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Abstract 
Investment in information technology (IT) has been growing rapidly and one key reason for investing in 
IT is to improve information quality (IQ). Timeliness is an important IQ dimension that often needs to be 
improved for decision making. Especially in the era of big data, timeliness becomes more valued because 
of challenges of massive data size and high dimensionality. Many financial analyses require timely data to 
support time-critical decision making. In this paper, we develop a novel index method and effective query 
algorithms to reduce latency of querying high-dimensional data. The effectiveness of point, range, and 
similarity queries implemented using our methods is evaluated using a high-dimensional testbed 
conducted using real world financial data. Results show that our method outperforms existing methods in 
query speed of three types of queries frequently used in financial decision making.  
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Introduction 
Investment in information technology (IT) has been growing rapidly in the past few decades. One of the 
main objectives of investing in IT is to provide “the right information to the right people at the right time”, 
i.e., to improve information quality (IQ) in organizations. This is particularly true given that information 
quality has been recognized as a multi-dimensional concept with dimensions such as accuracy, timeliness, 
and relevancy (Wang and Strong 1996). 

For the timeliness dimension, we distinguish between two aspects. One is about the currency of data, 
which can be defined as “the extent to which the age of the data is appropriate for the task at hand” (Wang 
and Strong 1996). The other concerns the latency of data delivery, which can be measured by the time it 
takes to deliver the requested information. Latency leads to the poor timeliness, and then reduced utility 
of the information, i.e., it takes too long to deliver the data so that by the time the data eventually arrives 
it is already outdated to the time-critical decision making. 

In the era of big data, being able to find and deliver the requested information quickly has become 
increasingly important. Many financial decision making tasks are time-critical and latency in data delivery 
will reduce the value of information to decision makers. In this research, we will focus on this latency 
issue and develop a novel method to improve the query processing speed for high dimensional financial 
data in relational databases. Indexing has been the primary approach to speed up query processing. 
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Numerous indexing techniques have been developed. However, most of these existing techniques perform 
poorly with high dimensional data. We addressed this particular issue by developing a Partition-Labeling 
technique to create a tree-based index. We called this technique the PL-tree indexing method.  

This research makes the following contributions. First, we adopt the PL-tree indexing method that we 
have previously developed (Wang et al. 2013) for financial data;  second, we develop a scalable querying 
system of point, range, and similarity queries for financial data; third, we evaluate the effectiveness of our 
system using a database of real world financial data of 26,649 firms from 1993 to 2012. 

The structure of the paper is as follows. Section 2 gives a brief review of literature, including IQ issues, 
financial analysis methods and query processing techniques used in database and data mining. Section 3 
presents our query processing system for financial data based on the PL-Tree index. Section 4 describes 
the empirical experimental results showing that our method can index and retrieve the data efficiently. 
The final section summarizes the contributions of the paper and points out areas for future research. 

Literature Review 

Timeliness and Financial Decision Making 

Timeliness is one of the important IQ dimensions that organizations try to improve with IT investment. In 
this research, we will focus on a specific technique for improving timeliness. Several other factors 
contribute to timeliness issues.  For example, when there is a large amount of data, delays will occur if 
communications and data processing technologies are inadequate (Strong et al. 1997). In large Enterprise 
Resource Planning (ERP) systems, users may withhold data entry for as long as possible when they fear 
potential adverse effects to downstream users and difficulties in data cleaning afterwards (Strong and 
Volkoff 2005).  

Timeliness can affect, and be affected by, other IQ dimensions. For example, a lack of timeliness can lead 
to reduced accuracy of related data in large ERP systems because of tight-coupling of such systems (Cao 
and Zhu 2013). Spending time on cleaning data can improve accuracy at the price of reduced timeliness. 
In this case, a decision maker can optimize the tradeoff using techniques such as those described in 
(Ballou and Pazer 1995). The impacts of timeliness on accuracy and completeness with several 
architectural choices of distributed systems have been studied to help choose optimal system 
configurations (Cappiello et al. 2003). The dependency among quality dimensions (including timeliness) 
has also been investigated conceptually (Amicis et al. 2006; Barone et al. 2010) and empirically (Strong et 
al. 1997). 

