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Abstract 

We examine the main drivers of software maintenance effort and cost. We use the 
‘Distributed Cognition’ framework to hypothesize about how ‘discovery work’ in 
maintenance is effected by two types of cost drivers: system attributes (size, complexity, 
age, etc.) and personnel attributes (number of maintainers, location dispersion, etc.). 
We test our hypotheses using archival data about over 5,000 maintenance projects 
carried out between 2009 and 2011 on 412 different operational systems in a large 
financial institution. We find that personnel attributes are significantly more influential 
than system attributes. In particular, a marginal change in personnel factors is 
associated with effort growing much faster than cost, indicating an escalating marginal 
cost of spreading maintenance work across more maintainers and site locations. We 
also find, counter to expectation, that two system attributes are negatively linked to 
maintenance effort and cost. Implications of these findings for research and practices 
are discussed. 

Keywords:  software maintenance, cost drivers, system attributes, personnel attributes, 
discovery work, distributed cognition

1. Introduction 

Between 50 and 80 percent of the lifetime cost of a software system is due to maintenance work (Boehm 
et al. 2000). Software maintenance is challenging because it requires understanding and documenting 
changes to the system, retaining the system’s functional integrity during and after maintenance work, 
minimizing structural decay and growth in complexity of the system’s code due to the changed or newly 
added functions, and protecting intellectual control over the system from deteriorating due to staff 
turnover and offshoring. 

This paper studies the main cost drivers of software maintenance work and their relative contribution to 
costs. Our focus is on two groups of cost drivers. One covers application characteristics, including: system 
size, system age, software complexity, and so on. Another group covers maintenance personnel attributes, 
including: number of maintainers, their location dispersion, their skills diversity, and their system 
familiarity, among others. Unfortunately, little is known about the relative strength of cost drivers in both 
groups. 

The software maintenance literature has not paid equal attention to these two groups of cost drivers. It 
has been traditionally preoccupied with the effect of system attributes on maintenance cost, on the widely 
accepted premise that maintenance productivity is directly related to the maintainability of the product 
(Banker et al. 1998). On the whole, a multitude of empirical studies confirm this association for multiple 
system attributes (e.g., system size and complexity). By contrast, far fewer studies examine the effect of 
maintenance personnel factors. What we know about these factors comes mostly from research on 
software development, not maintenance. However, there are notable differences between development 
and maintenance. For example, system familiarity plays a much greater role in maintenance than in 
development (Banker et al. 1987), and the number of IT personnel maintaining a system over its lifetime 
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could grow significantly larger than the number of original system developers (Thummadi, Lyytinen and 
Hansen 201). Such differences increase our interest in maintenance personnel factors, especially in light 
of the growth in using multi-site software maintenance and offshoring strategies.  

To address this gap in the literature, this paper studies the effect of software maintenance cost drivers 
using proprietary archival data from a large financial services institution. The data documents software 
maintenance work carried out in the US, UK and several offshore locations, using over 7,500 maintenance 
projects that jointly charged over 15,000,000 person-hours over a three years period (Jan. 2009 - Dec. 
2011).  These projects support over 400 different software systems. The data we use include: ongoing 
UNIT (hour) and USD charges made per project per person per week; system attributes such as age, size, 
complexity, change evolution frequency, and information quality constraints (e.g., meeting stringent 
government regulations); and maintenance personnel characteristics such as the number of maintainers 
working on a system, their site locations, and their skills diversity. 

The paper has two distinguishing features. First, recognizing the importance of ‘discovery’ in maintenance 
(Davison et al. 2000), we use distributed cognition theory to understand how discovery challenges impact 
maintenance productivity. Discovery is the process of learning what one needs to know in order to 
complete effectively a maintenance task subject to software design constraints underlying an existing 
system. Compared to software development, discovery in maintenance presents unique challenges that 
become more crucial as a system and its environment evolve and when the maintenance organization is 
subject to personnel migration, turnover, and geographic dispersion. Distributed cognition theory permits 
suitably reasoning about the effects of such settings on software productivity (Flors and Hutchins 1992; 
Hansen, Robinson and Lyytinen 2012). Another unique feature of this study is the use of both hour and 
dollar charges per project per person. We are able to avoid problems related to aggregating the effort of 
experienced and novice maintainers (Krishnan et al. 2000; Banker et al. 1987).  

Our analysis reveals the relative strength of the main cost drivers in software maintenance. We find that 
maintenance personnel attributes are substantially stronger cost drivers than system characteristics. In 
particular, while a marginal change in system attributes results in both effort (hour charges) and cost 
(USD charges) growing slowly and at the same pace, a marginal change in maintenance personnel factors 
results in effort growing much faster than cost. This indicates the escalating marginal cost of spreading 
maintenance work across more maintainers and more site locations, even when involving cheaper labor 
and offshoring.  

With regard to system attributes, our results also indicate that information quality constraints and system 
age are negatively related to maintenance effort and cost. For information quality constraints, the 
explanation may relate directly to the importance of personnel cost drivers. IT managers at our research 
site explained that these systems require greater care and, therefore, tend to be maintained by the same 
smaller and localized teams (i.e., personnel with higher system familiarity). For system age, although the 
result is contrary to the conventional thinking (Lehman 1996), a few studies do report the same negative 
link we observed (Jørgensen 1995; Jones 2012; Espinoza et al. 2007). One explanation could be that some 
maintenance work is done to reduce the effect of age on complexity.  

