

 Thirty Fourth International Conference on Information Systems, Milan 2013 1

Understanding Factors Contributing to the
Escalation of Software Maintenance Costs

Completed Research Paper

Michel Benaroch
Whitman School of Management
Syracuse University, Syracuse, NY

mbenaroc@syr.edu

Abstract

We examine the main drivers of software maintenance effort and cost. We use the
‘Distributed Cognition’ framework to hypothesize about how ‘discovery work’ in
maintenance is effected by two types of cost drivers: system attributes (size, complexity,
age, etc.) and personnel attributes (number of maintainers, location dispersion, etc.).
We test our hypotheses using archival data about over 5,000 maintenance projects
carried out between 2009 and 2011 on 412 different operational systems in a large
financial institution. We find that personnel attributes are significantly more influential
than system attributes. In particular, a marginal change in personnel factors is
associated with effort growing much faster than cost, indicating an escalating marginal
cost of spreading maintenance work across more maintainers and site locations. We
also find, counter to expectation, that two system attributes are negatively linked to
maintenance effort and cost. Implications of these findings for research and practices
are discussed.

Keywords: software maintenance, cost drivers, system attributes, personnel attributes,
discovery work, distributed cognition

1. Introduction

Between 50 and 80 percent of the lifetime cost of a software system is due to maintenance work (Boehm
et al. 2000). Software maintenance is challenging because it requires understanding and documenting
changes to the system, retaining the system’s functional integrity during and after maintenance work,
minimizing structural decay and growth in complexity of the system’s code due to the changed or newly
added functions, and protecting intellectual control over the system from deteriorating due to staff
turnover and offshoring.

This paper studies the main cost drivers of software maintenance work and their relative contribution to
costs. Our focus is on two groups of cost drivers. One covers application characteristics, including: system
size, system age, software complexity, and so on. Another group covers maintenance personnel attributes,
including: number of maintainers, their location dispersion, their skills diversity, and their system
familiarity, among others. Unfortunately, little is known about the relative strength of cost drivers in both
groups.

The software maintenance literature has not paid equal attention to these two groups of cost drivers. It
has been traditionally preoccupied with the effect of system attributes on maintenance cost, on the widely
accepted premise that maintenance productivity is directly related to the maintainability of the product
(Banker et al. 1998). On the whole, a multitude of empirical studies confirm this association for multiple
system attributes (e.g., system size and complexity). By contrast, far fewer studies examine the effect of
maintenance personnel factors. What we know about these factors comes mostly from research on
software development, not maintenance. However, there are notable differences between development
and maintenance. For example, system familiarity plays a much greater role in maintenance than in
development (Banker et al. 1987), and the number of IT personnel maintaining a system over its lifetime

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301361384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

General IS Topics

2 Thirty Fourth International Conference on Information Systems, Milan 2013

could grow significantly larger than the number of original system developers (Thummadi, Lyytinen and
Hansen 201). Such differences increase our interest in maintenance personnel factors, especially in light
of the growth in using multi-site software maintenance and offshoring strategies.

To address this gap in the literature, this paper studies the effect of software maintenance cost drivers
using proprietary archival data from a large financial services institution. The data documents software
maintenance work carried out in the US, UK and several offshore locations, using over 7,500 maintenance
projects that jointly charged over 15,000,000 person-hours over a three years period (Jan. 2009 - Dec.
2011). These projects support over 400 different software systems. The data we use include: ongoing
UNIT (hour) and USD charges made per project per person per week; system attributes such as age, size,
complexity, change evolution frequency, and information quality constraints (e.g., meeting stringent
government regulations); and maintenance personnel characteristics such as the number of maintainers
working on a system, their site locations, and their skills diversity.

The paper has two distinguishing features. First, recognizing the importance of ‘discovery’ in maintenance
(Davison et al. 2000), we use distributed cognition theory to understand how discovery challenges impact
maintenance productivity. Discovery is the process of learning what one needs to know in order to
complete effectively a maintenance task subject to software design constraints underlying an existing
system. Compared to software development, discovery in maintenance presents unique challenges that
become more crucial as a system and its environment evolve and when the maintenance organization is
subject to personnel migration, turnover, and geographic dispersion. Distributed cognition theory permits
suitably reasoning about the effects of such settings on software productivity (Flors and Hutchins 1992;
Hansen, Robinson and Lyytinen 2012). Another unique feature of this study is the use of both hour and
dollar charges per project per person. We are able to avoid problems related to aggregating the effort of
experienced and novice maintainers (Krishnan et al. 2000; Banker et al. 1987).

Our analysis reveals the relative strength of the main cost drivers in software maintenance. We find that
maintenance personnel attributes are substantially stronger cost drivers than system characteristics. In
particular, while a marginal change in system attributes results in both effort (hour charges) and cost
(USD charges) growing slowly and at the same pace, a marginal change in maintenance personnel factors
results in effort growing much faster than cost. This indicates the escalating marginal cost of spreading
maintenance work across more maintainers and more site locations, even when involving cheaper labor
and offshoring.

With regard to system attributes, our results also indicate that information quality constraints and system
age are negatively related to maintenance effort and cost. For information quality constraints, the
explanation may relate directly to the importance of personnel cost drivers. IT managers at our research
site explained that these systems require greater care and, therefore, tend to be maintained by the same
smaller and localized teams (i.e., personnel with higher system familiarity). For system age, although the
result is contrary to the conventional thinking (Lehman 1996), a few studies do report the same negative
link we observed (Jørgensen 1995; Jones 2012; Espinoza et al. 2007). One explanation could be that some
maintenance work is done to reduce the effect of age on complexity.

Our study has important implications for software maintenance research and practices. It informs about
the relative importance that should be given to the main cost drivers in planning and budgeting
maintenance work for existing and new systems, in policies for retiring aging systems, in strategies for
sourcing maintenance work, and so on. Of particular importance is the need to balance gains expected
from assigning maintenance work to lower wage labor or offshore locations against the escalating
marginal cost of dispersing maintenance work across more maintainers with lower system familiarity and
greater location dispersion.

The paper proceeds as follows. Section 2 reviews literature on maintenance cost drivers. Section 3
develops the research model and hypotheses. Section 4 presets the data, empirical analysis, and results.
Section 5 discusses the main findings, their implications, limitations, and directions for future research.

2. Literature Review

This section reviews what we know about cost drivers, or factors driving the effort and cost, in software
maintenance.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 3

2.1. Maintenance Cost Estimation Models

Models for estimating software maintenance effort and cost are one source of information about cost
drivers. These models vary on the scope of maintenance work they target: a single maintenance task, a
system release, or routine maintenance over a long phase or even the entire maintenance phase (Nguyen
2010). Unfortunately, these models insufficiently inform us about the relative strength of cost drivers.

