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Introduction 
Process aware information systems (PAIS) and components have become ubiquitous in different business 
domains and areas of business computing (Dumas et al. 2005). They vary from being full-fledged 
enterprise systems (e.g., business process management systems, enterprise resource planning) that 
coordinate entire business processes to standalone applications or systems that capture execution 
information related to certain process segments or tasks. PAIS embed key process knowledge nuggets in 
the form of process-related observations, also termed as event logs that can be mined using analytical 
methods. Process Mining and Analytics (PMA) facilitates discovery, monitoring, and improvement of 
current existing processes based on the analysis on event logs (van der Aalst 2012). PMA techniques can 
be applied to various phases of a business process lifecycle to facilitate organizational learning based on 
process-related knowledge. PMA have been recognized to augment current Business Intelligence (BI) 
techniques by investigating activities inside the business processes rather than treating them as ‘black 
boxes’, and thus addressing a limitation of mainstream BI applications of mainly focusing on aggregating 
data for assisting high-level tactical or strategic decision making (Bucher et al. 2009).  

While researchers have primarily focused on applying PMA techniques for studying control-flow 
perspective of business processes, there is limited work on their organizational perspective (van der Aalst 
2011). Organizational and social structures underlying business processes need to be understood well for 
improving organizational processes. Existing research relies on explicit process models and/or 
organizational models for obtaining information on organizational settings and interactions among 
knowledge workers (Song and van der Aalst 2008; Thomas and Fellmann 2006). However, in many cases 
such as inter-organizational workflows and cross-department team-based processes, neither are 
process/organizational models explicitly available, nor does a formalized structure exist to represent such 
knowledge. Thus, an alternative approach is deemed necessary. 

This study focuses on organizational mining, which entails extracting information on organizational 
structures/models and essentially providing insights on how knowledge workers interact to perform 
business processes. In particular, this work contributes to the PMA body of knowledge by proposing: a) a 
pattern recognition and matching approach in the form of Behavioral Pattern Discovery Algorithm 
(BPDA) for identifying behavioral process patterns from event logs, b) a novel organizational mining 
approach consisting of Org-AHC algorithm based on behavioral process patterns, and c) the OrgMiner 
framework that encapsulates three modules, namely pattern definition, pattern selection, and 
organizational mining in a systematic manner through links to various pertinent knowledge elements. 
These design artifacts have been validated through a case study consisting of a large event log, which also 
demonstrate their feasibility and utility. 

The structure of this paper is organized as follows. Section 2 provides background and overview of PMA, 
with particular focus on the organizational perspective. A motivating and running example used 
throughout the paper is discussed in Section 3. In Section 4, key design artifacts including the OrgMiner 
framework, behavioral pattern recognition using the BPDA algorithm, and organizational mining 
approach using the Org-AHC algorithm are presented. In section 5, the design artifacts are validated 
through a case study. Discussion on related work, situating the key contributions of this study, is 
presented in Section 6. The article concludes with summary remarks in Section 7.  
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Background 

Process Mining and Analytics 

Process mining and analytics techniques can be used in conjunction with any PAIS, as long as the 
observations of the actual executions are recorded as event logs – which can be segmented into events 
(the atomic steps in a specific process) or instances (the ad-hoc executions of a specific process).  Also, 
Pérez-Castillo et al. (2011) have recently proposed an approach obtaining event logs from non-PAIS 
(without logging functionalities). The essence of PMA activities is to mine event logs to extract and 
present embedded knowledge nuggets in a user-understandable form. PMA has been recognized as 
evidence-based analysis since all the analyses are based on facts (van der Aalst 2012). Given that PMA has 
its roots in the data mining field, its practices are analogous to data mining applications. Notably, data 
mining techniques derive data patterns (as formal abstractions of events in the real world) from data sets 
(as factual records of observations regarding the events), while PMA tools mine process execution data 
(event logs, as observations of events in certain business processes) to construct the process models (as 
abstractions of actual business processes) (Tiwari et al. 2008). The key similarity between data mining 
and PMA is that they both derive explicit knowledge hidden in (large) data collections.  

Earlier PMA approaches have been based on heuristic algorithms, which identify business process 
patterns based on “rule-of-thumb” assumptions (e.g. the α-algorithm (van der Aalst et al. 2004)). 
Although, a growing number of PMA methods make use of advanced analytic techniques such as genetic 
algorithms (van der Aalst et al. 2005), fuzzy logic algorithms (Günther and van der Aalst 2007), temporal 
analysis based algorithms (Köck and Paramythis 2011; Veiga and Ferreira 2010), clustering algorithms 
(Bose and van der Aalst 2010; Song et al. 2009), and pattern recognition based algorithms (Bae et al. 
2006; Ferreira and Thom 2012; Smirnov and Weidlich 2009).  

