
Malgonde et al. Emergent Outcome Controls and Time Pressure

 Twentieth Americas Conference on Information Systems, Savannah, 2014 1

Applying Emergent Outcome Controls to
Mitigate Time Pressure in Agile Software

Development
Research-in-Progress

Onkar Malgonde, Rosann Webb Collins, and Alan Hevner
University of South Florida

Tampa, FL 33620
{omalgonde, rwcollins, ahevner}@usf.edu

Abstract

Can agile software development methods handle time pressure effectively? In this research-in-progress
paper we examine the sources and remedies for time pressure in an agile software development project.
We draw upon research on emergent outcome controls to understand how they can be used effectively to
handle time pressure. In particular, we use Extreme Programming (XP) as an agile development exemplar
and propose 3 interesting research propositions. Further, we discuss the limitations, practical
implications, and future research efforts on how emergent outcome controls can be used to balance
aspects of quality, time, and cost in software development.

Keywords

Agile software development, controls, time pressure, Extreme Programming

Introduction

Agility in information systems development (ISD) is defined as “the continual readiness of an ISD method
to rapidly or inherently create change, proactively or reactively embrace change, and learn from change
while contributing to perceived customer value (economy, quality, and simplicity), through its collective
components and relationships with its environment” (Conboy 2009). The agile manifesto (Beck et al.
2001) emphasizes the importance of responding to change, customer centric development, iterative
development, and interactions within and outside the development team during software development.
These central ideas of agile software development drive development processes and influence decisions
throughout the development cycles.

While the literature on agile methods considers time pressure as a constraint in development, how to
handle time pressure or changes in time pressure has not been the focus of these studies (Abdel-Hamid
1989; Koushik and Mookerjee 1995). However, time pressure is prevalent throughout software
development projects (Nan and Harter 2009), especially when first-to-market is a high priority goal
(Baskerville et al. 2011). There is a lack of theoretical understanding about if, and how, agile software
development mechanisms can effectively deal with a sudden or incremental increase in time pressure. In
this research-in-progress paper we view effective responses to increases in time pressure as development
approaches that remain faithful to agile software development as well as continue to exert proper controls
over that development. To investigate the problem of increased time pressure in agile development, we
employ a theoretical understanding of the controls embodied in agile development mechanisms to
determine how those controls can be used to mitigate the impact of changes in time pressure. In order to
do so, we focus on extreme programming (XP) as an agile development exemplar to evaluate controls in
the presence of increased time pressure.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301362021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Malgonde et al. Systems Analysis and Design

2 Twentieth Americas Conference on Information Systems, Savannah, 2014

Time Pressure and its Sources

Multiple approaches have been undertaken to study time pressure in software engineering literature. As
noted by Nan and Harter (2009), the impact of increased time pressure on projects is not uniform, both
on development processes and outcomes. Abdel-Hamid (1989) provides a system dynamics approach to
study staffing policies. These staffing policies are developed under schedule constraints and used to study
the dynamics of the system under investigation. Koushik and Mookerjee (1995) develop an analytical
model to study the level of coordination required in the software construction phase under given time
constraints. Ji et al. (2005) study the optimal policy to develop and debug software code while adhering to
time pressures like product release date. Chong et al. (2011) report that time pressure can act as a
challenge (positive) or hindrance (negative) for software development. Clearly, time pressure has rightly
received considerable attention. However, none of these studies have delved into if and how time pressure
impacts the specific case of agile software development. Further, only Austin (2001) specifically
investigates how developers deal with time pressure. Using an agency framework, Austin finds that when
developers do not have to worry about being singled out for failure to meet deadlines, they can employ a
strategy of quality improvement to reduce rework and thus reduce development time.

Sources of time pressure can be both internal and external. Internal time pressure is generated by actions
or events within the organization that is developing the software. For example, if a software tool critical to
development is made available 1 week late, the software development time frame is reduced, thereby
increasing internal time pressure. Similarly, issues like staff vacations or turnover, unanticipated
technical issues, or poor execution contribute to increasing internal time pressure for the entire
development team.