Task- and release-level estimation models have a common trait, namely: they treat ‘task size’ as the
dominant cost driver. Specifically, as seen in (Nguyen 2010), most of these models include task size as the
only cost driver, where size may be measured as the sum of added, modified and deleted SLOC (Basili et
al. 1996), function points (Sneed 1995), or modules or subsystems (Ramil and Lehman 2000, 2003).
These models typically focus on maintenance tasks of one specific type, for example, corrective tasks (De
Lucia et al. 2005; Basili 1996; Sneed 2004) and adaptive tasks (Fioravanti and Nesi 2001).1 Focusing on a
single type of maintenance task simplifies the estimation of effort and lowers the need to rely on
additional cost drivers. In fact, Abran (2000) shows that project effort and functional size are correlated
strongly enough to yield good models that use only size as an input. Select models use one or two
additional cost drivers, primarily software complexity and software quality (e.g., Sneed 1995, 2004).

Phase-level models, which target routine maintenance work of all kinds performed over a lengthy period,
consider more cost drivers. Examples are COCOMO, SEER-SEM, PRICE-S, and SLIM. In these models,
maintenance effort is just one of the estimates produced for a new system, based on the same models used
to estimate the system’s development cost but with some adjustments. COCOMO for Maintenance, for
example, employs the reuse model for new software development on the premise that software
maintenance involves adaptation of existing code, just like reused software is adapted to a new system
context. COCOMO for Maintenance uses 26 cost drivers, of which 22 are used in software development

effort estimation (Boehm et al. 2000).2 Among those cost drivers are numerous maintenance personnel
factors, including ones unique to maintenance (e.g., ‘software understanding’ and ‘programmer
unfamiliarity’). However, extant phase-level models insufficiently inform us about the relative importance
of cost drivers for two reasons. First, they take the amount of maintenance needed for a newly developed
system of a known size to be a generic quantity of some sort. Second, they use forward-looking input
values for cost drivers based on assumptions made when the new system is developed, not values
reflecting conditions when the actual maintenance work is done.

2.2. Factors Effecting Software Maintenance Costs

Beside maintenance cost estimation models, a wealth of empirical studied identify a host of factors that
influence maintenance cost but not their relative importance. Chief among these factors are
characteristics of the system and of maintenance personnel.

System characteristics generally include the age of the system, its size, the complexity of the software
architecture and code, the volatility of the system domain, and the need to meet special information
quality constraints, among others. By now there is little debate about the expected impact of these

1 Software maintenance addresses three groups of activities: correcting a system from actual errors;
adapting a system to external changes in business rules, government regulations, and technology
platforms; and, perfecting a system by improving the quality of software.

2 The 22 cost drivers include effort multipliers and scale factors. The effort multipliers fall into four
groups. Product characteristics: (1) Required software reliability, (2) Database size, (3) Documentation
match to life-cycle needs, (4) Product complexity, (5) Required Reusability. Platform characteristics: (6)
Execution time constraint, (7) Main storage constraint, (8) Platform volatility. Personnel characteristics:
(9) Analyst capabilities, (10) Programmer capabilities, (11) Personnel Continuity, (12) Applications
experience, (13) Platform experience, (14) Programming language experience. Project characteristics: (15)
Use of software tools, (16) Multisite Development as a function of collocation & communication, (17)
Schedule compression. The Scale Factors are: (18) Precedentedness, (19) Development Flexibility, (20)
Architecture / Risk Resolution, (21) Team Cohesion, and (22) Process Maturity.

General IS Topics

4 Thirty Fourth International Conference on Information Systems, Milan 2013

characteristics on maintenance effort and cost. Generally, they are all argued to have a positive association
with maintenance effort and cost, and there is abundant empirical evidence to support this assertion. One
small exception might be system age: a few studies actually report that age is negatively associated with
maintenance effort and/or cost (Espinoza et al. 2007; Jørgensen 1995; Jones 2012).

Maintenance personnel characteristics have a natural link with software maintenance effort. They
generally include: the number of maintainers working on a system over a given period, maintainers’
geographic and/or temporal dispersion, familiarity of maintainers with the system and each other, and
the diversity of skills of maintainers. However, research on the effect of these characteristics is spares
(Benestad et al. 2009), and some of its findings are conflicting (see Table 1). For example, some find
maintenance effort or maintenance productivity to have a weak or no association with maintainers’
system experience (Jørgensen 1995), while others find the association to be negative (Banker et al. 1998;
Espinoza et al. 2007). Most importantly, this research is silent on the relative strength of maintenance
personnel factors as cost drivers.

Table 1. Maintenance personnel factors studied and main findings

Study Independent Maintenance personnel Variables findings

Graves and
Mockus (1998)

• Developer id (who performed the change task?) No significant relationship with
maintenance effort.

Jørgensen
(1995)

• System experience

• Maintenance experience (in general)

Maintainers experienced with the
system had lower productivity than
inexperienced maintainers.

Banker et al.
(1998)

• Team system experience (percentage of members
working on a maintenance project who had worked
on the system for three or more years)

Negatively related to maintenance
project effort

Banke et al.
(1987)

• Team capability (percent of members working on a
maintenance project rated ‘high’ by other members)

• Team system experience (percent of members
working on a maintenance project who are not
system novices; had 24+ months system experience
prior to the project)

• Staff loading (number of work-months divided by
total project duration; higher loading means higher
parallelism and more communication on project)

Software maintenance productivity (Size
/ Maintenance Cost) positively
associated with project team capability
and team system experience, and
negatively associated with staff loading

Banker et al.
(1991)

• Team capability (--- “ ---)

• Team system experience (--- “ ---)

Software maintenance productivity
positively associated with project team
capability, but
not with system experience

Banker et al.
(1993)

• Maintainer skill

• System experience

Maintenance effort has a negative
relationship only with maintainer skill,
not system experience

Krishnan et al.
(2000)

• Team technical capability Significant positive link with
maintenance productivity.

Herbsleb and
Mockus (2003)

• Developer span (how many developers were
involved in performing the change task?)

• Location (where were human resources located
physically?)

Larger, multi-site teams take longer to
complete same maintenance task.

Schneidewind
(2001)

• Developer span (how many developers were
involved in performing the change task?)

No significant relationship with change
caused defect.

Mockus and
Weiss (2000)

• Developer span (no. developers involved in
maintenance task)

• System experience (no. changes made by developer
on the same system)

System experience negatively related to
probability of (post maintenance)
software failure.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 5

3. Theory and Hypotheses

This section presents our theoretical lens and research hypotheses. Our premise is that much of the effort
and cost associated with maintenance is linked to the need to do ‘discovery’ work. Building on this
premise we use the ‘distributed cognition’ framework to theorize about how different cost drivers intensify
the need for discovery work and, in turn, increase maintenance costs.

