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Abstract 

Consumer decision-making is usually modeled as a two-stage process of initial 
screening and subsequent in-depth consideration of attractive alternatives. Recent 
evidence indicates, however, that consideration is not necessarily the direct precursor of 
choice: consumers may narrow their consideration sets further to the choice set. We 
examine how choices in a three-stage purchase decision process evolve by observing 
consumer behavior in an online shopping experiment. Specifically, we examine the 
effects of system- and user-generated recommendations (SGR and UGR) moderated by 
gender. Our contribution to information systems research is threefold. First, we suggest 
a new experimental design for observing the stages in purchasing processes. Second, we 
show that effects of SGR and UGR indeed vary between stages. UGR reduce 
consideration set size and increase females’ choice probability while SGR reduce males’ 
transition probabilities. Third, our results suggest that omitting choice set formation 
can lead to incorrect estimates of choice probabilities. 
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Introduction 

Consumer decision-making is usually modeled as a two-stage process of initial screening and subsequent 
in-depth evaluation of attractive alternatives (e.g. Andrews and Srinivasan 1995; Gilbride and Allenby 
2004). The outcome of the screening stage is the consideration set; the outcome of the evaluation stage is 
the consumer’s final choice. The process of consideration set formation and its effects on choice have been 
attracting increasing attention from information systems researchers recently (e.g. Gu et al. 2011; Parra 
and Ruiz 2009; Pathak et al. 2010). Results from other research areas have fueled hopes of improving 
predictions of consumer behavior: numerous studies have shown that i) decision-makers fairly often use 
multi-stage models to simplify complex choices (e.g. Nedungadi 1990; Wu and Rangaswamy 2003) and 
that ii) choice predictions are much more accurate when the underlying model includes the consideration 
set (e.g. Andrews and Srinivasan 1995; Chiang et al. 1999; Hauser 1978).  

However, evidence from recent research in marketing (e.g. hotel choices of online consumers) and other 
areas (e.g. university choices of undergraduates) indicates that the consideration stage is not necessarily 
the direct precursor of final choice (Dawes and Brown 2005; Häubl and Trifts 2000; Jang et al. 2012). 
Instead, decision-makers may take the additional step of reducing the consideration set to the choice set, 
which is made up of only the few alternatives decision-makers consider immediately prior to choice 
(Häubl and Trifts 2000; Shocker et al. 1991).  

Distinguishing between consideration set and choice set is important to understand and support decision-
making better because decision-makers typically choose to process different information for creating the 
two sets and even process the information differently (Shocker et al. 1991; Jang et al. 2012; Moe 2006). 
These changes indicate that decision-makers use different risk relievers to mitigate the risk of choice at 
different stages (Roselius 1971). Hence, different decision aids will produce different effects at different 
stages of the decision process (Jang et al. 2012; Wu and Rangaswamy 2003); but so far, only a few of 
these effects have been studied (Dellaert and Häubl 2012; Häubl and Trifts 2000; Jang et al. 2012). 
Investigating multi-stage decision models is particularly interesting for research and practice in 
information systems and e-commerce because the results of this research bear directly on design and 
deployment of consumer decision aids. At present, consumers are usually offered the same decision aids 
regardless of the decision process stage they are at. But if consumers’ information needs vary with 
decision stages, this “one-aid-fits-all” solution is likely to be less than optimal for supporting consumer 
information search and processing. Tailoring decision support to fit the cognitive processes at the 
different stages could improve consumer decision accuracy and reduce the effort required to select and 
choose a product. Our study contributes to clarifying the question of how and when consumers use 
standard e-commerce decision aids. 

Introducing the distinction between sets into decision models is also important from an economic point of 
view. Omitting the choice set may lead to model misspecification and thus to incorrect parameter 
estimates (Shocker et al. 1991; Williams and Ortuzar 1982). Two-stage models without choice sets imply 
that choice probabilities are greater than zero for all considered alternatives (e.g. Andrews and Srinivasan 
1995; Gilbride and Allenby 2004). But if consumers follow a three-stage process and choose from their 
choice sets only, choice probabilities will be greater than zero only for those alternatives in the 
consideration set which are transferred into the choice set. In this case, correctly predicting the choice 
probabilities of alternatives requires predicting their transition probabilities first.  