 
Figure 1. Financial Analysis and Decision Making 

There has been an increasing need for better understanding the financial market since the recent financial 
crisis. With increasing amount of data and volatility of the market, it is important to provide the desired 
information in a timely manner. Figure 1 illustrates a typical scenario where decision makers draw 
information from multiple sources to produce insights for time-critical decisions. The latency of delivery 
for each information source will affect the response speed of the final action. Some financial analysis 
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could be prepared off-line, but in many cases the historical data should be analyzed on-the-fly. In such 
cases, the latency of delivery for the massive historical data could be the bottleneck in a time-critical 
decision making process. 

For example, when a significant event is detected in Twitter feed and market begins to react to it, analysts 
need to quickly evaluate the situation by running a number complex models, which require relevant 
information from historical data bases. Each data source presents its unique challenges. Our research will 
focus on delivering historical data. Over time, data from the other sources will be part of historical data. 
The main challenges of historical data are in its large volume and high dimension. In terms of volume, a 
typical historical database has information about more than 30,000 companies spanning multiple 
decades. In terms of dimension, hundreds or thousands of attributes are used to describe each firm. A 
taxonomy recently adopted by the U.S. Securities and Exchange Commission to companies to describe 
their financial has more than 15,000 concepts (Zhu and Wu 2014).  

Many financial analyses need not only base financial values (e.g., total assets and sales) but also financial 
ratios (Groppelli 2000) which are derived from base values. Financial ratios have been widely used in 
economics, finance, and accounting research to benchmark bank performance (Ho and Yun-Shan 2006), 
identify patterns in industry sectors (Gombola and Ketz 1983), and predict bankruptcy (Altman 1968; 
Atiya 2001; Ravi Kumar and Ravi 2007). The effectiveness of different financial ratios in producing useful 
insights has been studied in (Chen and Shimerda 1981). Among the identified financial ratios, 10~30 of 
them (Ho and Yun-Shan 2006; Serrano Cinca et al. 2005) are frequently used to sufficiently evaluate the 
performance of a firm. 

Historical financial data is often used as input to analytics and data mining methods (Wu et al. 2008) to 
evaluate and predict financial performance. For instance, bankruptcy prediction studies published during 
1968-2005 have used artificial neural networks (ANN), case-based reasoning, decision trees, and several 
other methods (Ravi Kumar and Ravi 2007). ANN has been used with 16 financial variables and 11 
macroeconomic variables to predict firm performance (Lam 2004). Genetic algorithms have been applied 
to optimize financial ratio set and predict financial distress (Sun and Hui 2006). A model using decision 
tree and five financial ratios to have been used to predict the one-year-ahead changes of the stock 
earnings (Wang et al. 2009). Clustering can be used to eliminate the use of redundant financial rations in 
financial analyses (Wang and Lee 2008).  

Despite the importance of historical data in financial analysis, there is no testbed for evaluating query 
efficiency. This research will develop a testbed using real world financial data. 

Techniques for Efficient Queries 

To implement the financial analyses in practice to deliver timely results, the input data must be obtained 
quickly. As noted earlier, financial data for a given analysis usually has 10-30 dimensions, which can be 
considered as high-dimensional data. High dimensionality is a result of trying to describe the objects via a 
collection of features, compared to traditional data (e.g. 2-D image, 3-D spatial data). We define the data 
of more than 3 dimensions as high-dimensional data. Sometimes, the term ultrahigh dimensionality is 
used to refer to hundreds or thousands of dimensions. In a high dimensional space, data is sparse and 
distance calculation is computationally intensive, which makes it difficult to find desired information. 
These problems are known as the “curse of dimensionality” (Bellman 1961). In the past several decades, 
many indexing methods for multidimensional data have been proposed to solve these problems. The R-
tree family is the most popular indexing structure including many indexing methods. Among these 
methods, R*-trees (Beckmann et al. 1990) improved the R-trees (Guttman 1984) by minimizing the 
coverage and overlap between rectangles, which work well in many applications. Surveys of common 
indexing methods can be found in (Böhm et al. 2001). In this paper, we build the index of financial data 
by using a new indexing algorithm introduced in (Wang et al. 2013), which is developed for indexing high-
dimensional data and outperforms the existing indexing methods on different queries. 
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Figure 2: Partition-and-Label Process of PL-Tree 

Methodology 
In this research, we have designed a scalable query processing system for financial data. The system 
contains several components: data collection, index creation, and query processing. In particular, we 
focus on using index high dimensional data to ensure the timeliness, accuracy and completeness of the 
query result. 