PMA activities can be broad characterized along two dimensions, namely functions and perspectives. In 
regards to the functional dimension, PMA techniques entail three major functions: discovery, 
conformance checking, and enhancement. The discovery function entails mining the event logs to (semi-) 
automatically constructing underlying process models and associated properties (organizational 
properties and data objects), and has been focus of traditional PMA approaches (van Dongen and van der 
Aalst 2004). The conformance checking function involves deviation detection by comparing the mined 
process model (from executed process observations) with an a priori model (Bose and van der Aalst 2012). 
The enhancement function also involves an a priori model; but rather than checking the conformance, it 
extends the mined process model with a new aspect or perspective (Jareevongpiboon and Janecek 2013). 
Popular enhancement activities include decision mining, user profiling, and performance analysis. The 
perspective dimension of PMA activities pertain to inquiring about various aspects of business processes 
such as the process perspective (‘How’), the resource perspective (‘Who’), and the data perspective 
(‘What’) (Weske 2012). The process perspective focuses on the control-flow, i.e., ordering of events in 
business processes (e.g. (Bertolini et al. 2011)); the resources perspective focuses on the originators of the 
events and how they are related (e.g. (Song and van der Aalst 2008)); the data perspective focuses on the 
data objects and their values associated with each of the executed events (e.g. (Sun and Zhao 2013)). 

Majority of extant PMA studies focus on the process perspective, with all three functions, while the 
classical data mining and BI (e.g. OLAP) area concentrates on the data perspective when applied to the 
BPM context. Also, prior studies regarding the resource perspective of the business processes rely highly 
on explicit knowledge abstractions such as process and/or organizational models (van der Aalst and Song 
2004; Sellami et al. 2013). Notably, there is lack of research on techniques for mining organizational 
information solely from event logs, in absence of other explicit process or organizational structure 
representations. In this research study, we contribute towards addressing this research gap.   

Organizational Mining 

Organizational mining refers to the PMA activities aimed toward analyzing implicit information about 
resources in event logs (van der Aalst and Song 2004). Organizational mining has two key goals: (1) to 
develop an understanding of the social networks depicting the interactions among different 
resources/originators in (cross-)organizational processes, and (2) to (re)structure cross-functional and/or 
cross-organizational teams of knowledge workers based on their organizational roles or units (IEEE Task 
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Force on Process Mining 2011). Analogous to PMA, organizational mining also entails functions related to 
discovery, conformance checking, and enhancement. Discovery in organizational mining refers to 
extraction of organizational models or social network models that reflect the organizational settings from 
the information within event logs. Organizational models usually contain information on organizational 
units (e.g., departments), roles (e.g., jobs), originators (e.g., employees), and relationships (e.g., A is 
“part-of” B, or C “is-a” D), while social network models depict the interactions (e.g., handover of work, 
etc.) among different originators. Also, organizational mining can be used in tandem with other related 
information to discover job assignment rules, resource allocation rules, or user profiling rules. 
Conformance checking can be performed within the organizational mining context by comparing 
discovered models/rules with corresponding a priori models/rules. Further, enhancement in the context 
of organizational mining refers to enriching existing model/rules with additional information, such as 
providing abstracted process models based on different organizational units/roles. Organizational mining 
provides a new dimension for PMA, which can provide the management team with analytical insights on 
the organizational context. This includes data-driven information regarding the organizational structure 
and communication as well as better understanding of business process performance indicators from an 
organizational operations management perspective. Such information is difficult to be extracted through 
traditional PMA activities. 

Researchers in the PMA domain have recognized the importance of organizational modeling and have 
proposed various approaches. Sellami et al. (2013) have proposed the use of an organizational ontology 
for semantically annotating event logs to discover relationships among task performers. This approach 
has the limitation of relying on a static underlying knowledge structure, i.e. the organizational ontology. 
Song and van der Aalst (2008) propose an approach that is primarily aimed at conformance checking of 
organizational models, and as such relies on existing explicit process and organizational models. Their 
approach relies on frequencies of different originators executing similar actions to recommend grouping 
of such originators in the same organizational unit. In this study, we take a discovery-oriented approach 
to organizational mining, where we do not assume that the existence of explicit models (either process 
models or organizational models) given that such models may be inaccessible in practice (e.g., in cross-
organizational processes). Further, in our proposed approach we not only use task execution frequencies 
of different originators, but also rely on recurring behavioral patterns of process segments within the 
event logs to draw inferences regarding associations among originators and ultimately infer an underlying 
organizational model. In using process patterns within our approach, we build on the extant work in the 
workflow patterns area including Smirnov et al.’s (2012) action patterns notions used for process mining. 