Our study has important implications for software maintenance research and practices. It informs about 
the relative importance that should be given to the main cost drivers in planning and budgeting 
maintenance work for existing and new systems, in policies for retiring aging systems, in strategies for 
sourcing maintenance work, and so on. Of particular importance is the need to balance gains expected 
from assigning maintenance work to lower wage labor or offshore locations against the escalating 
marginal cost of dispersing maintenance work across more maintainers with lower system familiarity and 
greater location dispersion. 

The paper proceeds as follows. Section 2 reviews literature on maintenance cost drivers. Section 3 
develops the research model and hypotheses. Section 4 presets the data, empirical analysis, and results. 
Section 5 discusses the main findings, their implications, limitations, and directions for future research. 

2. Literature Review 

This section reviews what we know about cost drivers, or factors driving the effort and cost, in software 
maintenance.  
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2.1. Maintenance Cost Estimation Models 

Models for estimating software maintenance effort and cost are one source of information about cost 
drivers. These models vary on the scope of maintenance work they target: a single maintenance task, a 
system release, or routine maintenance over a long phase or even the entire maintenance phase (Nguyen 
2010). Unfortunately, these models insufficiently inform us about the relative strength of cost drivers. 

Task- and release-level estimation models have a common trait, namely: they treat ‘task size’ as the 
dominant cost driver. Specifically, as seen in (Nguyen 2010), most of these models include task size as the 
only cost driver, where size may be measured as the sum of added, modified and deleted SLOC (Basili et 
al. 1996), function points (Sneed 1995), or modules or subsystems (Ramil and Lehman 2000, 2003). 
These models typically focus on maintenance tasks of one specific type, for example, corrective tasks (De 
Lucia et al. 2005; Basili 1996; Sneed 2004) and adaptive tasks (Fioravanti and Nesi 2001).1 Focusing on a 
single type of maintenance task simplifies the estimation of effort and lowers the need to rely on 
additional cost drivers. In fact, Abran (2000) shows that project effort and functional size are correlated 
strongly enough to yield good models that use only size as an input. Select models use one or two 
additional cost drivers, primarily software complexity and software quality (e.g., Sneed 1995, 2004). 

Phase-level models, which target routine maintenance work of all kinds performed over a lengthy period, 
consider more cost drivers. Examples are COCOMO, SEER-SEM, PRICE-S, and SLIM. In these models, 
maintenance effort is just one of the estimates produced for a new system, based on the same models used 
to estimate the system’s development cost but with some adjustments. COCOMO for Maintenance, for 
example, employs the reuse model for new software development on the premise that software 
maintenance involves adaptation of existing code, just like reused software is adapted to a new system 
context. COCOMO for Maintenance uses 26 cost drivers, of which 22 are used in software development 

effort estimation  (Boehm et al. 2000).2 Among those cost drivers are numerous maintenance personnel 
factors, including ones unique to maintenance (e.g., ‘software understanding’ and ‘programmer 
unfamiliarity’). However, extant phase-level models insufficiently inform us about the relative importance 
of cost drivers for two reasons. First, they take the amount of maintenance needed for a newly developed 
system of a known size to be a generic quantity of some sort. Second, they use forward-looking input 
values for cost drivers based on assumptions made when the new system is developed, not values 
reflecting conditions when the actual maintenance work is done.  

2.2. Factors Effecting Software Maintenance Costs 

Beside maintenance cost estimation models, a wealth of empirical studied identify a host of factors that 
influence maintenance cost but not their relative importance. Chief among these factors are 
characteristics of the system and of maintenance personnel. 

System characteristics generally include the age of the system, its size, the complexity of the software 
architecture and code, the volatility of the system domain, and the need to meet special information 
quality constraints, among others. By now there is little debate about the expected impact of these 

                                                             

1 Software maintenance addresses three groups of activities: correcting a system from actual errors; 
adapting a system to external changes in business rules, government regulations, and technology 
platforms; and, perfecting a system by improving the quality of software. 

2 The 22 cost drivers include effort multipliers and scale factors. The effort multipliers fall into four 
groups. Product characteristics: (1) Required software reliability, (2) Database size, (3) Documentation 
match to life-cycle needs, (4) Product complexity, (5) Required Reusability. Platform characteristics: (6) 
Execution time constraint, (7) Main storage constraint, (8) Platform volatility. Personnel characteristics: 
(9) Analyst capabilities, (10) Programmer capabilities, (11) Personnel Continuity, (12) Applications 
experience, (13) Platform experience, (14) Programming language experience. Project characteristics: (15) 
Use of software tools, (16) Multisite Development as a function of collocation & communication, (17) 
Schedule compression. The Scale Factors are: (18) Precedentedness, (19) Development Flexibility, (20) 
Architecture / Risk Resolution, (21) Team Cohesion, and (22) Process Maturity.  
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characteristics on maintenance effort and cost. Generally, they are all argued to have a positive association 
with maintenance effort and cost, and there is abundant empirical evidence to support this assertion. One 
small exception might be system age: a few studies actually report that age is negatively associated with 
maintenance effort and/or cost (Espinoza et al. 2007; Jørgensen 1995; Jones 2012). 

Maintenance personnel characteristics have a natural link with software maintenance effort. They 
generally include: the number of maintainers working on a system over a given period, maintainers’ 
geographic and/or temporal dispersion, familiarity of maintainers with the system and each other, and 
the diversity of skills of maintainers. However, research on the effect of these characteristics is spares 
(Benestad et al. 2009), and some of its findings are conflicting (see Table 1). For example, some find 
maintenance effort or maintenance productivity to have a weak or no association with maintainers’ 
system experience (Jørgensen 1995), while others find the association to be negative (Banker et al. 1998; 
Espinoza et al. 2007). Most importantly, this research is silent on the relative strength of maintenance 
personnel factors as cost drivers. 