External time pressure is generated by actions or events outside the organization that is developing the
software. For example, consider a software development project that has to be completed in 2 months
because of a federal or state mandated regulation. This time pressure is generated by an external source.
Similarly, if market trends shift and the development team is required to deliver a software product within
two weeks, we deem this time pressure as externally sourced.

Having identified the sources of time pressure, it is important to understand how the different sources of
time pressure have different impacts on the development team. Following a sudden increase in time
pressure that is generated internally, the development team can immediately investigate the problem.
Also, when time pressure increases due to internal sources, the development team has a degree of control
over the situation. For example, if the required software tool is not available on time, the team can
procure a different tool or opt for an open source tool. On the other hand, when increases in time pressure
are related to external source, the development team has little to no control over the situation. For
example, if the delivery deadline is moved forward due to some governmental regulation or market needs,
the development team may have to cut feature-set and provide the bare minimum software that is in
working condition. Also, when external time pressure increases, the development team might not be
informed about it explicitly by the customer or market.

Given that time pressure is a consistent factor in software development, and that there are multiple
sources that may increase this pressure, it is important to understand how software development can be
managed in such a dynamic setting. Emergent outcome controls (Harris et al. 2009b) offer a way to
develop that understanding, since they focus on how to be flexible in the management of software
development while maintaining control of the process.

Proposition 1: Source of increasing time pressure dictates the choice of corrective/reactive
actions.

Emergent Outcome Controls

Emergent outcome controls allow software development processes to be flexible but controlled, at the
same time (Harris et al. 2009a). Emergent outcome controls are based on dynamic capabilities theory
(Teece et al. 1997) and control theory (Ouchi 1977; Ouchi 1979; Ouchi 1980). The initial research identifies
two prominent emergent outcome controls: (1) scope boundaries, and (2) ongoing feedback.

 Emergent Outcome Controls and Time Pressure

 Twentieth Americas Conference on Information Systems, Savannah, 2014 3

Scope boundaries limit the feasible solution so that the development team has the flexibility to explore
but is constrained within a boundary (Harris et al. 2009b). Scope boundaries channel the development
process, without dictating the outcomes. Boundaries can include overarching goals like a shared vision for
the software being developed, feature specifications, as well as more technical constraints like architecture
and development tools. For example, consider an agile development team that is starting its planned
iteration. Before the execution can begin, the management tightens the scope boundaries by limiting the
choice of tools, programming language, and application programming interface (API). Though the
developers are free to be creative, they are limited to explore a constrained space patrolled by scope
boundaries.

Ongoing feedback is provided within the team or from users or the market, so that the software
development is on track and reaches its goals with minimum iterations. Feedback is required for
development teams when scope boundaries are not sufficiently tight to resemble a feature-driven
approach. For example, consider the above example of scope boundary. If we relax the programming
language scope, the development team will need feedback from customers before implementing the
software. This is particularly true since the choice of programming language will affect the
implementation, maintenance, and integration with other systems. Often the reason for choosing an agile
development approach is that there is uncertainty about the exact nature of the software to be developed
(Harris et al. 2009b). Ongoing feedback is critical to systematically shape the software to fit the needs of
users or market, but obtaining and reacting to feedback is time consuming (Harris et al. 2009b). If time
pressures are increased, how can project managers continue to use this important development
mechanism?

Proposition 2: During increased time pressure, the project managers tend to abandon agile
software development mechanisms.

Extreme Programming

Before we explore how emergent outcome controls can guide project managers in how to effectively
mitigate time pressure, we briefly introduce Extreme Programming (XP) as an exemplar of agile software
development methodology. Figure 1 (Wells 2000) provides a brief overview of XP.

Figure 1. An Extreme Programming Process Model (from Wells (2000))

XP is characterized by principles like pair programming, continuous integration, incremental design, and
the 10-minute build. Requirements are incorporated into the development process as stories. These
stories are described by the customer to the development team. The development team, then conducts an
analysis of these stories to order and estimate their size and priority. Development of the software is
conducted in iterations, where each iteration is usually of 2 weeks. The entire team decides on the plan
and deliverables of each iteration, at the start of each iteration. For the stories that have been developed

Malgonde et al. Systems Analysis and Design

4 Twentieth Americas Conference on Information Systems, Savannah, 2014

and unit tested, they are integrated and tested for user acceptance. Table 1 illustrates several XP
mechanisms that we evaluate as controls for mitigating time pressure.