A Running Example  
To illustrate the concepts described in the proposed framework in a self-contained manner, we use a 
portion of the event log from the “reviewing process” documented in van der Aalst (2011). The example 
describes a reviewing process of an academic journal. When a paper is submitted to the journal, it is sent 
to three different reviewers (‘invite reviewers’, Activity A). Each of the reviewers is responsible to write 
some comments about the paper (‘get review 1-3’, Activity B1-3). A person is going to read the reviewers’ 
comments and make decision (‘decide’, Activity D) after the comments are collected (‘collect reviews’, 
Activity C). However, sometimes reviewers do not respond to the reviewing requests. In those cases, 
additional reviewers are invited (‘invite additional reviewer’, Activity E). The additional reviewer 
comments on the paper (‘get review X’, Activity F) and then the comments are read to make decision 
(‘decision’, Activity D). These steps (E-F-D) are repeated until enough comments are collected. Then a 
final decision is made (‘accept’, Activity G or ‘reject’, Activity H).  

The original event log contains 100 instances (papers) and 3,730 events (in 8 distinct event classes). For 
the example, we randomly selected 6 instances shown in Table 1 (each row corresponds to a different 
instance, which is identified by the instance ID), which contain all 8 event classes. We denote each event 
by two elements: the activity (e.g. ‘C’) and its originator (e.g. ‘Anne’). In total 10 originators are involved in 
these 6 instances. The events in each instance are ordered according to the temporal sequence reflected in 
their timestamps. The selected event log is pre-processed in two steps. First, since the transition changes 
of the events are less relevant to the organizational mining purpose, we decide to ignore them and choose 
all ‘completed’ events. Next, we filter out the events without originator information (i.e. the originators of 
all the ‘time-out’ events are tagged as ‘_INVALID_’, thus all such events are excluded from the example). 
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Besides the selected event log (from now noted as “example log”) shown in Table 1, we assume that the 
underlying process model and the organizational model are unknown/implicit. For illustration purpose, 
we assume the 6 instances are exhaustive of the process (no other instance exists). In the remaining 
sections, we use this example to illustrate aspects of the proposed organizational mining approach. 

 
Table 1. Event Log for the Running Example 

Design and Development of the OrgMiner Framework 
We first formally define the foundational notion of event logs.   

Definition 1: (Event Logs). Let 𝒜 (𝒜 = 𝒶!,… ,𝒶! , 𝑛 = |𝒜|) be the set of activities in a business 
process, and 𝒪  (𝒪   = 𝑜!,… , 𝑜! ,𝑚 = |𝒪|) be the set of all distinct originators (e.g. persons, system 
modules) that conduct the activities in 𝒜. ℰ = 𝒜  ×  𝒪 is the cartesian product that represents a set of 
events indicating association of activities and originators (e.g. (D, Wil) implies that activity D is conducted 
by originator Wil).  ℰ! is the set of possible non-empty finite ordered sequence of events from ℰ. Any 
𝑡 ∈ ℰ! is a possible trace (temporally ordered sequence of events). An event log ℒ is a multi-set (bag) of 
traces. Each 𝑙 ∈ ℒ is a process instance (an one-time execution of the process). We define the following 
related notions: 

• ℛ = [𝓇!,!] is a symmetric, non-empty matrix that reflects the relations between each pair of 
activities in 𝒜; i.e. 𝓇!,! = 𝑎! , 𝑎! ,∀  𝑎! , 𝑎! ∈   𝒜;  

• 𝜋! is an assignment operation on originators that returns all the activities executed by the same 
originator, e.g. 𝜋! 𝑜! = {𝑎!|𝑎! ∈ 𝒜  , 𝑖 = 𝑝,… , 𝑞}; 

• Let 𝑒 = (𝑎, 𝑜) ∈ ℰ be an event, 𝜋!  is an operation that retrieves the activity from the given event, 
e.g. 𝜋! 𝑒 = 𝑎 ∈ 𝒜. 

In defining the notion of behavioral process patterns later, we will make the following assumptions on the 
event logs: (1) Each of the events in an event log has an originator; events without any originator are 
excluded. (2) Each of the events signifies an action; events not referring to an action are discarded as 
erroneous from the event log(s). (3) If the activities are highly related, then the relatedness among 
originators executing them is also high.   