Table 1. Maintenance personnel factors studied and main findings 

Study Independent Maintenance personnel Variables findings 

Graves and 
Mockus (1998)  

• Developer id (who performed the change task?) No significant relationship with 
maintenance effort. 

Jørgensen 
(1995)  

• System experience 

• Maintenance experience (in general) 

Maintainers experienced with the 
system had lower productivity than 
inexperienced maintainers.  

Banker et al. 
(1998) 

• Team system experience (percentage of members 
working on a maintenance project who had worked 
on the system for three or more years) 

Negatively related to maintenance 
project effort 

Banke et al. 
(1987)  

• Team capability (percent of members working on a 
maintenance project rated ‘high’ by other members) 

• Team system experience (percent of members 
working on a maintenance project who are not 
system novices; had 24+ months system experience 
prior to the project) 

• Staff loading (number of work-months divided by 
total project duration; higher loading means higher 
parallelism and more communication on project) 

Software maintenance productivity (Size 
/ Maintenance Cost) positively 
associated with project team capability 
and team system experience, and  
negatively associated with staff loading 
 
 

Banker et al. 
(1991) 

• Team capability ( --- “ ---) 

• Team system experience ( --- “ ---) 

Software maintenance productivity 
positively associated with project team 
capability, but  
not with system experience 

Banker et al. 
(1993) 

• Maintainer skill 

• System experience 

Maintenance effort has a negative 
relationship only with maintainer skill, 
not system experience 

Krishnan et al. 
(2000) 

• Team technical capability Significant positive link with 
maintenance productivity. 

Herbsleb and 
Mockus (2003)  

• Developer span (how many developers were 
involved in performing the change task?) 

• Location (where were human resources located 
physically?) 

Larger, multi-site teams take longer to 
complete same maintenance task. 

Schneidewind 
(2001)  

• Developer span (how many developers were 
involved in performing the change task?) 

No significant relationship with change 
caused defect. 

Mockus and 
Weiss (2000)  

• Developer span (no. developers involved in 
maintenance task)  

• System experience (no. changes made by developer 
on the same system) 

System experience negatively related to 
probability of (post maintenance) 
software failure. 
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3. Theory and Hypotheses 

This section presents our theoretical lens and research hypotheses. Our premise is that much of the effort 
and cost associated with maintenance is linked to the need to do ‘discovery’ work. Building on this 
premise we use the ‘distributed cognition’ framework to theorize about how different cost drivers intensify 
the need for discovery work and, in turn, increase maintenance costs. 

3.1. ‘Discovery’ in Software Maintenance and Distributed Cognition 

A key source of difficulty in software maintenance is discovery, the process of learning what you need to 
know in order to address a task effectively. Discovery, also called “getting started” effort (Fraser et al. 
1997) typically consumes between 30% and 70% of the time required to complete a maintenance task 
(Davison et al. 2000; Pfleeger 2002, p. 475; Pigoski 1996, p. 35). In software development, discovery 
centers around the capture of system requirements and their specification, based on which a system is 
then designed (Hansen et al. 2012). Discovery in maintenance in addition entails understanding the 
existing software design and its underlying design principles, methods, and tools as well as all changes 
previously made to the system (Davison et al. 2000). Thus, discovery in maintenance requires mastering 
not only knowledge of the system domain and system requirements, but also knowledge of the system 
architecture, “library” of system modules and components, design paradigm(s) of the original 
development, and the software development environment and maintenance tools. Mastery of this 
knowledge is the product of continuous work on the system, interaction with other developers and 
maintainers of the system, reading documentation, reading code, experimenting and debugging in a lab 
setting or with a simulator, participating in reviews/testing, building simplified examples, and so on 
(Davision et al. 2000).  

Distributed Cognition (DC) is a framework that offers a rich theoretical lens for understanding how 
challenges in discovery impact software maintenance costs. DC is motivated by research on teams 
engaged in complex tasks (Flors and Hutchins 1992, Hansen et al. 2012). Complex tasks often require 
collaboration between a number of different individuals and technical artifacts. In these settings, 
information processing activities are distributed across members, and much of the cognitive workload is 
“shouldered” by the technical artifacts employed by group members. Together, group members and 
technical artifacts comprise a complex cognitive system within which effective interactions are necessary 
to successfully complete a task. These interactions facilitate exchanging task relevant information, in part, 
through the creation, modification and utilization of artifacts required for the task’s completion. 
Numerous authors have applied the DC framework in the software development context. DC has been 
used to study software maintenance activities (Flor and Hutchins 1991), collaborative work (Rogers and 
Ellis 1994), pair programming teams (Sharp and Robinson 2006), information flow within a dispersed 
agile development teams (Sharp et al. 2012), team strategies in perfective software maintenance 
(Ramasubbu, Kemerer and Hong 2013), discovery of requirements in open source development 
(Thummadi et al. 2011), and discovery of requirements distributed across individuals, organizations, and 
artifacts (Hansen et al. 2012).  