3.1. ‘Discovery’ in Software Maintenance and Distributed Cognition

A key source of difficulty in software maintenance is discovery, the process of learning what you need to
know in order to address a task effectively. Discovery, also called “getting started” effort (Fraser et al.
1997) typically consumes between 30% and 70% of the time required to complete a maintenance task
(Davison et al. 2000; Pfleeger 2002, p. 475; Pigoski 1996, p. 35). In software development, discovery
centers around the capture of system requirements and their specification, based on which a system is
then designed (Hansen et al. 2012). Discovery in maintenance in addition entails understanding the
existing software design and its underlying design principles, methods, and tools as well as all changes
previously made to the system (Davison et al. 2000). Thus, discovery in maintenance requires mastering
not only knowledge of the system domain and system requirements, but also knowledge of the system
architecture, “library” of system modules and components, design paradigm(s) of the original
development, and the software development environment and maintenance tools. Mastery of this
knowledge is the product of continuous work on the system, interaction with other developers and
maintainers of the system, reading documentation, reading code, experimenting and debugging in a lab
setting or with a simulator, participating in reviews/testing, building simplified examples, and so on
(Davision et al. 2000).

Distributed Cognition (DC) is a framework that offers a rich theoretical lens for understanding how
challenges in discovery impact software maintenance costs. DC is motivated by research on teams
engaged in complex tasks (Flors and Hutchins 1992, Hansen et al. 2012). Complex tasks often require
collaboration between a number of different individuals and technical artifacts. In these settings,
information processing activities are distributed across members, and much of the cognitive workload is
“shouldered” by the technical artifacts employed by group members. Together, group members and
technical artifacts comprise a complex cognitive system within which effective interactions are necessary
to successfully complete a task. These interactions facilitate exchanging task relevant information, in part,
through the creation, modification and utilization of artifacts required for the task’s completion.
Numerous authors have applied the DC framework in the software development context. DC has been
used to study software maintenance activities (Flor and Hutchins 1991), collaborative work (Rogers and
Ellis 1994), pair programming teams (Sharp and Robinson 2006), information flow within a dispersed
agile development teams (Sharp et al. 2012), team strategies in perfective software maintenance
(Ramasubbu, Kemerer and Hong 2013), discovery of requirements in open source development
(Thummadi et al. 2011), and discovery of requirements distributed across individuals, organizations, and
artifacts (Hansen et al. 2012).

Recognizing that software development and maintenance can be highly social activities involving people,
software code, and development tools (Flor and Hutchins 1991; Ramasubbu et al. 2013), the DC
framework lends itself to three closely linked assertions (Hansen et al. 2012):

1. Cognitive processes are distributed socially across members of a group, where each member may
play a specific role with respect to the processing of information and initiation of cognitive actions.
This idea of social distribution has obvious ramifications: the development and comprehension of
software systems is a function of how well the ‘distributed cognitive system’ performs as a whole.
Individuals working together on a collaborative task are likely to possess different kinds of knowledge
and skills, and so they will engage in interactions that allow them to pool the various resources
necessary to accomplish the tasks. Thus, the ability to bring together individuals from a wide variety
of technical and functional domains is essential. Moreover, sharing access and knowledge enables the
coordination of expectations and of actions (Yvonne and Ellis 1994).

General IS Topics

6 Thirty Fourth International Conference on Information Systems, Milan 2013

2. Cognitive processes intertwine internal and external representational structures. Individuals and
groups integrate their internal representations with external representations of the environment as
part of their thought processes. Thus, socially-distributed cognitive processes are likely to employ
both internal and external structures during individually-intensive cognitive tasks. External
structures in software maintenance include the software code itself, its documentation, and other
structures that materialize in CASE tools. Consequently, the existence of such artifacts and their
quality could both enable and constrain software maintenance work.

3. Cognitive processes may be temporally distributed as well (i.e., cognition is path dependent). The
distribution of cognition over time implies the use of both social transmission (e.g., project team
interaction) and material artifacts (i.e., legacy code, software frameworks) to support memory and
cognitive structures needed to make use of requisite knowledge for completing a task. Indeed,
maintenance efforts draw heavily upon requirements, software designs and other formal artifacts
inherited from earlier development and maintenance efforts. Moreover, like in open source
development, maintenance efforts may rely increasingly on evolving electronic media artifacts for
social transmission and sharing of requisite knowledge, for example, community forums, email
threads, chat rooms, and bulletin boards (Thummadi et al. 2011).

3.2. Hypotheses

The distributed cognition lens is next to speculate about how maintenance costs are effected by the two
classes of cost drivers of our concern: system attributes and maintenance personnel factors.

3.2.1. System Characteristics

It is widely accepted that maintenance productivity is directly related to the maintainability of the
software product – its size, complexity, age, and so on.

System size is a key indicator of maintenance cost (Banker et al. 1998; Boehm et al. 2000). Larger
systems simply require more maintenance on an ongoing basis. Moreover, in larger systems, more
components need to be updated, and it is more difficult to know all parts of the software that will be
affected by changes. Therefore, maintainers need to expend more intellectual effort and time. They also
need to understand both functional aspects of the software base and technical details of the associated
code (e.g., file names, variable names, and interface requirements). All of this translates into more time
and effort spent on discovery work.

System complexity, which generally refers to traits of data structures and procedures within a software
product, is another major driver of maintenance cost (Banker et al. 1993, 1998) and error frequency
(Ohlsson and Alberg 1996). Put in DC terms, the primary artifacts – the software code itself – becomes
more complex and thus more difficult to integrate with maintainers’ internal representations. In other
words, software complexity increases the amount of information that needs to be processed to carry out
maintenance activities. In addition to comprehending each of the individual software modules,
maintainers must expend additional cognitive effort to understand how the modules are connected
through input/output relationships and envision how the changes made will affect various modules
(Banker et al. 1993, 1998). Greater complexity increases the number of those input/output relationships
modules and obscures them, also necessitating more testing to ensure that modified modules do not
negatively affect related modules (Boehm-Davis et al. 1992, Gill and Kemerer 1991).

System age, too, generally has a positive link with maintenance effort and cost. The number of
maintenance activities is reported to increase with age (Barry et al. 2007). As we said, most systems are
subject to continuous growth and continuous defect repairs that gradually degrade the software structure
and increase its complexity. In DC terms, the quality of artifacts (code, documentation, design charts, etc.)
degrades, making it harder for maintainers to integrate internal and external representations. Hence, over
time more discovery work is needed since the system becomes less understood by both maintainers and
users. This, in turn, also increases the rate of so-called bad fix injection and the amount of maintenance
work necessary to cope with this phenomenon.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 7

Information quality constraints refer to special system characteristics that imposes greater demand
on maintenance resources, both relative to discovery work and to the actual software change. Examples
include satisfying government regulations (e.g., SOX, HIPAA), handling sensitive (customer) data, and
meeting unusually high software reliability needs. Some maintenance cost estimation models use special
parameters to adjust their cost estimates accordingly, for example, ‘required software reliability’ in
COCOMO for Maintenance (Boehm et al. 2000) and ‘required maintenance rigor’ in SEER-SEM
(Galorath 2002).