OrgMiner Framework 

The proposed OrgMiner framework is illustrated in Figure 1. The proposed framework is aimed at 
business process analysts as end users and is intended to provide decision support when conducting 
organizational analysis (e.g. learning implicit organizational knowledge from process-aware systems). 
Figure 1 depicts the information system modules of the framework, as well as the knowledge elements 
used and generated by these modules. The OrgMiner framework consists of three modules, namely: 
Pattern Definition, Pattern Selection, and Organizational Mining. Additionally, a dashboard acts as an 
interface between the system and the end users.  
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Within the Pattern Definition module, three basic types of behavioral patterns are articulated: strict order 
pattern, exclusiveness pattern, and interleaving pattern. They are represented as ‘pattern schemas’. Users 
can create more complex or ad hoc patterns based on them. The event log(s) to be analyzed serves as an 
input to this module. The Pattern Selection module relies on the pattern schemas and the event log(s) to 
generate the ‘behavioral relation matrix’ using the proposed Behavioral Pattern Discovery Algorithm 
(BPDA). This matrix essentially captures the instantiation of patterns in the event logs. Selection of 
patterns is based on support and confidence as metrics, resulting in (selected) ‘behavioral patterns’. The 
Organizational Mining module utilizes the discovered behavioral patterns to create ‘organizational 
analytical reports’. In this module, activity distances, activity relatedness, and originator relatedness are 
used as metrics to align the relatedness between activities to the relationships between originators. 
Following this, the module utilizes the proposed Organizational Mining Algorithm (Org-AHC) for 
discovering the organizational model, essentially by clustering originators with higher originator 
relatedness values together in a stepwise manner. Based on the discovered organizational model, 
organizational analytical reports can be generated through (semi-)structured queries for discovery, 
conformance checking, and/or enhancement purposes. Each of the three modules of the OrgMiner 
framework and their interaction with the knowledge elements is discussed in detail next. 

 
Figure 1. OrgMiner Framework 

Module I: Pattern Definition 

The Pattern Definition module concerns tasks such as defining basic behavioral patterns, as well as 
defining ad hoc, more complex patterns based on the basic behavioral patterns. In this article, we restrict 
our scope to basic behavioral patterns. The general notion of patterns in the BPM context has been 
elaborated by van der Aalst and ter Hofstede (2003). Analogous to action patterns proposed by Smirnov 
et al. (2012), behavioral patterns rely on the concept of behavioral relations defined in terms of weak 
order relations (Weidlich et al. 2011). The major difference is that the action patterns are defined for 
business process model repositories, while our behavioral patterns are defined with respect to the event 
logs (with no explicit process model).  
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Definition 2: (Weak Order Relations). Let ℒ be an event log, and ℰ! be the set of all possible traces 
in ℒ. The weak order relation (≻ℒ   (𝑎! , 𝑎!)) contains all pairs of (𝑎! , 𝑎!) such that ∃  𝑡 ∈   ℰ!,  if and only if 
  𝜋! 𝑒! =   𝑎! ∧   𝜋! 𝑒! =   𝑎!   , 1 ≤ 𝑖 < 𝑗 ≤ |𝑡|, where 𝑡 is an ordered trace in ℒ.   

We denote a weak order relation as 𝓇!,! = ≻  !! 𝑎! , 𝑎!   ,   𝑎! , 𝑎! ∈ 𝒜. The integer d denotes the distance 
between the activities   𝑎!   and  𝑎!  in a process instance 𝑙!  (𝑙! ∈ ℒ) and is measured by the transitions 
between the two activities. Notably, the weak order relation is not transitive, i.e. ≻  !!    𝑎! , 𝑎!   ≠  ≻  !!    𝑎! , 𝑎! . 
Further, 𝓇!,! =  ⊁ℒ   𝑎! , 𝑎!  denotes that a weak order relation does not exist between   𝑎!       and  𝑎!. 

We now define three types of behavioral relations, the type of which depends on how the weak order 
relation exists in a pair of activities in an event log. 

Definition 3: (Behavioral Relations). Let ℒ be an event log, a Behavioral Relation 𝓇!,!   ∈   ℛ has to be 
one of the following: 

• Strict order relation (⟶  !
! (𝑎! , 𝑎!)), if and only if 𝑎! ≻ℒ   𝑎!   ∧   𝑎! ⊁ℒ   𝑎!; 

• Exclusiveness relation (+  !
!(𝑎! , 𝑎!)), if and only if 𝑎! ⊁ℒ   𝑎!   ∧   𝑎! ⊁ℒ   𝑎!; 

• Interleaving relation (∥  !
! (𝑎! , 𝑎!)), if and only if 𝑎! ≻ℒ   𝑎!   ∧   𝑎! ≻  ℒ  𝑎!. 

The strict order relation is not transitive, while the other two behavioral relations are transitive. These 
behavioral relations are codified as pattern schemas, and used in subsequent modules.  

The use of such behavioral relations can be illustrated with the activities in the example logs. For instance, 
it exists ⟶  !

! (A,D) because in all instances Activity A precedes Activity D. Similarly, it also holds ∥  !
! (D, E) 

and +  !
!(G,H). Notably, the strict order relation is not transitive, while the other two behavioral relations 

are. In instance 1, it exists ⟶  !
! (𝐴,𝐶) since there are three activities between them. If an activity appears 

several times in a process instance (e.g. in a loop), d is the longest distance between the two activities. For 
instance, in instance 10, it exists ⟶  !