Recognizing that software development and maintenance can be highly social activities involving people, 
software code, and development tools (Flor and Hutchins 1991; Ramasubbu et al. 2013), the DC 
framework lends itself to three closely linked assertions (Hansen et al. 2012):  

1. Cognitive processes are distributed socially across members of a group, where each member may 
play a specific role with respect to the processing of information and initiation of cognitive actions. 
This idea of social distribution has obvious ramifications: the development and comprehension of 
software systems is a function of how well the ‘distributed cognitive system’ performs as a whole. 
Individuals working together on a collaborative task are likely to possess different kinds of knowledge 
and skills, and so they will engage in interactions that allow them to pool the various resources 
necessary to accomplish the tasks. Thus, the ability to bring together individuals from a wide variety 
of technical and functional domains is essential. Moreover, sharing access and knowledge enables the 
coordination of expectations and of actions (Yvonne and Ellis 1994). 
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2. Cognitive processes intertwine internal and external representational structures. Individuals and 
groups integrate their internal representations with external representations of the environment as 
part of their thought processes. Thus, socially-distributed cognitive processes are likely to employ 
both internal and external structures during individually-intensive cognitive tasks. External 
structures in software maintenance include the software code itself, its documentation, and other 
structures that materialize in CASE tools. Consequently, the existence of such artifacts and their 
quality could both enable and constrain software maintenance work. 

3. Cognitive processes may be temporally distributed as well (i.e., cognition is path dependent). The 
distribution of cognition over time implies the use of both social transmission (e.g., project team 
interaction) and material artifacts (i.e., legacy code, software frameworks) to support memory and 
cognitive structures needed to make use of requisite knowledge for completing a task. Indeed, 
maintenance efforts draw heavily upon requirements, software designs and other formal artifacts 
inherited from earlier development and maintenance efforts. Moreover, like in open source 
development, maintenance efforts may rely increasingly on evolving electronic media artifacts for 
social transmission and sharing of requisite knowledge, for example, community forums, email 
threads, chat rooms, and bulletin boards (Thummadi et al. 2011). 

3.2. Hypotheses 

The distributed cognition lens is next to speculate about how maintenance costs are effected by the two 
classes of cost drivers of our concern: system attributes and maintenance personnel factors. 

3.2.1. System Characteristics 

It is widely accepted that maintenance productivity is directly related to the maintainability of the 
software product – its size, complexity, age, and so on. 

System size is a key indicator of maintenance cost (Banker et al. 1998; Boehm et al. 2000). Larger 
systems simply require more maintenance on an ongoing basis. Moreover, in larger systems, more 
components need to be updated, and it is more difficult to know all parts of the software that will be 
affected by changes. Therefore, maintainers need to expend more intellectual effort and time. They also 
need to understand both functional aspects of the software base and technical details of the associated 
code (e.g., file names, variable names, and interface requirements). All of this translates into more time 
and effort spent on discovery work. 

System complexity, which generally refers to traits of data structures and procedures within a software 
product, is another major driver of maintenance cost (Banker et al. 1993, 1998) and error frequency 
(Ohlsson and Alberg 1996). Put in DC terms, the primary artifacts – the software code itself – becomes 
more complex and thus more difficult to integrate with maintainers’ internal representations. In other 
words, software complexity increases the amount of information that needs to be processed to carry out 
maintenance activities. In addition to comprehending each of the individual software modules, 
maintainers must expend additional cognitive effort to understand how the modules are connected 
through input/output relationships and envision how the changes made will affect various modules 
(Banker et al. 1993, 1998). Greater complexity increases the number of those input/output relationships 
modules and obscures them, also necessitating more testing to ensure that modified modules do not 
negatively affect related modules (Boehm-Davis et al. 1992, Gill and Kemerer 1991). 

System age, too, generally has a positive link with maintenance effort and cost. The number of 
maintenance activities is reported to increase with age (Barry et al. 2007). As we said, most systems are 
subject to continuous growth and continuous defect repairs that gradually degrade the software structure 
and increase its complexity. In DC terms, the quality of artifacts (code, documentation, design charts, etc.) 
degrades, making it harder for maintainers to integrate internal and external representations. Hence, over 
time more discovery work is needed since the system becomes less understood by both maintainers and 
users. This, in turn, also increases the rate of so-called bad fix injection and the amount of maintenance 
work necessary to cope with this phenomenon. 
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Information quality constraints refer to special system characteristics that imposes greater demand 
on maintenance resources, both relative to discovery work and to the actual software change. Examples 
include satisfying government regulations (e.g., SOX, HIPAA), handling sensitive (customer) data, and 
meeting unusually high software reliability needs. Some maintenance cost estimation models use special 
parameters to adjust their cost estimates accordingly, for example, ‘required software reliability’ in 
COCOMO for Maintenance (Boehm et al. 2000) and ‘required maintenance rigor’ in SEER-SEM 
(Galorath 2002).  

Software volatility reflects the degree of change of the system domain and technological environment. 
It has been used in a variety of contexts as a measure of the frequency and intensity of system changes 
(Heales 2000; Barry and Slaughter 2000). Naturally, this factor is a fundamental driver of software 
maintenance costs (Banker and Slaughter 2000; Barry and Slaughter 2000). 

In summary, every one of the above system characteristics leads us to postulate that: 

Hypothesis 1: System characteristics – size, complexity, age, information quality constraints, and 
software volatility – are positively associated with software maintenance effort and cost. 

3.2.2. Maintenance Personnel Characteristics  

We focus on three primary personnel characteristics that could be linked to maintenance effort and cost – 
number of maintainers who worked on a system over a given period, their geographic dispersion, and 
their skills diversity. 