PL-Tree Algorithm 

Our method is based on an indexing technique called PL-Tree that we have previously developed (Wang 
et al. 2013). The PL-Tree is a novel indexing algorithm for processing high-dimensional data. It uses 
algebraic techniques to reduce the negative impacts of the “curse of dimensionality”. The PL-Tree 
supports efficient point queries, range queries, and k-nearest neighbor (kNN) queries, with the following 
additional properties: 1) overlap free; 2) strong scalability; 3) distribution insensitivity. These properties 
make it appropriate for indexing financial data, which are unevenly distributed and of large volume. 

The main idea of the PL-Tree is to partition the multi-dimensional space into hypercubes recursively and 
map each hypercube into a unique scalar label. The algorithm includes the following steps: 

1 Partition the space into hypercubes using 𝑈 = {𝑢!,… , 𝑢!}, where 𝑢! is calculated as the optimal 
bin-width according to the data distribution on the i-th dimension. 

2 Map data points in each hypercube to the minimum point of the hypercube. 
3 Label each hypercube with a scalar value generated by applying Cantor pairing function 

hypercube (Dovgoshey et. al. 2006) on the minimum point of the hypercube. The Cantor pairing 
function is a bijection between vectors and scalars, the bijective property ensures that the labels of 
the hypercubes are unique. 

4 Repeat the partition-label procedure if a hypercube contains more data objects than a pre-
determined bound (e.g. the size of a database page). That is, the hypercube is considered as a new 
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space and partitioned into sub-hypercubes, data objects in this new space are mapped and labeled 
recursively. 

If we use a node to represent a hypercube and the sub-hypercubes as its children identified by a unique 
label value, the final structure of the data space can be represented as a tree of labels where the root is the 
node representing the whole data space and the leaves contain the data objects.  

The PL-Tree index is constructed based on a recursive Partition-and-Label procedure. Figure 2 shows an 
example of constructing a PL-Tree from 7 data points in the 2-dimensional space. Suppose we have 7 data 
points and each node of the PL-Tree contains no more than 2 points. Figure 2(a) is the partitioning step 
where the points are partitioned into different sub-hypercubes. For a hypercube, we calculate a vector 
𝑈 = {𝑢!,… , 𝑢!} where 𝑢!  is the optimal bin-width for the data value projected to the i-th dimension 
(𝑈 = {3.0, 3.0} in the example). The hypercube is partitioned by dividing the coordinates of i-th dimension 
by 𝑢!. Figure 2(b) is the mapping step, where each data point is mapped to the minimum point of the 
hypercube, a minimum point is the integer result of the division where the divisor is 𝑢! in the i-th 
dimension. Figure 2(c) is the labeling step. Every point is assigned with a label calculated by the Cantor 
pairing function on its mapped minimum point. In Figure 2(d), since there are more than 2 points in the 
middle sub-hypercube, a recursive procedure is needed to partition and label the three points. Figure 2(e) 
shows the final PL-Tree indexing these 7 points, as well as the hierarchical partitions of the data space. 

Query algorithms 

We use PL-Tree indexes to support the efficient implementation of three types of queries: point query, 
range query, and similarity query.  

Point query 

A point query is the simplest searching operation in a database system. Given a query point (a vector of 
attribute values), a point query asks for all the records with the exactly same values to the query point. 
The point query algorithm of our method is straightforward which starts from the root of the PL-Tree and 
search down to a leaf node, then search the same points in the leaf node. 

Range query 

A range query is a common database operation that retrieves all records where some value is between an 
upper and lower boundary. For example, suppose we have companies with their liquidity ratios, a range 
query may asks for the companies that have current ratio between 1.5 and 1.8 and quick ratio between 1.0 
and 2.0.  