!" (𝐴,𝐷) since maximally there are 16 activities between A and D. 

Module II: Pattern Selection   

The second module, Pattern Selection, utilizes the event log(s) and the pattern schemas from the prior 
module and identifies the behavioral patterns from the event log(s). It generates the behavioral relation 
matrix as an intermediate output for further application purposes.  

 

Before we proceed to the pattern discovery algorithm, we have to define the Behavioral Relation Matrix 
(Definition 4). 

Definition 4: (Behavioral Relation Matrix). Let ℒ be an event log. 𝑅! = 𝒜×𝒜,𝑅! ⊆ ℛ   is a non-
empty matrix that reflects the behavioral relations and their occurrences between each pair of activities in 
𝒜; e.g. 𝑟!,!! = 𝓇!,! , 𝑛 ,∀  𝑟!,!!   ∈   𝑅!, where 𝓇!,! is the behavioral relation between activities (𝑎! , 𝑎!) as defined 
above, while n is the number of occurrences, i.e. frequency of behavioral relation 𝓇!,! in ℒ.  

The Behavioral Pattern Discovery Algorithm (BPDA) illustrated in Figure 2(a) is used to generate the 
Behavioral Relation Matrix for all the pair of activities from an event log, across all its instances. As an 
illustration, a portion of the Behavioral Relation Matrix consisting of activities C, D, E, and F with respect 
to the strict order relation is shown in Figure 2(b). 

In order to determine which of the discovered patterns should be selected, we use two metrics, namely 
support and confidence as defined next in Definition 5. For deriving the pattern selection threshold, we 
given put more emphasis on confidence as since it indicates which relation is of more significance in 
relation to others. 

Definition 5: (Support and Confidence). Let us denote the support of a particular behavioral pattern 
𝑠𝑢𝑝𝑝 𝓇!,!  as the frequency of such pattern appearing between activities (ai, aj) across all process 
instances (𝑙! ∈ ℒ) in an event log ℒ (which is n according to Definition 4 above). Confidence of the 
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behavioral pattern is defined as 𝑐𝑜𝑛𝑓 𝓇!,!    =
!"## 𝓇!,!   

!    
  (𝑘 ≠ 0), where 𝑘 is the number of the process 

instances in the given event log.  

Assuming the frequencies of ⟶  !
! 𝑎!, 𝑎! , +  !

!(𝑎!, 𝑎!), and ∥  !
! (𝑎!, 𝑎!) as n1, n2, and n3, respectively, it can be 

noted that k = n1 + n2 + n3 , since the three behavioral relations are mutually exclusive to each other and 
together comprise the complete event log. As a result, the confidence can indicate the strength of the 
respective relation. As an example, 𝑠𝑢𝑝𝑝 +! B1,H = 5, while 𝑐𝑜𝑛𝑓 +! B1,H    = !

!!!!!
= 5/6. 

	  

	  

Figure 2. (a) Behavioral Pattern Discovery Algorithm and (b) Example Output (partial) 

The BPDA algorithm provides the support and confidence of the patterns between all pairs of activities in 
ℒ. Then, if the supports and confidences of the strict order/interleaving patterns are greater than the user-
defined thresholds, the patterns are accepted; otherwise, the exclusiveness pattern holds. 

There are several methods to determine the threshold(s) for pattern selection purpose, for instance: i) a 
user-defined value; ii) an (semi-)automatic procedure to determine the optimistic values for the 
threshold(s). In this article, we use a combination of both to determine the pattern selection thresholds, as 
discussed below. For the pattern selection purpose, we are interested in activity sets with high support 
and confidence values; thus, we require any selected pattern to have the highest confidence value 
(comparing to other behavioral patterns between the same pair of activities). The pattern selection 
process is similar in theme to the a priori algorithm for association rules proposed in (Agrawal and 
Srikant 1994; Savasere et al. 1995), but the definitions of the support and confidence metrics are unique to 
this application. 

Based on the behavioral relations, we can now define the behavioral patterns as follows. 

Definition 6: (Behavioral Patterns). We use a tuple 𝐵𝑃 = (𝓇!,!   ,𝑑, 𝑐𝑜𝑛𝑓) to define a behavioral 
pattern in an event log ℒ, where: 

• 𝓇!,! is one of the behavioral relations between (𝑎! , 𝑎!), as defined in Definition 3; 
• 𝑑 is the distance between the two activities, as defined in Definition 3; 
• 𝑐𝑜𝑛𝑓 is the confidence of the specific pattern between (𝑎! , 𝑎!), which is defined in Definition 5. 

We use the example log to illustrate the pattern discovery process. Based on the above definitions and 
algorithm, the selected Behavioral Patterns are shown in Table 2. 