Number of maintainers is a primary cost driver in maintenance (Herbsleb and Mockus 2003). In 
software development, adding developers contributes more productive resources, but it also makes it 
more difficult for all developers to interact and to integrate their individual work into a single working 
product (Herbsleb and Grinter 1999). In software maintenance, an additional and more crucial issue is 
declining system familiarity and declining familiarity among maintainers. A system in its first year or two 
of operation is maintained by people from the original development team who are relatively familiar with 
the system, but as time passes personnel migration and resource constraints necessitate bringing on 
board maintainers with little or no familiarity with the system. Declining system familiarity makes it 
harder for maintainers to integrate external representations with their internal representations. This 
makes it more difficult to pinpoint swiftly and accurately where in the software code changes need to be 
made (Banker and Slaughter 2000), and complicates the implementation, testing, and integration of 
changed into the software code base (Curtis et al. 1979, 1988; Walz et al. 1993). Declining familiarity 
among maintainers has different implications. Maintainers who worked together on the same system start 
a new task with better expectations about each other, are more effective at locating specialized knowledge 
and coordinating expertise (Faraj and Sproull 2000), and have a better understanding of how their 
individual work contributes to each other’s tasks. Declining familiarity among maintainers, therefore, 
means less effective communication (Cramton 2001), greater difficulty pooling the various necessary 
skills and resources, poorer coordination and division of labor, and greater uncertainty about other 
maintainers’ capabilities. In sum, a larger number of maintainers translates into greater discovery effort 
and lower maintenance productivity. 

Skills diversity, too, increases the need for discovery work. Typical maintenance tasks involve a 
common set of skills: business analysts, application developers, application support analysts, quality 
assurance analysts, and the like. Additional skills are necessary as system familiarity degrades, including: 
IT architecture managers, database management analysts, infrastructure services support analysts, 
business management analysts, information risk and business resiliency analysts, performance engineers, 
distributed computing engineers, and even IT program managers. Such additional skills are more costly 
but necessary to do discovery work on less familiar systems. Naturally, greater skills diversity also means 
increased coordination complexity and overhead.  

Location dispersion of maintainers is another factor complicating discovery work. Maintainers may be 
drawn from diverse site locations because of resource constraints and/or attempts to reduce cost (e.g., 
offshoring). As a result, the frequency and timeliness of communications can be adversely affected, often 
due to the channeling of communications into less interactive media with fewer contextual references. A 
study of co-located and dispersed agile software development teams found that: (1) dispersed teams rely 
on more digital mediating artifacts (OneNote, recordings etc.), making information less accessible to 
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newcomers or outsiders than with co-located teams; and (2) meetings of dispersed teams used no clear 
equivalent to such artifacts as Story Cards and Wall, but rather screen sharing was used to focus attention 
and even then members often used just audio contact instead of sharing of screens (Sharp et al. 2012). 
Other results of location dispersion are less shared context for and understanding of task work (Cramton 
2001, Hinds and Mortensen 2005), and fewer opportunities for informal and spontaneous 
communication (Kiesler and Cummings 2002; Herbsleb and Mockus 2003). Again, all of this translates 
into more coordination overhead and substantial delays when initiating contacts, locating and pooling 
expertise, and resolving issues (Carmel 1999). Sharp et al. (2012) specifically report that situational 
awareness is lower in dispersed teams because information flows were open (i.e., anyone could contact 
anyone else) but restricted (i.e., contacts had to be targeted and explicit), and individuals were the ones to 
decide what artifacts to share and with whom (unlike in co-located teams where social context played an 
important role). More broadly, Herbsleb and Mockus (2003) found that distributed work items take over 
twice as long to complete compared to when work is co-located. The explanation is twofold. First, co-
located members interact with more people working on the same project, get useful work-related 
information through casual conversations, and receive from coworkers timely information about changes 
in current plans. Second, distributed members have more difficulties identifying distant colleagues with 
needed expertise and to communicate effectively with them. Thus, distributed maintenance work is likely 
to require more people in order to tap all the expertise needed to complete those tasks. The main 
implication is that distributed maintainers have less system familiarity and familiarity with one another. 
Moreover, distributed maintainers are less aware of the work going on in other site locations and are not 
well positioned to ask questions when the need arises, making it harder to avoid software changes that 
conflict with code written and maintained remotely. Therefore, more work would be necessary to resolve a 
greater number of conflicts.  

In light of the above, we formulate our second hypothesis: 

Hypothesis 2: Maintenance personnel factors – number of maintainers, their skills diversity, and 
their location dispersion – are positively associated with software maintenance effort and cost. 

As organizations become more concerned with combating the effect of software entropy due to aging and 
increased complexity, they turn some of their maintenance attention to perfective activities aimed at 
improving software quality (e.g., system re-engineering). This assertion is supported by studies observing 
a negative association between system age and maintenance effort and/or cost (Jørgensen 1995; Jones 
2012). In any event, such efforts increase the demand for maintenance personnel, and the possibly that 
they would be more geographically distributed. Thus, while the impact of system attributes on 
maintenance effort and cost may reach and pick and start diminishing at some point, the impact of 
maintenance personnel attributes may continue increasing over time. In this light, we postulate that: 

Hypothesis 3: Maintenance personnel factors are more strongly associated with software 
maintenance effort and cost than system characteristics. 

4. Data Analysis and Results 

This section presents the data and analyses used to test the hypotheses as well as the results. Examination 
of the data leads us to log-transform most measurement items in the data, consistent with past research, 
and to map some of those items to two orthogonal factors. Then, we use ordinary least square regression 
(OLS) to test the hypotheses and verify the robustness of results using numerous statistical diagnostics. 
Finally, we report the main results in relation to the research hypotheses. 