 
Figure 3: Range Query Illustration 

The range query algorithm in a PL-Tree works as follows. Given by a range Q, it starts from the root of the 
tree. For each node, the algorithm examines its hypercube with Q and identifies the innerblocks (the sub-
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hypercubes contained in Q) and outerblocks (the sub-hypercubes intersect with Q) by checking the labels 
that indicate the information of the coordinates of sub-hypercubes. For each innerblock, all data points 
(records) in it are returned; for each outerblock, we launch another range query on the sub-hypercube 
recursively. Figure 3 is an example of such range query algorithm, it firstly check the four sub-hypercubes 
of the root, and get 1 innerblock (left-top shadowed cube), 1 outer block (the center dark cube), and other 
2 hypercubes outside the range. Then the data items under the node of the innerblock would be all 
returned, and the node of the outerblock would be checked with the query range recursively. 

Similarity query 

Identification of similar firms is important to both research and practice. Investors often benchmark a 
firm against similar ones. Target firms for merger and acquisition are usually identified using a similarity 
search. In our method, we implement a similarity query to find the firms with similar performance 
according to a set of financial items. The similarity query is based on the kNN query: given a query point P 
and a value k, a kNN query returns k data points which are closest to P.  

Suppose we have some firms in the index and each firm consists of d values. Given a value k and a firm 
𝑃 = (𝑟!, 𝑟! ,… , 𝑟!), the similarity query is to find k firms that are most similar to the given firm. The 
similarity is measured by the weighted Manhattan distance function 𝑑𝑖𝑠𝑡 𝑋,𝑃 = 𝑤! 𝑥! − 𝑟!!

!!!  where 
𝑋 = (𝑥!, 𝑥!,… , 𝑥!) could be any firm. We use the algorithm described in the paper (Hjaltason and Samet 
1999). In the similarity query, the algorithm maintains a priority queue containing objects (node or data 
entry) sorted by their MINDIST to the query point P. The hypercube of a node is defined as a pair of the 
lower boundary 𝐿 = (𝑎!, 𝑎!,… , 𝑎!) and the upper boundary 𝑈 = (𝑏!, 𝑏!,… , 𝑏!), and the MINDIST of a node 
to P is defined as: 

MINDIST 𝐿,𝑈 ,𝑃 = 𝑤!(𝑟! − 𝑠!),
!

!!!

  where    𝑠! =
𝑎! , 𝑖𝑓  𝑟! < 𝑎!
𝑏! , 𝑖𝑓  𝑟! > 𝑏!
𝑟! , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And the MINDIST of a data entry to P is just the distance between these two points. 

Initially, there is only the root node in the priority queue. Each time the object with the smallest MINDIST 
is retrieved from the queue. If the object is a node, we expand it by pushing its children into the queue, 
using the MINDIST as the key. If the object is a data entry, then it would be reported as the next similar 
data point. From the definition of MINDIST, we know that, if all weights are non-negative (𝑤! ≥ 0  ∀𝑖 =
1,2,… ,𝑑), the value of MINDIST of a hypercube must be smaller than that of any point contained in it. 

Performance Evaluation 
We evaluated the performance of the method using two real world datasets with 6 and 14 dimensions, 
respectively. We compare the performance of our method against the R*-tree (Beckmann et al. 1990) and 
sequential scan for the three types of queries. R*-tree is a commonly used indexing mechanism for multi-
dimensional data in existing database applications (e.g. Oracle spatial index, and RTREE in MySQL). 
Sequential scan, which scans through the entire dataset to obtain query result, serves as the base line. We 
use number of page accesses and query execution time as the metrics for performance measurement. 

Experiment Database  

We construct the experiment database to store all necessary base values and the financial ratios derived 
from these base values. The raw data is the COMPUSTAT annual data of 26,649 industrial companies 
between 1993 and 2012, of a large number of financial items. From the massive data items, we pick 19 
useful items, including six firm’s identifications (e.g. CUSIP), the date information (data year – fiscal), 
and twelve commonly used financial variables (e.g. Assets – Total). Table 1 shows the details of the data 
items in the database.  