Software volatility reflects the degree of change of the system domain and technological environment.
It has been used in a variety of contexts as a measure of the frequency and intensity of system changes
(Heales 2000; Barry and Slaughter 2000). Naturally, this factor is a fundamental driver of software
maintenance costs (Banker and Slaughter 2000; Barry and Slaughter 2000).

In summary, every one of the above system characteristics leads us to postulate that:

Hypothesis 1: System characteristics – size, complexity, age, information quality constraints, and
software volatility – are positively associated with software maintenance effort and cost.

3.2.2. Maintenance Personnel Characteristics

We focus on three primary personnel characteristics that could be linked to maintenance effort and cost –
number of maintainers who worked on a system over a given period, their geographic dispersion, and
their skills diversity.

Number of maintainers is a primary cost driver in maintenance (Herbsleb and Mockus 2003). In
software development, adding developers contributes more productive resources, but it also makes it
more difficult for all developers to interact and to integrate their individual work into a single working
product (Herbsleb and Grinter 1999). In software maintenance, an additional and more crucial issue is
declining system familiarity and declining familiarity among maintainers. A system in its first year or two
of operation is maintained by people from the original development team who are relatively familiar with
the system, but as time passes personnel migration and resource constraints necessitate bringing on
board maintainers with little or no familiarity with the system. Declining system familiarity makes it
harder for maintainers to integrate external representations with their internal representations. This
makes it more difficult to pinpoint swiftly and accurately where in the software code changes need to be
made (Banker and Slaughter 2000), and complicates the implementation, testing, and integration of
changed into the software code base (Curtis et al. 1979, 1988; Walz et al. 1993). Declining familiarity
among maintainers has different implications. Maintainers who worked together on the same system start
a new task with better expectations about each other, are more effective at locating specialized knowledge
and coordinating expertise (Faraj and Sproull 2000), and have a better understanding of how their
individual work contributes to each other’s tasks. Declining familiarity among maintainers, therefore,
means less effective communication (Cramton 2001), greater difficulty pooling the various necessary
skills and resources, poorer coordination and division of labor, and greater uncertainty about other
maintainers’ capabilities. In sum, a larger number of maintainers translates into greater discovery effort
and lower maintenance productivity.

Skills diversity, too, increases the need for discovery work. Typical maintenance tasks involve a
common set of skills: business analysts, application developers, application support analysts, quality
assurance analysts, and the like. Additional skills are necessary as system familiarity degrades, including:
IT architecture managers, database management analysts, infrastructure services support analysts,
business management analysts, information risk and business resiliency analysts, performance engineers,
distributed computing engineers, and even IT program managers. Such additional skills are more costly
but necessary to do discovery work on less familiar systems. Naturally, greater skills diversity also means
increased coordination complexity and overhead.

Location dispersion of maintainers is another factor complicating discovery work. Maintainers may be
drawn from diverse site locations because of resource constraints and/or attempts to reduce cost (e.g.,
offshoring). As a result, the frequency and timeliness of communications can be adversely affected, often
due to the channeling of communications into less interactive media with fewer contextual references. A
study of co-located and dispersed agile software development teams found that: (1) dispersed teams rely
on more digital mediating artifacts (OneNote, recordings etc.), making information less accessible to

General IS Topics

8 Thirty Fourth International Conference on Information Systems, Milan 2013

newcomers or outsiders than with co-located teams; and (2) meetings of dispersed teams used no clear
equivalent to such artifacts as Story Cards and Wall, but rather screen sharing was used to focus attention
and even then members often used just audio contact instead of sharing of screens (Sharp et al. 2012).
Other results of location dispersion are less shared context for and understanding of task work (Cramton
2001, Hinds and Mortensen 2005), and fewer opportunities for informal and spontaneous
communication (Kiesler and Cummings 2002; Herbsleb and Mockus 2003). Again, all of this translates
into more coordination overhead and substantial delays when initiating contacts, locating and pooling
expertise, and resolving issues (Carmel 1999). Sharp et al. (2012) specifically report that situational
awareness is lower in dispersed teams because information flows were open (i.e., anyone could contact
anyone else) but restricted (i.e., contacts had to be targeted and explicit), and individuals were the ones to
decide what artifacts to share and with whom (unlike in co-located teams where social context played an
important role). More broadly, Herbsleb and Mockus (2003) found that distributed work items take over
twice as long to complete compared to when work is co-located. The explanation is twofold. First, co-
located members interact with more people working on the same project, get useful work-related
information through casual conversations, and receive from coworkers timely information about changes
in current plans. Second, distributed members have more difficulties identifying distant colleagues with
needed expertise and to communicate effectively with them. Thus, distributed maintenance work is likely
to require more people in order to tap all the expertise needed to complete those tasks. The main
implication is that distributed maintainers have less system familiarity and familiarity with one another.
Moreover, distributed maintainers are less aware of the work going on in other site locations and are not
well positioned to ask questions when the need arises, making it harder to avoid software changes that
conflict with code written and maintained remotely. Therefore, more work would be necessary to resolve a
greater number of conflicts.

In light of the above, we formulate our second hypothesis:

Hypothesis 2: Maintenance personnel factors – number of maintainers, their skills diversity, and
their location dispersion – are positively associated with software maintenance effort and cost.

As organizations become more concerned with combating the effect of software entropy due to aging and
increased complexity, they turn some of their maintenance attention to perfective activities aimed at
improving software quality (e.g., system re-engineering). This assertion is supported by studies observing
a negative association between system age and maintenance effort and/or cost (Jørgensen 1995; Jones
2012). In any event, such efforts increase the demand for maintenance personnel, and the possibly that
they would be more geographically distributed. Thus, while the impact of system attributes on
maintenance effort and cost may reach and pick and start diminishing at some point, the impact of
maintenance personnel attributes may continue increasing over time. In this light, we postulate that:

Hypothesis 3: Maintenance personnel factors are more strongly associated with software
maintenance effort and cost than system characteristics.

4. Data Analysis and Results

This section presents the data and analyses used to test the hypotheses as well as the results. Examination
of the data leads us to log-transform most measurement items in the data, consistent with past research,
and to map some of those items to two orthogonal factors. Then, we use ordinary least square regression
(OLS) to test the hypotheses and verify the robustness of results using numerous statistical diagnostics.
Finally, we report the main results in relation to the research hypotheses.