4.1. Data and Descriptive Statistics 

To test the research hypotheses, we use archival maintenance data from a large financial institution. Our 
data cover maintenance work done on 412 different operational systems over a 3-year period (2009-11). 
In our research site, a system may be subject to ongoing maintenance activities of all kinds (corrective, 
adaptive, and perfective), carried out by multiple maintenance projects. Every project is executed by 
maintainers having different skills (or job titles) and working at different site locations. We compute the 
cost of a project maintaining a particular system as the sum of daily person-hours (UNITs) and US dollars 
(USD) charged for every person working on the project.  
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Data on hour and USD charges come from the organization’s project reporting system, offering two 
benefits. First, these data are used to chargeback labor costs to requesting system owners, so it is accurate 
enough for the purposes of this study. Second, inclusion of hour and dollar charges per project per person 
helps to avoid problems related to aggregating the effort of experienced and novice maintainers (Krishnan 
et al. 2000; Banker et al. 1987). Using data on both UNIT and USD charges per project per person allows 
us to (indirectly) characterize the actual work-hours expended along experience and skill level.  

The variables we use and their item measures in the data are listed in Table 2. The maintenance costs of a 
system over the 3-year period is the dependent variable, measured by the total UNIT and USD charged by 
all projects servicing that system for years 2009-11.  

Table 2. Variables and their definition 

 Variable Definition & Item Measures (shown in parentheses) 

System 
Attributes 
(independent) 

Age Number of years from a system’s go-live date (till Dec. 2011) 

Size 
System size measured by the: number of source lines of code (SLOC), 
number of classes (NoClasses), and number of functions (NoFunctions). 

Complexity 
Software complexity measured by a complexity ‘density’ factor 
(ComplexDensity), a composite factor of class complexity, function 
complexity, and more granular complexity measures 

Information 
Quality 
Constraints 

Indicator of whether a system handles sensitive customer data, including 
financial holdings information, account information, and personal details 
(PersonInfo).  

Software Volatility 

System’s change evolution scale and frequency, proxied by the number of 
maintenance projects (NoProjects) over a given period; past research 
similarly measured software volatility as the number of enhancements 
(projects) per unit of application over a specified time frame (Banker and 
Slaughter 2000; Zhang et al. 2003). 

Personnel 
Factors 
(independent) 

Number of 
Maintainers 

Number of different IT personnel who did maintenance work on a system 
over a given period (NoMaintainers). 

Location Diversity Number of site locations where the maintainers are located (NoLocations). 

Skills diversity Number of different job titles of maintainers (NoJobTitles). 

System 
Maintenance 
Costs 
(dependent) 

Maintenance 
Effort 

Sum total of daily person-hours charged for every person working on 
projects maintaining a system during 2009-11 (AppUNIT). 

Maintenance Cost 
Sum total of daily US dollars charged for every person working on projects 
maintaining a system during 2009-11 (AppUSD).  

Preliminary analysis of the data shows most item measures to have asymmetric distributions with a long 
right tail. Moreover, univariate analyses show those items to have power-type relationships with UNIT 
and USD costs. This pattern is consistent with the economies and diseconomies of scale reported in the 
literature on software development and maintenance (Banker and Slaughter 1997; Banker et al. 1994; 
Barry et al. 2007; Boehm et al. 2000; Herbsleb and Mickus 2003). Consequently, we log-transform those 
items and identify them as such in the remaining analyses. 

Table 3 offers descriptive statistics and the pairwise correlations matrix. Most log-transformed item 
measures are strongly correlated with the dependent variables, but correlations among two subsets of 
items are also high. We hence run a factor analysis to distil two orthogonal factors for those subsets: (1) 
SizeComplexity (log SLOC, log NoClasses, log NoFunct, and log ComplexDensity), and (2) 
MaintainPersonnel (log NoMaintainers, log NoLocations, and log NoJobTitles). The Cronbach’s alphas for 
these orthogonal factors are close to 1.0, indicating their internal consistency reliability and convergent 
validity (see Table 4). Finally, because these log-transformed items are on relatively comparable scales, 
values for the orthogonal factors are computed simply as averages of their item members weighted by 
item loadings. 
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Table 3. Descriptive statistics and correlation matrix 

Variable N Avg. StdDev Min Max 1 2 3 4 5 6 7 8 9 10 11 12 

1. log AppUNIT) 412 9.68 1.87 2.37 13.70 1.000            

2. log AppUSD ($) 412 12.73 1.93 3.37 16.75 0.936 1.000           

3. log NoProjects 412 2.57 1.18 0.00 5.04 0.822 0.816 1.000          

4. log Age 412 1.76 0.63 0.00 3.74 0.186 0.179 0.299 1.000         

5. log ComplexDensity 412 9.16 1.56 4.43 13.55 0.399 0.370 0.388 0.183 1.000        

6. log SLOC 412 11.04 1.55 6.24 15.25 0.403 0.377 0.386 0.179 0.958 1.000       

7. log NoClasses 412 6.13 1.45 1.79 9.75 0.433 0.417 0.404 0.129 0.946 0.921 1.000      

8. log NoFunctions 412 7.99 1.55 3.22 12.02 0.396 0.370 0.375 0.152 0.972 0.927 0.966 1.000     

9. PersonInfo 412 1.46 0.50 1.00 2.00 0.058 0.017 0.096 0.092 0.097 0.132 0.044 0.080 1.000    

10. log NoMaintainers 412 4.49 1.23 0.00 7.12 0.828 0.788 0.453 0.259 0.343 0.347 0.363 0.329 0.102 1.000   

11. log NoLocations 412 2.41 0.77 0.00 3.76 0.746 0.691 0.391 0.261 0.338 0.344 0.343 0.320 0.111 0.915 1.000  

12. log NoJobTitles 412 2.99 0.78 0.00 4.20 0.780 0.703 0.370 0.241 0.330 0.333 0.335 0.307 0.109 0.924 0.912 1.000 

