variety seeking adds another dimension, that of personal inclination to try new goods. This opens up 
new research opportunities in combining the classical approaches in RS with the insights of this paper. 
For example, our method could help RS identify which consumers seek more variety than others for 
specific product categories; in turn, once both have been identified, a classical content-based RS can 
be applied to decide what product to recommend.  

As a next step, we aim to increase the granularity of our model even further by considering the time 
domain in addition to the category-level. This would relax the assumption that variety seeking 
behavior remains constant over time and help to deepen the understanding of the effect of changes in 
the consumer’s behavior. Moreover, we aim to apply the model as a content-based approach for RS in 
real-time decision making for a smart phone application. Finally, for computing overall variety 
seeking, a study with a weighted aggregation scheme should be investigated. 
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