4.1. Data and Descriptive Statistics

To test the research hypotheses, we use archival maintenance data from a large financial institution. Our
data cover maintenance work done on 412 different operational systems over a 3-year period (2009-11).
In our research site, a system may be subject to ongoing maintenance activities of all kinds (corrective,
adaptive, and perfective), carried out by multiple maintenance projects. Every project is executed by
maintainers having different skills (or job titles) and working at different site locations. We compute the
cost of a project maintaining a particular system as the sum of daily person-hours (UNITs) and US dollars
(USD) charged for every person working on the project.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 9

Data on hour and USD charges come from the organization’s project reporting system, offering two
benefits. First, these data are used to chargeback labor costs to requesting system owners, so it is accurate
enough for the purposes of this study. Second, inclusion of hour and dollar charges per project per person
helps to avoid problems related to aggregating the effort of experienced and novice maintainers (Krishnan
et al. 2000; Banker et al. 1987). Using data on both UNIT and USD charges per project per person allows
us to (indirectly) characterize the actual work-hours expended along experience and skill level.

The variables we use and their item measures in the data are listed in Table 2. The maintenance costs of a
system over the 3-year period is the dependent variable, measured by the total UNIT and USD charged by
all projects servicing that system for years 2009-11.

Table 2. Variables and their definition

 Variable Definition & Item Measures (shown in parentheses)

System
Attributes
(independent)

Age Number of years from a system’s go-live date (till Dec. 2011)

Size
System size measured by the: number of source lines of code (SLOC),
number of classes (NoClasses), and number of functions (NoFunctions).

Complexity
Software complexity measured by a complexity ‘density’ factor
(ComplexDensity), a composite factor of class complexity, function
complexity, and more granular complexity measures

Information
Quality
Constraints

Indicator of whether a system handles sensitive customer data, including
financial holdings information, account information, and personal details
(PersonInfo).

Software Volatility

System’s change evolution scale and frequency, proxied by the number of
maintenance projects (NoProjects) over a given period; past research
similarly measured software volatility as the number of enhancements
(projects) per unit of application over a specified time frame (Banker and
Slaughter 2000; Zhang et al. 2003).

Personnel
Factors
(independent)

Number of
Maintainers

Number of different IT personnel who did maintenance work on a system
over a given period (NoMaintainers).

Location Diversity Number of site locations where the maintainers are located (NoLocations).

Skills diversity Number of different job titles of maintainers (NoJobTitles).

System
Maintenance
Costs
(dependent)

Maintenance
Effort

Sum total of daily person-hours charged for every person working on
projects maintaining a system during 2009-11 (AppUNIT).

Maintenance Cost
Sum total of daily US dollars charged for every person working on projects
maintaining a system during 2009-11 (AppUSD).

Preliminary analysis of the data shows most item measures to have asymmetric distributions with a long
right tail. Moreover, univariate analyses show those items to have power-type relationships with UNIT
and USD costs. This pattern is consistent with the economies and diseconomies of scale reported in the
literature on software development and maintenance (Banker and Slaughter 1997; Banker et al. 1994;
Barry et al. 2007; Boehm et al. 2000; Herbsleb and Mickus 2003). Consequently, we log-transform those
items and identify them as such in the remaining analyses.

Table 3 offers descriptive statistics and the pairwise correlations matrix. Most log-transformed item
measures are strongly correlated with the dependent variables, but correlations among two subsets of
items are also high. We hence run a factor analysis to distil two orthogonal factors for those subsets: (1)
SizeComplexity (log SLOC, log NoClasses, log NoFunct, and log ComplexDensity), and (2)
MaintainPersonnel (log NoMaintainers, log NoLocations, and log NoJobTitles). The Cronbach’s alphas for
these orthogonal factors are close to 1.0, indicating their internal consistency reliability and convergent
validity (see Table 4). Finally, because these log-transformed items are on relatively comparable scales,
values for the orthogonal factors are computed simply as averages of their item members weighted by
item loadings.

General IS Topics

10 Thirty Fourth International Conference on Information Systems, Milan 2013

Table 3. Descriptive statistics and correlation matrix

Variable N Avg. StdDev Min Max 1 2 3 4 5 6 7 8 9 10 11 12

1. log AppUNIT) 412 9.68 1.87 2.37 13.70 1.000

2. log AppUSD ($) 412 12.73 1.93 3.37 16.75 0.936 1.000

3. log NoProjects 412 2.57 1.18 0.00 5.04 0.822 0.816 1.000

4. log Age 412 1.76 0.63 0.00 3.74 0.186 0.179 0.299 1.000

5. log ComplexDensity 412 9.16 1.56 4.43 13.55 0.399 0.370 0.388 0.183 1.000

6. log SLOC 412 11.04 1.55 6.24 15.25 0.403 0.377 0.386 0.179 0.958 1.000

7. log NoClasses 412 6.13 1.45 1.79 9.75 0.433 0.417 0.404 0.129 0.946 0.921 1.000

8. log NoFunctions 412 7.99 1.55 3.22 12.02 0.396 0.370 0.375 0.152 0.972 0.927 0.966 1.000

9. PersonInfo 412 1.46 0.50 1.00 2.00 0.058 0.017 0.096 0.092 0.097 0.132 0.044 0.080 1.000

10. log NoMaintainers 412 4.49 1.23 0.00 7.12 0.828 0.788 0.453 0.259 0.343 0.347 0.363 0.329 0.102 1.000

11. log NoLocations 412 2.41 0.77 0.00 3.76 0.746 0.691 0.391 0.261 0.338 0.344 0.343 0.320 0.111 0.915 1.000

12. log NoJobTitles 412 2.99 0.78 0.00 4.20 0.780 0.703 0.370 0.241 0.330 0.333 0.335 0.307 0.109 0.924 0.912 1.000

Correlations in bold face indicate a statistical significance at the level of <0.05

Table 4. Standardized Cronbach’s Alphas

Factor (Construct) Variable (Item)
Correlation
with Total

Deleted
Item Alpha

Cronbach’s
Alpha

SizeComplexity

log ComplexDensity 0.8874 0.8893

0.877
log SLOC 0.8686 0.8908
log NoClasses 0.8829 0.8897

log NoFunctions 0.8737 0.8910

MaintainPersonnel
log NoMaintainers 0.6506 0.9062

0.907 log NoLocations 0.6397 0.9073
log NoJobTitles 0.6326 0.9081

4.2. Analysis and Results

Consistent with the nature of our data, we adopted a log-linear specification for our statistical models. The
specification test for non-nested models (the J-test) supported our log-linear over linear model
specifications (Davidson and Mackinnon 1995). Thus, we use the next regressions to test the hypotheses.