There are missing values in the raw data. We mark missing values as infinite and rewrite range queries to 
properly handle this treatment. This is done by assuming that each attribute has a finite maximum value, 
and for certain range queries we add an upper boundary condition with the maximum values of the query 
attributes. For example, assume we have a range query on the attribute 𝑎! to find all records with 𝑎! ≥
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1.5. This condition is rewritten as 1.5 ≤ 𝑎! < 𝑎!!"# where 𝑎!!"# is the maximum value on the attribute 𝑎! of 
all data records. 

Item Description 

SMBL Ticker Symbol, used to uniquely identify publicly traded shares of a particular stock. 
CUSIP CUSIP, 9-character alphanumeric code to identify a North American financial security. 

GIC Global Industry Code, segment Global Industry Classification Standard (GICS) codes 
NAICS North American Industry Classification Code 

CIK Central Index Key, given by the United States Securities and Exchange Commission. 
AT Assets – Total, total assets restated up to 10 years. 

CAT Current Assets – Total, represents cash and other assets expected to be realized in cash or used 
in the production of revenue in the next 12 months. 

CEQ Common Equity – Total, the common shareholders' interest in a company. 

CSHO Common Shares Outstanding, represents the net number of all common shares outstanding at 
year-end. 

CLT Current Liabilities – Total, represents liabilities due within one year. 
LT Liabilities - Total 

DCL Debt in Current Liabilities 
LTDT Long-Term Debt – Total, Represents debt obligations due more than one year 

IB Income Before Extraordinary Items, the income of a company after all expenses but before 
provisions for common and/or preferred dividends. 

SALES Net Sales 
RDX Research and Development Expense 
PC_F Price Close - Fiscal Year 

Table 1. Financial Variables in COMPUSTAT annual database 

We also include a subset of frequently used ratios to construct our test database. The selected ratios are 
commonly used in research (Bhojraj et al. 2003; Hrazdil et al. 2013) and practice (such as popular stock 
screeners hosted by Yahoo and Google). We derive the following 11 ratios from the base variables 
described in Table 1: 

1 Current ratios, measures whether or not a firm has enough resources to pay its debts over the 
next 12 months. 

2 Total Assets Turnover, measures the efficiency of a company's use of its assets in generating sales 
revenue or sales income to the company. 

3 R&D-to-Sales Ratio, a useful ratio for comparing the effectiveness of R&D expenditures between 
companies in the same industry. 

4 Net Profit Margin, the percentage of selling price that turned into profit. 
5 Return-on-Assets, indicates how profitable a company's assets are in generating revenue. It is 

always used for comparing competing companies in the same industry. 
6 Return-on-Equity, the rate of return on the ownership interest of the common stock owners, or 

the efficiency at generating profits from every unit of the investments. 
7 Leverage Ratio, a general term for any technique of multiply gains and losses. 
8 Long-term Debt-to-Assets Ratio, indicates the proportion of the company's assets that are 

financed with long-term debt. 
9 Price-to-Book Ratio, a ratio used to compare a company's current market price to its book value. 
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10 Price-to-Earning Ratio, the faster-growing or less-risky firms tend to have higher P/E ratios than 
slower growing or more-risky firms. 

11 Enterprise-Value-to-Scales, a measurement reflecting the market value of a whole business. 

Datasets and Experiment Configuration 

Finally, there are 6 nominal attributes and 24 numeric attributes. In practice, we can create indexes on 
any sets of the attributes for different purposes. In this research, we create two datasets from the original 
database: a lower-dimensional dataset (including 6 basic financial items), and a higher-dimensional 
dataset (including 14 financial variables and ratios). Due to missing values, the number of indexed records 
in the higher dimensional dataset reduced to approximately 76,158.  

We implement the PL-tree and R*-tree indexing algorithms in Python on a machine of 1.8GHz Intel Core 
i5 processor and 8GB 1600 MHz DDR3 memory, running Mac OS system using a SSD drive that has a 
faster disk I/O speed. We apply LRU for buffer management and set access pages of size 4KB. Since the 
query time is mainly determined by the time for disk I/O, our method would outperform existing methods 
even if a slower hard drive is used. Therefore, for each experiment, we compare the performances in term 
of both the number of pages accessed and the total elapsed time in seconds. 