In Table 2, the matrix is asymmetric by its diagonal elements. Due to the space limitation, we are not able 
to show the overall process of obtaining the Behavioral Relation Matrix. In essence, however, we run 
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algorithm 1 on the example log (for each instance), and select behavioral patterns with the highest 
confidence value.  

 
Table 2. Example of Selected Behavioral Patterns  

As shown in Table 2, two cellblocks are highlighted (𝐵1 ⇒ 𝐵2  and 𝐵2 ⇒ 𝐻 ). The cell 𝐵1 ⇒ 𝐵2  is 
highlighted since there is only a reversed strict order pattern between (B1, B2): the behavioral relation 
⟶  !

! (𝐵1,𝐵2) does not stand while ⟶  !
! (𝐵2,𝐵1) holds in the given instances in the running example, By 

definition, the strict order relation is not transitive – so that we use the symbol ⟶   (−1) to denote the 
reversed strict order relation. The cell 𝐵2 ⇒ 𝐻 is highlighted since both the values of supports and 
confidences of the strict order pattern and the exclusiveness pattern are equal. Thus, additional measures 
need to be undertaken. The business process analysts can either manually assign a behavioral pattern to 
the pair of activities, or create a new pattern style of interest, in order to resolve such conflicts. In this 
example, we define that a reversed strict order pattern is equivalent to a strict order pattern, and select 
the strict order pattern over the exclusiveness pattern between (B2, H) for the organizational mining 
purpose. 

Module III: Organizational Mining 

We use the behavioral patterns discussed in the section above as the basis of mining organizational 
structure from the event logs. From the pattern matching and selection module, we have the Behavioral 
Relation Matrix 𝑅!   = [𝑟!], which is an |𝐴|×|𝐴| matrix. To quantify and normalize the relations between 
each pair of activities 𝑎! , 𝑎! , we can use the Activity Distance Matrix defined as follows. 

Based on the activity distance d introduced in Definition 4, we formalized the average behavioral distance 
in an event log ℒ (across different process instances) as in Definition 7. 

Definition 7: (Average Behavioral Distances). Let 𝑇(𝑎! , 𝑎!) be the set of all directional sequences 
containing activities 𝑎! , 𝑎!. ∀𝑡! 𝑎! , 𝑎! ∈   𝑇(𝑎! , 𝑎!)  (k = 1, 2, …, m), if the distance between 𝑎! and 𝑎! is 𝑑!. 
Then the average behavioral distance (𝑑(𝑎!, 𝑎!)) between 𝑎! , 𝑎! is given by: 𝑑(𝑎!, 𝑎!)   =   

!!  !
!
!

. 

For instance, from the example log, 𝑑(𝐴,𝐶)   = !!!!!!!!!!!
!

= !
!
. 

We can now compute the activity distance based on the average behavioral distance using the following 
logic. If an interleaving pattern holds between (𝑎!, 𝑎!), the activity similarity between (𝑎!, 𝑎!) would be 
the highest, so the activity distance between them would be the lowest (for computational purpose, denote 
as 0). If an exclusiveness pattern exists between (𝑎!, 𝑎!), the activity similarity between (𝑎!, 𝑎!) would be 
the lowest, so the activity distance between them would the highest (for computational purpose, denote as 
+∞). If a strict order pattern holds between (𝑎!, 𝑎!), then 𝒟 𝑎!, 𝑎! ∈ 0,+∞ .  Since 𝒟 𝑎!, 𝑎!  increases 
as 𝑑(𝑎!, 𝑎!)     increases and 𝑐𝑜𝑛𝑓(𝓇!,!)  decreases, we computationally denote 𝒟(𝑎!, 𝑎!)   =

!(!!,!!)    
!"#$(𝓇!,!)  

 . 
Based on this rationale, the activity distance is defined as follows (Definition 8). 

Definition 8: (Activity Distance). The Activity Distance 𝒟 is defined as follows: 
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𝒟(𝑎!, 𝑎!)   =   

0    𝑖𝑓  𝑎𝑛  𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (𝑎!, 𝑎!)  
  𝑑(𝑎!, 𝑎!)  
𝑐𝑜𝑛𝑓(𝓇!,!)  

  𝑖𝑓  𝑎  𝑠𝑡𝑟𝑖𝑐𝑡  𝑜𝑟𝑑𝑒𝑟  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (𝑎!, 𝑎!)  

+∞  𝑖𝑓  𝑎𝑛  𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (𝑎!, 𝑎!)  

 

where, conf is the confidence of a behavioral pattern between a pair of activities (𝑎!, 𝑎!); and 𝑑 is the 
average distance between the two activities in the same pattern across different instances.  