LN(AppUNIT) = α0 + α1LN(NoProjects) + α2LN(SizeComplexity) + α3LN(Age) + (1)

 + α4PersonInfo + α5LN(MaintainPersonnel)

LN(AppUSD) = β0 + β1LN(NoProjects) + β2LN(SizeComplexity) + β3LN(Age) + (2)

 + β4PersonInfo + β5LN(MaintainPersonnel)

We estimated the two equations using OLS regression and summarized the results in Table 5. For
robustness, we tested standard assumptions of the OLS estimators. The assumption of normality is not
rejected for any of the models at the 1% significance level using the Shapiro-Wilik test (Shapiro and Wilik
1965). The presence of heteroskedasticity in both models was tested using White's (1980) test, and no
evidence of it was found; the significance of coefficients has changed only marginally. The effect of
multicollinearity was examined by computing a condition index for the entire model and variance
inflation factors (VIF) for each of the independent variables (Belsley, Kuh and Welsch 1980), and no
diagnostic problem was revealed; the condition index is 3.79 and all VIF values are below 3.26, well below
the recommended thresholds for strong dependencies to start affecting the regression estimates. We did
not detect any influential outliers in the equations using Cook's distance (Cook and Weisberg 1982) and
the guidelines specified by Belsley et al. (1980). Finally, we also estimated both equations using seemingly
unrelated regression (SURE), in case the error terms are correlated as a result of a common effect (Greene
2005), and the regression coefficients were very similar in sign, magnitude, and significance to the OLE
estimates, indicating the absence of any correlation across the error terms. In light of these robustness
test outcomes, we use the OLS estimates for the interpretation of our results.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 11

Table 5. OLS regression estimation for maintenance effort and cost

 LN(AppUNIT) Model LN(AppUSD) Model

Variable

 Est. Param.

(αααα)

Std

Error
Pr>|t|

 Est. Param.

(ββββ)

Std

Error
Pr>|t|

Intercept 4.444*** 0.332 <.0001 8.290*** 0.372 <.0001

LN(NoProjects) 0.722*** 0.073 <.0001 0.980*** 0.082 <.0001

LN(Age) -0.218*** 0.077 0.005 -0.225*** 0.086 0.010

LN(SizeComplexity) 0.127*** 0.034 0.000 0.105*** 0.038 0.006

PersonInfo -0.128 0.093 0.170 -0.266** 0.105 0.011

LN(MaintainPersonnel) 0.869*** 0.093 <.0001 0.547*** 0.104 <.0001

N 412 412

Adj. R-Sq. 0.740 0.696

F-value 242.96 195.12

Pr > F <.0001 <.0001

***, **, * coefficient significant at the level of <.001, <0.01, <0.05, respectively

The sign and magnitude of coefficients reveal which of our research hypotheses is supported. First, system
characteristics are significantly associated with maintenance effort and cost, but the coefficients for log
Age and PersonInfo are negative (i.e., opposite direction to the one hypothesized). This means that
Hypothesis 1 is only partially supported. Second, maintenance personnel variables have a positive and
significant relationship with maintenance effort and cost, consistent with our expectation. Hypothesis 2 is
therefore supported. Lastly, the magnitude of coefficients in both models indicates that system attributes
(log NoProjects, log Age, log SizeComplexity, and PersonalInfo) are relatively weaker cost drivers than
maintenance personnel attributes. For maintenance effort (AppUNIT), personnel factors have the largest
coefficient; this is so even for the coefficient of log NoProjects, the variable indicating the change
evolution frequency (or “amount” of maintenance work on a system). For maintenance cost (AppUSD),
personnel factors have a coefficient larger than those of all system characteristics except for log
NoProjects. These results on the most part support of hypothesis 3.

The dominance of personnel factors as drivers of maintenance effort is surprising. It lends credence to the
importance of personnel factors in relation to discovery work in maintenance. However, more insightful is
the fact that personnel factors influence maintenance effort (AppUNIT) more strongly than maintenance
cost (AppUSD). It could be explained quite simply: if one of the reasons for expanding the number of
maintainers and their geographical dispersion is to lower costs, then the rate of maintenance cost
reduction is outpaced by the rate of maintenance effort increase. To verify that this result is driven by
maintenance personnel factors, we run a third OLS regression where the dependent variable is the ratio of
cost to effort:

LN(AppUSD)/LN(AppUNIT) = γ0 + γ1LN(NoProjects) + γ2LN(SizeComplexity) + (3)

 + γ3LN(Age) + γ4PersonInfo + γ5LN(MaintainPersonnel)

The results are shown in Table 6. Only LN(MaintainPersonnel) has a significant coefficient, and this
coefficient is negative. Thus, only LN(MaintainPersonnel) explains the difference in the growth rates of
AppUNIT and AppUSD. Moreover, since both maintenance effort and cost increase in maintenance
personnel factors, the negative coefficient of LN(MaintainPersonnel) implies that maintenance effort
increase faster than maintenance cost.

5. Discussion

This paper investigates software maintenance cost drivers from the perspective of ongoing maintenance
work that is carried out over a lengthy period. A primary insight from our analysis is that maintenance
personnel factors (number of maintainers, their location dispersion, and their skills diversity) are
substantially stronger cost drivers than system characteristics (age, size, complexity, and information
quality constraints). In particular, while a marginal increase in software size or complexity results in both

General IS Topics

12 Thirty Fourth International Conference on Information Systems, Milan 2013

effort (hour charges) and cost (USD charges) growing slowly and at the same pace, a marginal increase in
the number of maintainers or location dispersion results in maintenance effort growing much faster than
maintenance cost. In fact, the effect of personnel factors on maintenance effort outpaces even the effect of
the number of projects indicating the “amount” of maintenance done on a system. One plausible
explanation is simple: while use of extra personnel and site locations might be driven by reliance on
cheaper (offshore) labor aimed at lowering maintenance cost (USD charges), it also results in more
discovery work and coordination inefficiencies that increase the maintenance effort (hour charges) at a
pace that exceeds the cost savings.

Table 6. OLS regression estimation for maintenance cost-to-effort ratio

 LN(AppUSD) / LN(AppUNIT) Model

Variable

 Est. Param.