Correlations in bold face indicate a statistical significance at the level of <0.05 

Table 4. Standardized Cronbach’s Alphas 

Factor (Construct) Variable (Item) 
Correlation 
with Total 

Deleted 
Item Alpha 

Cronbach’s 
Alpha 

SizeComplexity 

log ComplexDensity 0.8874 0.8893 

0.877 
log SLOC 0.8686 0.8908 
log NoClasses 0.8829 0.8897 

log NoFunctions 0.8737 0.8910 

MaintainPersonnel 
log NoMaintainers 0.6506 0.9062 

0.907 log NoLocations 0.6397 0.9073 
log NoJobTitles 0.6326 0.9081 

4.2. Analysis and Results 

Consistent with the nature of our data, we adopted a log-linear specification for our statistical models. The 
specification test for non-nested models (the J-test) supported our log-linear over linear model 
specifications (Davidson and Mackinnon 1995). Thus, we use the next regressions to test the hypotheses. 

LN(AppUNIT) = α0 + α1LN(NoProjects) + α2LN(SizeComplexity) + α3LN(Age) +  (1) 

       + α4PersonInfo + α5LN(MaintainPersonnel) 

LN(AppUSD)  = β0 + β1LN(NoProjects) + β2LN(SizeComplexity) + β3LN(Age) +  (2) 

       + β4PersonInfo + β5LN(MaintainPersonnel) 

We estimated the two equations using OLS regression and summarized the results in Table 5. For 
robustness, we tested standard assumptions of the OLS estimators. The assumption of normality is not 
rejected for any of the models at the 1% significance level using the Shapiro-Wilik test (Shapiro and Wilik 
1965). The presence of heteroskedasticity in both models was tested using White's (1980) test, and no 
evidence of it was found; the significance of coefficients has changed only marginally. The effect of 
multicollinearity was examined by computing a condition index for the entire model and variance 
inflation factors (VIF) for each of the independent variables (Belsley, Kuh and Welsch 1980), and no 
diagnostic problem was revealed; the condition index is 3.79 and all VIF values are below 3.26, well below 
the recommended thresholds for strong dependencies to start affecting the regression estimates. We did 
not detect any influential outliers in the equations using Cook's distance (Cook and Weisberg 1982) and 
the guidelines specified by Belsley et al. (1980). Finally, we also estimated both equations using seemingly 
unrelated regression (SURE), in case the error terms are correlated as a result of a common effect (Greene 
2005), and the regression coefficients were very similar in sign, magnitude, and significance to the OLE 
estimates, indicating the absence of any correlation across the error terms.  In light of these robustness 
test outcomes, we use the OLS estimates for the interpretation of our results.  
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Table 5. OLS regression estimation for maintenance effort and cost 

 
 LN(AppUNIT) Model  LN(AppUSD) Model 

Variable 

 Est. Param. 

(αααα) 

Std 

Error 
Pr>|t| 

 Est. Param. 

(ββββ) 

Std 

Error 
Pr>|t| 

Intercept  4.444*** 0.332 <.0001  8.290*** 0.372 <.0001 

LN(NoProjects)  0.722*** 0.073 <.0001  0.980*** 0.082 <.0001 

LN(Age)  -0.218*** 0.077 0.005  -0.225*** 0.086 0.010 

LN(SizeComplexity)  0.127*** 0.034 0.000  0.105*** 0.038 0.006 

PersonInfo    -0.128 0.093 0.170    -0.266** 0.105 0.011 

LN(MaintainPersonnel)  0.869*** 0.093 <.0001  0.547*** 0.104 <.0001 

N  412  412 

Adj. R-Sq.  0.740  0.696 

F-value  242.96  195.12 

Pr > F  <.0001  <.0001 

***, **, * coefficient significant at the level of <.001, <0.01, <0.05, respectively 

The sign and magnitude of coefficients reveal which of our research hypotheses is supported. First, system 
characteristics are significantly associated with maintenance effort and cost, but the coefficients for log 
Age and PersonInfo are negative (i.e., opposite direction to the one hypothesized). This means that 
Hypothesis 1 is only partially supported. Second, maintenance personnel variables have a positive and 
significant relationship with maintenance effort and cost, consistent with our expectation. Hypothesis 2 is 
therefore supported. Lastly, the magnitude of coefficients in both models indicates that system attributes 
(log NoProjects, log Age, log SizeComplexity, and PersonalInfo) are relatively weaker cost drivers than 
maintenance personnel attributes. For maintenance effort (AppUNIT), personnel factors have the largest 
coefficient; this is so even for the coefficient of log NoProjects, the variable indicating the change 
evolution frequency (or “amount” of maintenance work on a system). For maintenance cost (AppUSD), 
personnel factors have a coefficient larger than those of all system characteristics except for log 
NoProjects. These results on the most part support of hypothesis 3. 

The dominance of personnel factors as drivers of maintenance effort is surprising. It lends credence to the 
importance of personnel factors in relation to discovery work in maintenance. However, more insightful is 
the fact that personnel factors influence maintenance effort (AppUNIT) more strongly than maintenance 
cost (AppUSD). It could be explained quite simply: if one of the reasons for expanding the number of 
maintainers and their geographical dispersion is to lower costs, then the rate of maintenance cost 
reduction is outpaced by the rate of maintenance effort increase. To verify that this result is driven by 
maintenance personnel factors, we run a third OLS regression where the dependent variable is the ratio of 
cost to effort: 

LN(AppUSD)/LN(AppUNIT) = γ0 + γ1LN(NoProjects) + γ2LN(SizeComplexity) +  (3) 

                     + γ3LN(Age) + γ4PersonInfo + γ5LN(MaintainPersonnel) 

The results are shown in Table 6. Only LN(MaintainPersonnel) has a significant coefficient, and this 
coefficient is negative. Thus, only LN(MaintainPersonnel) explains the difference in the growth rates of 
AppUNIT and AppUSD. Moreover, since both maintenance effort and cost increase in maintenance 
personnel factors, the negative coefficient of LN(MaintainPersonnel) implies that maintenance effort 
increase faster than maintenance cost. 