The definition of 𝒟 is straightforward and it is represented in a matrix format. With it defined, we can 
define the Activity Relatedness as following (Definition 9). Since the activity distances are located by 
[0,+∞], we use the exponent function of e to normalize 𝐴𝑅 𝑎!, 𝑎!   ∈    [0, 1]. Moreover, we define AR of 
the same activity equals 1, e.g. 𝐴𝑅 𝑎!, 𝑎! = 1. 

Definition 9: (Activity Relatedness). We define the Activity Relatedness (AR) as: 

𝐴𝑅 𝑎!, 𝑎! = 𝑒!𝒟(!!,!!) =   

𝑒! = 1    𝑖𝑓  𝑎𝑛  𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (𝑎!, 𝑎!)  

𝑒
! !(!!,!!)  
!"#$(𝓇!,!)  

      
      𝑖𝑓  𝑎  𝑠𝑡𝑟𝑖𝑐𝑡  𝑜𝑟𝑑𝑒𝑟  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

𝑒!! = 0  𝑖𝑓  𝑎𝑛  𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑒𝑥𝑖𝑠𝑡𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

 

In Definition 9, e is the mathematical constant. 	  

  

  

Figure 3. Example Pattern Application Metrics 

In order to map the AR to the relatedness between originators, we need to use the assignment operation 
𝜋! defined in Definition 1. According to Definition 1, 𝜋! 𝑜! = {𝑎!|𝑎! ∈ 𝒜, 𝑖 = 𝑝,… , 𝑞}. With the help of the 
assignment function 𝜋!, we can now define the Originator Relatedness (OR) as following (Definition 10). 

Definition	   10:	   (Originator	   Relatedness).	   For any pair of originators 𝑜! , 𝑜! ∈ 𝒪, through the 
assignment function we can get 𝜋! 𝑜! = {𝑎! 𝑎! ∈ 𝒜, 𝑖 = 𝑝,… , 𝑞, 𝑝 < 𝑞 , 𝜋! 𝑜! = {𝑎!|𝑎! ∈ 𝒜  , 

𝑗 = 𝑚,… , 𝑛,𝑚 < 𝑛}. Thus, the Originator Relatedness (OR) is defined as:  

𝑂𝑅 𝑜! , 𝑜! =   
𝐴𝑅(𝑎! , 𝑎!)!

!!!
!
!!!

𝑞 − 𝑝 − 1 ×(𝑛 −𝑚 − 1)
, 𝑖𝑓  𝑜! ≠ 𝑜!   

1, 𝑖𝑓  𝑜! = 𝑜!
 

The OR metric is transitive/symmetric (e.g. 𝑂𝑅 𝑜! , 𝑜! =   𝑂𝑅 𝑜! , 𝑜! ). Also, in order to achieve more 
accurate organizational models, a threshold (γ) on a particular activities undertaken by a specific 
originators is defined (occurrence of the activity by the originator divided by overall occurrence of the 
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activity) – only ARs of the activities greater the threshold will be considered in the calculation of OR. For 
instance, the occurrence of Activity A by originator Mike in the example log is 4/6 = 0.67. Since the 
sample size of the example log is small (6 instances), we hereby set the threshold to 0. 

Figure 3(a) shows the Activity Distance Matrix between the activities in the example log based on 
Definition 8. The cells highlighted in pale blue reflect the interleaving patterns between the activities (e.g. 
(B2, B3)); the cells highlighted in dark blue reflect the exclusiveness patterns between the activities (e.g. 
(A, B1)); the other cells reflect the strict order patterns. Figure 3(b) shows the AR metric between the 
activities in the example log based on Definition 9. It may be noted that the cells highlighted in dark 
yellow are rounded to 0. Figure 3(c) shows the OR metric between the activities in the example log based 
on Definition 10. 

 

 
(b) The Organizational Model from the Example Log 

Figure 4. (a) Org-AHC Algorithm and (b) Example Organizational Model 

Abovementioned metrics can derive a flat organizational model; however, organizational models often 
follow a hierarchical fashion. To derive hierarchical organizational models, we apply an Agglomerative 
Hierarchical Clustering (AHC) technique adapted from the group-average AHC algorithm proposed in 
(Shepitsen et al. 2008). The proposed Org-AHC clustering algorithm is shown in Figure 4(a). 

The Org-AHC algorithm conducts stepwise clustering on originators when OR between two originators 
are greater than the threshold (measure) at level 𝑘 ∈ [1, 𝒪 ]. It then moves up to the (k - 1) level with 
threshold updated to (measure + step). The algorithm halts at (k = 1), which implies that all originators 
belong to the same cluster. 