(γγγγ)
Std Error Pr>|t|

Intercept 1.643*** 0.041 <.0001

LN(NoProjects) 0.008 0.009 0.3473

LN(Age) 0.008 0.009 0.3622

LN(SizeComplexity) -0.005 0.004 0.1707

PersonInfo -0.007 0.011 0.5477

LN(MaintainPersonnel) -0.076*** 0.010 <.0001

N 412

Adj. R-Sq. 0.323

F Value 40.25

Pr > F <.0001

***, **, * coefficient significant at the level of <.001, <0.01, <0.05, respectively

Our results also indicate that information quality constraints and system age are negatively related to
maintenance effort and cost. For information quality constraints, the explanation may relate directly to
the importance of personnel factors. Our expectation was that systems facing information quality
constraints (e.g., handling sensitive confidential data) require more maintenance care and, therefore,
more effort and cost. However, our opposite result triggered IT managers at our research site to speculate
that those systems are more “sensitive” and, hence, tend to be maintained by the same people in the same
small number of site locations (i.e., by maintainers with higher system familiarity and low geographic
dispersion). Our preliminary examination found some empirical support for this explanation, but a more
careful examination is necessary.

Also surprising is the negative relation of system age with maintenance effort and cost. This is contrary to
Lehman’s law according to which system age, a direct measure of software entropy, drives up costs over
time (Lehman 1996). Yet, a few studies report the same negative link we observed (Jørgensen 1995; Jones
2012; Espinoza et al. 2007). One common explanation is that much maintenance work is ‘perfective’ in
nature and aims at reversing the effect of age on software complexity. More research is needed to validate
this explanation. We are exploring the possibility of classifying maintenance projects by their type of work
(corrective, adaptive, or perfective) and digging deeper into the relationship with system age. In
particular, our post-analysis examination of suggests that the negative relationship with age holds only for
relatively older systems, not systems in their first five or six years of operation.

Overall, our results have three primary implications for research and practices. First, less importance
should be given to system attributes in making maintenance budget allocations, in formulating system
retirement decisions and policies, and in choosing the mix of systems in the IT portfolio. Second, work
allocation and personnel assignment practices, including the choice to off-shore work, ought to be
sensitive to the fact that IT personnel factors have an overall negative marginal effect on maintenance
cost. Third, with regard to system age, it may make sense to assume that the amount and types of
maintenance work done on a system vary across the system’s lifecycle stages. Lastly, in relation to the
theoretical lens used in this paper, we and other researchers have found the distributed cognition
framework to be helpful in better understanding the effect of various factors in the software development
and maintenance context, however, additional research is needed to develop more direct connections

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 13

between elements of the framework (team size, degree of distribution, number of artifacts, age and quality
of artifacts, etc.) and the degree of efficiency and effectiveness of maintenance work.

We cannot conclude without pointing out three limitations of our work and how they may be overcome
with additional work. First, our data comes from a single organization. This could somewhat limit the
generalizability of our model, especially in light of the possibility that the model is influenced by
organization-specific practices. Second, with regard to the assessment of marginal impact of individual-
unit cost drivers, our analysis essentially assumes the “average” unit of every cost driver in the model. For
example, when estimating the extra cost associated with increasing the number of maintainers by one
additional person to get the same work done, the model does not consider the qualifications or familiarity
of that person with the system. In principle, the richness of our data permits analyzing maintenance effort
and cost by person, based on skills (or job title) and past system familiarity. We plan to do so in follow-up
work. Third, our analysis lumps all 412 different systems together, rather than distinguish between classes
of presumably similar systems. For example, systems can be classified by line of business or by owner
(e.g., business vs. IT organization). Our preliminary analysis indicates no qualitative differences across
classes of systems, but a closer examination is warranted.

References

Abran A., Silva I., Primera L., “Field studies using functional size measurement in building estimation
models for software maintenance,” Journal of Software Maintenance and Evolution, 14(1), 2002, 31-
64.

Banker RD, Slaughter SA. “The moderating affects of structure on volatility and complexity in software
enhancement,” Information Systems Research, 2000; 11(3):219–240.

Banker R., Davis A., and Slaughter S., “Software Development Practices, Software Complexity, and
Software Maintenance Performance: A Field Study,” Management Science, 1998.

Banker R., Datar B., Kemerer K., and Zweig G., “Software Complexity and Maintenance Costs,”
Communications of the ACM, 1993.

Banker, R. D., S. Datar, and C. F. Kemerer, “Factors AffectingSoftware Maintenance Productivity: An
Explanatory Study,” Proc. Eighth International Conf. on Information Systems, ACM, New York,
1987, 160-175.

Barry E.J., Kemerer C.F. and Slaughter S.A, “How software process automation affects software evolution:
a longitudinal empirical analysis,” Journal of Software Maintenance and Evolution: Research and
Practice, 19(1), 2007, 1-31.

Barry E, Slaughter SA., “Measuring software volatility: A multi-dimensional approach,” Proceedings of
the 21st International Conference on Information Systems. Association for Information Systems:
Atlanta GA, 2000: 412–413.

Basili V.R., Briand L., Condon S., Kim Y.M., Melo W.L., and Valett J.D., “Understanding and predicting
the process of software maintenance releases,” Proceedings of International Conference on Software
Engineering, Berlin, Germany, 1996, 464–474.

Belsley D.A., E. Kuh, R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity. Wiley and Sons, New York, 1980.

Boehm B.W. et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
Boehm-Davis D.A., Holt R.W. and Schulz A.C., “The Role of Pro-gram Structure in Software

Maintenance,” International J. Man- Machine Studies, 36, 1 (1992), 21-63.
Carmel, E. Global Software Teams. Prentice-Hall, Upper Saddle River, NJ, 1999.
Cook R.D. and Weisberg S., Residuals and Influence in Regression, Chapman & Hall, London, England,

1982.
Cramton, C.D. “The mutual knowledge problem and its consequences for dispersed collaboration,”

Organization Science, 2001, 12(3) 346–371.
Curtis, B., H. Krasner, N. Iscoe. “A field study of the software design process for large systems,”

Communication of the ACM, 31(11), 1988, 1268–1286.
Curtis B., “In search of software complexity,” Workshop on Quantitative Software Models, 1979, 95-106
De Lucia A., Pompella E., and Stefanucci S., “Assessing effort estimation models for corrective

maintenance through empirical studies,” Information and Software Technology, 47, 2005, 3–15
Davison J.W., Mancl D.M., and Opdyke W.F., “Understanding and Addressing the Essential Costs of

General IS Topics

14 Thirty Fourth International Conference on Information Systems, Milan 2013

Evolving Systems,” Bell Labs Technical Journal, April–June 2000, 43-54.
Davidson R. and MacKinnon J., “Several tests for model specifications in the presence of multiple

alternatives,” Econometrica, 49, 1995, 781-793.
Espinosa A.J., Slaughter S.A., Kraut R.E., and Herbsleb J.D., “Familiarity, Complexity, and Team

Performance in Geographically Distributed Software Development,” Organization Science, Vol. 18,
No. 4, July–August 2007, pp. 613–630.

Faraj, S., L. Sproull. “Coordinating expertise in software development teams,” Management Science,
2000, 46(12) 1554–1568.