Extreme
Programming
Mechanisms

Emergent Outcome Controls How to Adapt Emergent Controls
when Time Pressure Increases

Scope
Boundaries

Ongoing Feedback Scope
Boundaries

Ongoing Feedback

Sit Together Progress observable
by team members

 Reduce meeting time
by having only initial or
periodic physical
meetings, but maintain
visibility through
shared workspace that
monitors team
members’ progress
(may already be
employed to create an
informative
workspace)

Whole Team Feedback including
customer
representatives

 Reduce number of
feedback events by
careful selection of
which team members
and customer
representatives to
include in each
feedback event, while
ensuring that all
appropriate individuals
provide feedback at
least at some points

Informative
Workspace

 Outcomes observable If a shared workspace
that monitors team
members’ progress is
already employed, no
change; otherwise
create this space

Pair
Programming

 New ideas are tested
with partner

 Encourage pairs to
adapt technique to
work as pairs to share
ideas, but allow
individual
programming work as
appropriate to the pair

Stories Broad
statements of
intent focus
efforts

 Use stories to
communicate
changes in
feature set

 Emergent Outcome Controls and Time Pressure

 Twentieth Americas Conference on Information Systems, Savannah, 2014 5

1-3 Week Cycle Limit amount
of change that
can occur in
each iteration

Market feedback
every 1-3 weeks

Review
existing limits
to what can be
changed and
reduce as
appropriate

Consider whether to
reduce the feedback by
increasing the cycle for
market feedback

Quarterly Cycle Place business
constraints as
well as market
constraints

Review with
management. Guard
against feature creep

Communicate
new business
or market
constraints to
team

Review becomes even
more important given
new business and/or
market constraints

10-Minute
Build

 Make it easy to
demonstrate

 Maintain this control

Continuous
Integration

 Always be ready to
demo latest product

 Maintain this control

Build test cases
first

Develop a
detailed goal
for each
feature

 This will be
automatically
reduced when
the increased
time pressure
has resulted in
a smaller
feature set

Incremental
Design

Each iteration
focuses on only
a few things

Each iteration ready
to use or demonstrate
to market

While still
limiting as
much as
possible,
consider
increasing
what is
included in
each iteration

Maintain this control

Table 1. Adaption of XP Mechanisms under Time Pressure to Maintain Project Control

Proposition 3: When time pressure increases, project manager maintains control over the
project through the use of emergent outcome controls.

Proposed Research Methodology

In order to validate our theoretical conceptualization and test our propositions (see Table 2), we plan to
employ a critical incident method (Flanagan 1954). Specifically, we plan to interview software
development project managers about incidents in which there was an increase in time pressure, sudden or
incremental, and record their actions to mitigate the impacts of increased time pressure. In particular, we
will ask project managers about incidents where the sources of increased time pressure include internal
and external sources. We will ask the managers to compare their use of agile methods in the project before
and after the time pressure increases.

Based on their responses and the outcomes, we can identify and validate the existence of emergent
outcome controls. Further, based on the interview transcripts, we can identify additional ways in which
emergent outcome controls can be used to prescribe actions to project managers to help mitigate
increases in time pressure.

Malgonde et al. Systems Analysis and Design

6 Twentieth Americas Conference on Information Systems, Savannah, 2014

1 Source of increasing time pressure dictates the choice of corrective/reactive actions

2 During increased time pressure, the project managers tend to abandon agile software
development mechanisms.

3 When time pressure increases, project manager maintains control over the project through the
use of emergent outcome controls.