Using the example log shown in Table 1, we can obtain the Activity Relatedness Matrix (based on 
Definition 9) and OR matrix (based on Definition 10). By applying the Org-AHC algorithm, the 
organizational model in the form of a dendrogram is shown in Figure 4(b). It can be noted that {John, 
Sam, Pete, Sara} are merged into the same organizational unit (or role) since they undertake similar 
activities in the example log – thus, they are labeled as ‘in-house’ reviewers. Similarly, {Carol, Pam} 
(‘external reviewers’) and {‘Anne, Mike’} (‘editors’) can be labeled in the organizational model. The only 
issue in this organizational model is that originator Mary should be grouped with {Carol, Pam} since 
Mary is an external reviewer according to Table 1; although originator Wil should be grouped with {Anne, 
Mike} because he is some kind of decision maker (e.g. ‘editor-in-chief’). The reason causing this issue is 
that there are some short loops (e.g. E-F-D, E-D) in the example log – thus, the pattern between each pair 
from Activities D, E, and F are all interleaving. Also, in this small example, Wil and Mary only conduct 
one activity respectively (‘Wil, D’, ‘Mary, F’) – which erroneously increases their originator relatedness. 
One approach to counteract this issue is to increase the size of instances so that the originators would 
possibly have more than one activity. Another way to amend this issue is to develop a method to deal with 
the short loops in event logs. 
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A Case Study  
For the case study, we selected the complete “review process” event log (c.f. 
http://data.3tu.nl/repository/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe). The event log contains 
10,000 traces (papers) and 236,360 events (in 8 distinct event classes). 10 originators are involved in the 
event log. The reviewing process is similar to the one discussed in the example log. Since the sample size 
of the selected event log is big, we set the threshold γ = 0.1. 

As discussed earlier, the output of each module is shown in Figure 5. 

 

    

   

Figure 5. Case Study Artifacts 

The outputs shown in Figure 5(a) – (e) use similar notations, comparing to the ones shown in the prior 
section (Table 2, Table 3, and Figure 3(b)). We can roughly divide Figure 5(e) into three parts. The most 
left side of Figure 5(e), containing {Sara, Pete, Mary}, consists the ‘external reviewers’ group. The middle 
part of Figure 5(e), containing {Sam, Carol, John, Pam}, consists the ‘in-house reviewers’ group. The 
‘external reviewers’ group and the ‘in-house reviewers’ group are merged together as the ‘reviewers’ 
group. The most left side of Figure 5(e), containing {Mike, Anne, Wil}, consists the ‘editors’ group. Then 
the ‘reviewers’ group and the ‘editors’ group are merged together.  

Based on the assumption that no explicit process model and organizational model exists on selected event 
log, we conducted an empirical evaluation on the discovered organizational model for its accuracy. Four 
researchers were asked to create the organizational model based on the “review example large” event log. 
To keep the evaluation unbiased, we did not show the organizational model in Figure 5(e) to the 
researchers until they created their own results. The results after reconciliation from the researchers are 
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shown in Figure 6. We use the Cophenetic Correlation Coefficient (CCC) (Fowlkes and Mallows 1983) to 
evaluate the accuracy of the organizational model illustrated in Figure 5(e), using the model in Figure 6 as 
the “ground truth”. The CCC values lie in the interval [-1,1] – if the CCC value is close to 1, the two 
dendrograms are of higher resemblance – meaning the model in Figure 5(e) is more accurate. The CCC 
value between the two dendrograms is 0.791, which is closer to 1 than to 0 – which indicates that the 
organizational model generated by the OrgMiner framework is in accordance with the judgments from 
domain experts. 

 
Figure 6. Manually Constructed Organizational Model 

Conclusion 
We have proposed a behavioral pattern based framework (namely OrgMiner) in this paper. We have 
defined the concept of behavioral patterns, which rely on the weak order relation appearing in event logs. 
Besides, we quantify the behavioral patterns through different metrics and then apply them for 
organizational mining purpose. In this way, organizational models clustering originators of activities in 
event logs can be constructed without explicit process and/or organizational models. Through an 
empirical evaluation, the organizational models generated by OrgMiner are satisfactory for further 
analytical purposes.  

To increase the accuracy of mined organizational models, we need to develop a method to deal with the 
short loops in event logs and to improve the sensitivity of our approach. Also, we only considered the 
sequential relations between activities in event logs; in the future, more domain-specific knowledge (e.g. 
in the form of domain ontologies) might be utilized to derive more complex relations – such domain 
specific knowledge may be extracted from other organizational knowledge artifacts such as existing 
process models, business policies, and so forth. Furthermore, we believe the identified behavioral patterns 
can be applied for other PMA goals, such as social network analysis, decision point mining, mining 
dataflow and/or data object interactions, performance checking, and cost-benefit analysis. We also 
acknowledge that, our work highly relies on the availability, meaningfulness, and correctness of the event 
logs. This implies requiring a pre-processing step in the form of normalizing the event logs for ensuring 
their meaningfulness, and/or merging event logs from different information systems together, thus 
preparing them for applying our organizational mining approach on them. These are avenues for future 
applications of the proposed OrgMiner framework. 
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