Database Indexes and Queries 

Point Queries 

  
Figure 4: Point Query Performances on Lower- and Higher-Dimensional Datasets 

We evaluate point queries by searching 100 randomly selected points. For point queries on a hierarchical 
tree index, the query cost directly corresponds to the height of the tree. As shown in Figure 4, both PL-
Trees and R*-trees outperform the sequential scan regardless of the data dimensionality. PL-Trees have a 
better performance than R*-trees because the overlap-free property of the PL-Tree guarantees that there 
is only one path from root to leaf for a single point query. As dimensionality increases, PL-Trees maintain 
a constant efficiency but R*-trees’ performance deteriorates. 

Range Queries 

We evaluate the performance of range queries with varying selectivity factors. A selectivity factor is the 
ratio of the numbers of records in the query range to the number of all records in the database. We vary 
the selectivity factor among 0.1%, 1%, 5%, 10%, 20%, and 30%, a reasonably wide range covering most 
scenarios in real-world applications. For each selectivity factor, we execute 100 random range queries and 
compare the performance for different selectivity factors among all indexing methods. 
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Figure 5: Range Query Performances on Lower-Dimensional Dataset 

Figure 5 shows performances of range queries on the lower-dimensional data. For both PL-tree and the 
R*-tree, the number of page accesses and elapsed time increase with increasing selectivity. The increases 
are much more slowly for PL-tree. We know that R*-tree indexing produces nodes with many overlapping 
areas. This weakness worsens with increasing selectivity (and dimensionality, as shown in Figure 6). In 
contrast, PL-tree does not have this weakness so that it scales well as range increases in range queries. 

 
Figure 6: Range Query Performances on Higher-Dimensional Dataset 

Figure 6 shows the performances for the higher-dimensional data. Note that the number records in the 
higher-dimensional dataset is approximately 1/3 of the lower-dimensional dataset. Thus the absolute 
values for PL-tree and the baseline case are actually lower with the higher-dimensional dataset.  

Similarity Queries 

For each dataset, we randomly choose 1,000 companies as the query points for the similarity queries and 
carry out 1,000 similarity queries with different values of K. The similarity query (P, K) will return the 
first K similar points to the query point P. In this experiment, we vary the values of K in 1, 10, 100, 200, 
500, and 1,000. 
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Figure 7: Similarity Query Performances on Lower-Dimensional Dataset 

As shown in Figure 7, both PL-tree and R*-tree have very good performance for similarity queries. That is 
because these two indexes have the following property: the records in the same page are close to each 
other. Again, our method slightly outperforms the R*-tree due to the overlapping-free property of our 
method.  

 
Figure 8: Similarity Query Performances on Higher-Dimensional Dataset 

 

We also carry out similarity queries on the indexes of higher dimensionality. Figure 8 shows that, similar 
to results of lower dimensionality, tree-like indexes still have much fewer page accesses. However, we also 
find that tree-like indexes need extra time to compute MINDIST and maintain priority queue. As a result 
R*-trees have similar performance to the sequential scan for larger k values, but PL-Trees still outperform 
other methods for similarity queries. Our method will outperform even more when the dataset size is 
larger because the distance calculation in our method only depends on the dimensionality, whereas in the 
case of R*-tree, it will increase with both dimensionality and data size as the overlap tends to grow with 
data size.  

Conclusion 
It is important to address the “curse of dimensionality” for financial analyses since they make extensive 
use of high-dimensional data extensively. In this paper, we focus on the timeliness challenge in querying 
high-dimensional data. We have developed a querying system for financial data using the PL-tree 
indexing method. The PL-Tree ensures that the nodes in the tree have no overlap. This property gives the 
method excellent performances for querying large volumes of high-dimensional data. We also evaluated 
the performance of our system on a testbed using real world financial data. The testbed is used to evaluate 
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the performance of the method for point, range, and similarity queries. The evaluation empirically 
confirm the superior performance and scalability of the method over the existing R*-tree method.  

For future research, we will evaluate the method for other commonly used query operations. The testbed 
will also be enhanced with more financial values and financial ratios. We will make the testbed available 
to other researchers who want to perform benchmark testing. We expect that this research will enable the 
development of financial applications to support the time-critical decision-making. 
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