Table 2. Research Propositions

Discussion

Understanding the impact of time pressure and how it can be effectively mitigated is of practical
importance. Agile software development, with its iterative and incremental approach, has become a
mainstream software development methodology. In this paper, we have highlighted the issue of time
pressure in agile software development. This is of particular concern for agile development projects, since
time to completion can take more time than more traditional, plan-driven development (Harris et al,
2009a). We illustrate that by understanding how agile development methods embody project controls, we
can adapt and use agile mechanisms to effectively mitigate increased time pressure while maintaining
proper software development control. Our conceptualization of this link between time pressure, emergent
outcome controls and agile development is based on prior literature. The next step is to collect empirical
data on how project managers respond to increases in time pressure in agile development projects, and
the relationship between the type of response and (a) the effectiveness of project controls and (b) project
outcomes. In addition, we will consider whether the source of time pressure has differential impacts on
how project managers respond, how effectively the project is controlled, and project outcomes.

Future Research Directions

Future research in the context of agile methods also has the potential to identify additional emergent
outcome controls, since the very nature of agile methods is that they embrace a dynamic development
environment. Such additional controls that are identified may also be those that help mitigate time
pressure. We believe that there can be a portfolio of emergent outcome controls that can be used to
effectively control agile software development, while maintaining its flexibility in the face of change. Also,
the effect of emergent outcome controls on other constraints like cost, and quality, can be examined. This
is particularly interesting because the effects of time pressure, cost, and quality are interdependent
(Figure 2).

Figure 2. The Software Development Golden Triangle

An increase in time pressure affects the quality and cost of the project simultaneously. Similarly, an
increase in quality requirements implies increase in time pressure (or an extended due date), and
increased costs. Thus the constraints of time pressure and increases in time pressure during development
become a lever for investigating these relationships and how project managers maintain control in such
dynamic settings.

 Emergent Outcome Controls and Time Pressure

 Twentieth Americas Conference on Information Systems, Savannah, 2014 7

References

Abdel-Hamid, T. 1989. "The Dynamics of Software Project Staffing: A System Dynamics Based Simulation

Approach " IEEE Transactions on Software Engineering (15:2), pp. 109-119.

Baskerville, R., Heje-Pries, J., and Madsen, S. 2011. "Post-Agility: What Follows a Decade of Agility?,"

Information and Software Technology (53:5), pp. 543-555.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., and

Thomas, D. 2001. "Manifesto for Agile Software Development." Retrieved 02/13/2014, from

www.agilemanifesto.org

Chong, D., Van Eerde, W., Chai, K.H., and Rutte, C.G. 2011. "A Double-Edged Sword: The Effects of Challenge

and Hindrance Time Pressure on New Product Development Teams," IEEE Transactions on Engineering

Management (58:1), pp. 71-86.

Conboy, K. 2009. "Agility from First Principles: Reconstructing the Concept of Agility in Information Systems

Development," Information Systems Research (20:3), pp. 329-354.

Flanagan, J. 1954. "The Critical Incident Technique," Psychological Bulletin (51:4), pp. 327-358.

Harris, M.L., Collins, R.W., and Hevner, A.R. 2009a. "Agile Methods: Fast-Paced, but How Fast?," AMCIS 2009

Proceedings).

Harris, M.L., Collins, R.W., and Hevner, A.R. 2009b. "Control of Flexible Software Development under

Uncertainty," Information Systems Research (20:3), pp. 400-419.

Ji, Y., Mookerjee, V., and Sethi, S. 2005. "Optimal Software Development: A Control Theoretic Approach,"

Information Systems Research (16:3), pp. 292-306.

Koushik, M., and Mookerjee, V. 1995. "Modeling Coordination in Software Construction: An Analytical

Approach," Information Systems Research (6:3), pp. 220-254.

Ouchi, W. 1977. "The Relationship between Organizational Structure and Organizational Control," Administrative

Science Quarterly (22:1), pp. 95-113.

Ouchi, W. 1979. "A Conceptual Framework for the Design of Organizational Control Mechanisms," Management

Science (25:9), pp. 833-848.

Ouchi, W. 1980. "Markets, Bureaucracies, and Clans," Administrative Science Quarterly (25:1), pp. 129-141.

Teece, D., Pisano, G., and Shuen, A. 1997. "Dynamic Capabilities and Strategic Management," Strategic

Management Journal (18:7), pp. 509-533.

Wells, D. 2000. "Extreme Programming Project."

http://www.agilemanifesto.org/