5. Discussion 

This paper investigates software maintenance cost drivers from the perspective of ongoing maintenance 
work that is carried out over a lengthy period. A primary insight from our analysis is that maintenance 
personnel factors (number of maintainers, their location dispersion, and their skills diversity) are 
substantially stronger cost drivers than system characteristics (age, size, complexity, and information 
quality constraints). In particular, while a marginal increase in software size or complexity results in both 
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effort (hour charges) and cost (USD charges) growing slowly and at the same pace, a marginal increase in 
the number of maintainers or location dispersion results in maintenance effort growing much faster than 
maintenance cost. In fact, the effect of personnel factors on maintenance effort outpaces even the effect of 
the number of projects indicating the “amount” of maintenance done on a system. One plausible 
explanation is simple: while use of extra personnel and site locations might be driven by reliance on 
cheaper (offshore) labor aimed at lowering maintenance cost (USD charges), it also results in more 
discovery work and coordination inefficiencies that increase the maintenance effort (hour charges) at a 
pace that exceeds the cost savings.  

Table 6. OLS regression estimation for maintenance cost-to-effort ratio 

 
 LN(AppUSD) / LN(AppUNIT) Model 

Variable 

 Est. Param. 

(γγγγ) 
Std Error Pr>|t| 

Intercept        1.643*** 0.041 <.0001 

LN(NoProjects)  0.008 0.009 0.3473 

LN(Age)  0.008 0.009 0.3622 

LN(SizeComplexity)  -0.005 0.004 0.1707 

PersonInfo  -0.007 0.011 0.5477 

LN(MaintainPersonnel)       -0.076*** 0.010 <.0001 

N  412 

Adj. R-Sq.  0.323 

F Value  40.25 

Pr > F  <.0001 

***, **, * coefficient significant at the level of <.001, <0.01, <0.05, respectively 

Our results also indicate that information quality constraints and system age are negatively related to 
maintenance effort and cost. For information quality constraints, the explanation may relate directly to 
the importance of personnel factors. Our expectation was that systems facing information quality 
constraints (e.g., handling sensitive confidential data) require more maintenance care and, therefore, 
more effort and cost. However, our opposite result triggered IT managers at our research site to speculate 
that those systems are more “sensitive” and, hence, tend to be maintained by the same people in the same 
small number of site locations (i.e., by maintainers with higher system familiarity and low geographic 
dispersion). Our preliminary examination found some empirical support for this explanation, but a more 
careful examination is necessary. 

Also surprising is the negative relation of system age with maintenance effort and cost. This is contrary to 
Lehman’s law according to which system age, a direct measure of software entropy, drives up costs over 
time (Lehman 1996). Yet, a few studies report the same negative link we observed (Jørgensen 1995; Jones 
2012; Espinoza et al. 2007). One common explanation is that much maintenance work is ‘perfective’ in 
nature and aims at reversing the effect of age on software complexity. More research is needed to validate 
this explanation. We are exploring the possibility of classifying maintenance projects by their type of work 
(corrective, adaptive, or perfective) and digging deeper into the relationship with system age. In 
particular, our post-analysis examination of suggests that the negative relationship with age holds only for 
relatively older systems, not systems in their first five or six years of operation.  

Overall, our results have three primary implications for research and practices. First, less importance 
should be given to system attributes in making maintenance budget allocations, in formulating system 
retirement decisions and policies, and in choosing the mix of systems in the IT portfolio. Second, work 
allocation and personnel assignment practices, including the choice to off-shore work, ought to be 
sensitive to the fact that IT personnel factors have an overall negative marginal effect on maintenance 
cost. Third, with regard to system age, it may make sense to assume that the amount and types of 
maintenance work done on a system vary across the system’s lifecycle stages. Lastly, in relation to the 
theoretical lens used in this paper, we and other researchers have found the distributed cognition 
framework to be helpful in better understanding the effect of various factors in the software development 
and maintenance context, however, additional research is needed to develop more direct connections 
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between elements of the framework (team size, degree of distribution, number of artifacts, age and quality 
of artifacts, etc.) and the degree of efficiency and effectiveness of maintenance work.  

We cannot conclude without pointing out three limitations of our work and how they may be overcome 
with additional work. First, our data comes from a single organization. This could somewhat limit the 
generalizability of our model, especially in light of the possibility that the model is influenced by 
organization-specific practices. Second, with regard to the assessment of marginal impact of individual-
unit cost drivers, our analysis essentially assumes the “average” unit of every cost driver in the model. For 
example, when estimating the extra cost associated with increasing the number of maintainers by one 
additional person to get the same work done, the model does not consider the qualifications or familiarity 
of that person with the system. In principle, the richness of our data permits analyzing maintenance effort 
and cost by person, based on skills (or job title) and past system familiarity. We plan to do so in follow-up 
work. Third, our analysis lumps all 412 different systems together, rather than distinguish between classes 
of presumably similar systems. For example, systems can be classified by line of business or by owner 
(e.g., business vs. IT organization). Our preliminary analysis indicates no qualitative differences across 
classes of systems, but a closer examination is warranted. 
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