Fioravanti F. and Nesi P., “Estimation and prediction metrics for adaptive maintenance effort of object-
oriented systems,” IEEE Transactions on Software Engineering, 27(12), 2001, 1062–1084.

Flor N.V. and Edwin H.L., “Analyzing Distributed Cognition in Software Teams: A Case Study of Team
Programming During Perfective Software Maintenance,” in Empirical Studies of Programmers:
Fourth Workshop, J. Koenemann-Belliveau, Ed., 1991, pp. 36-64.

Fraser S., Beck K., Booch G., Coplien J., Johnson R., and Opdyke W., “Beyond the Hype: Do Patterns and
Frameworks Reduce Discovery Costs?” Proc. 12th Annual Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’97), Atlanta, Ga., Oct. 5–9, 1997, pp. 342–344.

Galorath 2002, SEER-SEM Software Estimation, Planning and Project Control - User's Manual,
Galorath Incorporated.

Gill, G. K. and C. F. Kemerer, “Cyclomatic Complexity Density and Software Maintenance Productivity,”
IEEE Transactions on Software Engineering, 17, 12 (1991), 1284-1288.

Graves TL, Mockus A. “Inferring change effort from configuration management databases,” Proceedings
of the Fifth International Symposium on Software Metrics. IEEE Computer Society Press: Los
Alamitos CA, 1998; 267–273.

Greene W.H., Econometric Analysis, Fifth edition. Pearson Education, 2005.
Hansen, S.W., Robinson, W.N. and Lyytinen, K.J.; “Computing Requirements: Cognitive Approaches to

Distributed Requirements Engineering,” 45th Hawaii international conference on system sciences;
HICSS 2012, 7, 5224-5233.

Heales J., “Factors affecting information system volatility,” Proceedings of 20th International Conference
on Information Systems. Association for Information Systems: Atlanta GA, 2000; 70–83.

Herbsleb JD, Mockus A. “An empirical study of speed and communication in globally distributed software
development,” IEEE Transactions on Software Engineering 2003; 29(6):481–494.

Herbsleb J.D. and Grinter R.E., “Architectures, coordination, and distance: Conway’s law and beyond,”
IEEE Software, 16(5), 1999, 63–70.

Hinds P. and Mortensen M., “Understanding conflict in geographically distributed teams: The moderating
effects of shared identity, shared context, and spontaneous communication,” Organization Science,
2005, 16(3) 290–307.

Jones C., “Software Maintenance, Sustaining Engineering, and Operational Support: Estimating Software
Maintenance Costs for U.S. Army Weapons Systems,” Office of the Deputy Assistant Secretary of the
Army for Cost and Economics (ODASA-CE), 1-27 June 2012, PSM User’ Group Meetings and
Workshops, 29 July 2012

Jones C., “Geriatric Issues of Aging Software,” CROSSTALK: The Journal of Defense Software
Engineering, December 2007, 4-8.

Jørgensen M., “Experience with the accuracy of software maintenance task effort prediction models,”
IEEE Transactions on Software Engineering, 21(8), 1995, 674–681.

Jørgensen, M. and Sjøberg, D., “Impact of experience on maintenance skills,” Journal of Software
Maintenance: Research and Practice, 14, 2002, 123-146.

Lehman M., “Laws of Software Evolution Revisited,” in European Workshop on Software Process
Technology. Springer, 1996, 108–124.

Mockus A, Weiss D.M., “Predicting risk of software changes,” Bell Labs Technical Journal, 5(2), 2000,
169–180.

Nguyen V., Improved Size and Effort Estimation Models for Software Maintenance, Doctoral Dissertation,
Computer Science Department, University of Southern California, December 2010.

Ohlsson N. and Alberg H., “Predicting fault-prone software modules in telephone switches,” IEEE
Transactions on Software Engineering, 22(12), 1996, 886–894.

Pfleeger S.L., “What software engineering can learn from soccer,” IEEE Software, 19 (6), 2002, 64–65.
Pigoski T.M., Practical Software Maintenance: Best Practices for Software Investment, John Wiley &

Sons, Inc., 1996.

 Relative Importance of Cost Drivers in Software Maintenance

 Thirty Fourth International Conference on Information Systems, Milan 2013 15

Ramasubbu N., Kemerer C.F., and Hong J., “Structural Complexity and Programmer Team Strategy: An
Experimental Test,” IEEE Transactions on Software Engineering, 38(5), 2012, 1054-1068.

Ramil J.F., Continual Resource Estimation for Evolving Software, PhD Thesis, University of London,
Imperial College of Science, Technology and Medicine, 2003.

Ramil J.F., “Algorithmic cost estimation software evolution", Proc. of International Conference on
Software Engineering, Limerick, Ireland, 2000, 701–703.

Rogers Y. and Ellis J., “Distributed Cognition: An Alternative Framework for Analysing and Explaining
Collaborative Working,” Journal of Information Technology, 9(2), 1994, 119-128.

Schneidewind N.F., “Investigation of the risk to software reliability and maintainability of requirements
changes,” Proceedings of the 2001 International Conference on Software Maintenance. IEEE
Computer Society Press: Los Alamitos CA, 2001; 127–136.

Shapiro S. and Wilk M., “An analysis of variance test for normality,” Biomnetrika, 52, 1965, 591-612.
Sharp H. and Robinson H., “A Distributed Cognition Account of Mature XP Teams,” in Lecture Notes in

Computer Science 4044, P. Abrahamsson, M. Marchesi, and G. Succi, Eds., 2006, pp. 1-10.
Sharp H., Rosalba G. and Grigori M., “Information flow within a dispersed agile team: a distributed

cognition perspective,” in Agile Processes in Software Engineering and Extreme Programming
Lecture Notes in Business Information Processing, Volume 111, 2012, pp 62-76'.

Sneed H., “A cost model for software maintenance & evolution.” IEEE, 2004, 264–273.
Sneed H.M., “Estimating the Costs of Software Maintenance Tasks,” IEEE International Conference on

Software Maintenance, 1995, 168-181
Thummadi B.V., Lyytinen K., Hansen S., “Quality in Requirements Engineering (RE) Explained Using

Distributed Cognition: A Case of Open Source Development,” Proceedings of JAIS Theory
Development Workshop, 2011. (http://aisel.aisnet.org/sprouts_all/465)

Walz, D. B., J. J. Elam, B. Curtis. “Inside a software design team: Knowledge acquisition, sharing, and
integration,” Communication of the ACM. 36(10), 1993, 63–77.

Zhang X., Windsor J. and Pavur R., “Determinants of software volatility: a field study,” Journal of
Software Maintenance and Evolution: Research and Practice, 15, 2003, 191–204

White H., “Heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity,” Econometrica, 48(5), 1980, 817-838.