Investigating multi-stage models of choice is challenging from a methodological point of view. 
Consideration and choice sets are formed dynamically during the decision process and are not persistent 
(Nedungadi 1990; Shocker et al. 1991), which makes both survey-based research and latent set modeling 
difficult. The concept of “sets” might not always be “meaningful to respondents” (Nedungadi 1990), which 
would invalidate self-reported data. Inferring the consideration set from observed purchase data produces 
large errors in the estimates (Roberts and Lattin 1997). In line with Moe (2006), we therefore suggest 
observing the decision process directly. We propose a new experimental design for identifying 
consideration set and choice set based on clickstream data in a realistic online shopping setting. 

This paper examines the question how choices in three-stage decision processes evolve by observing 
consumer behavior in an online shopping experiment. Specifically, we investigate how different decision 
aids affect the formation of consideration sets, choice sets, and final choice decisions. We focus on the 
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effects and interaction effects of two decision aids that are commonly available on retailing websites: 
system-generated recommendations (SGR) and user-generated recommendations (UGR). Because female 
and male consumers have repeatedly been shown to differ in their perceptions of the risks of online 
shopping (Riedl et al. 2010; Garbarino and Strahilevitz 2004); in their purchase intentions (Bae and Lee 
2011; Mitchell and Walsh 2004); and in their reactions towards SGR and UGR (Bae and Lee 2011; Awad 
and Ragowsky 2008), we paid particular attention to gender differences in adopting SGR and UGR.  

The results from our experimental study indicate that consumers indeed follow a three-stage process. 
Omitting the choice set from analysis can lead to a skewed view of consumer decision-making, where 
apparently only one type of recommendation (UGR) has an effect on consumers’ final choices. In fact, as 
the results for the three-stage model show clearly, consumers use both SGR and UGR, but at different 
stages of the decision process. During the screening stage, consumers used summary UGR, e.g. number of 
user recommendations, to form their consideration sets. During the selection stage, consumers used 
detailed UGR to make their final choice. Female consumers transferred more products to the choice set 
when SGR were present and had higher choice probabilities when UGR were present. For male consumers, 
the effects of SGR and UGR were reversed: they were less inclined to transfer products to the choice set 
with SGR and had lower choice probabilities with UGR. Our results also indicate that the transition 
probability, i.e. the ratio of products in the consideration set transferred to the choice set, is the single 
most important predictor for choice, thus providing additional support for our three-stage model. 

This paper contributes to research on consumer choice modeling in three ways. First, we use a new 
experimental design for observing consumer decision-making to test the three-stage model in an online 
shopping experiment. Second, using a three-stage model reveals differential effects of decision aids on 
consumer choice that remain hidden in a two-stage model – supporting our supposition that tailoring 
decision support to accommodate different decision process stages is preferential to the current one-aid-
fits-all solutions. Third, our results support the supposition that omitting the stage of choice set formation 
can lead to incorrect estimates of choice probabilities for (considered) products.  

The Effects of Recommendations on the Outcomes of Multi-Stage 
Purchase Decision Processes  

In both offline (e.g. Hauser and Wernerfelt 1990) and online (e.g. Moe 2006) environments, consumers 
split the purchase decision process into several stages to reduce information gathering and processing 
costs. Initially, consumers perform superficial product screening, which is cognitively less expensive than 
full comparisons, to eliminate unattractive products. Then they employ more expensive compensatory 
decision strategies to evaluate the (relative) attractiveness of the remaining products (Gilbride and 
Allenby 2004; Hauser and Wernerfelt 1990). The result of the first stage is thus the consideration set; the 
set of all attractive products (Hauser and Wernerfelt 1990; Shocker et al. 1991).  

We posit that the first stage does not necessarily lead directly to the final choice (e.g. Andrews and 
Srinivasan 1995; Gilbride and Allenby 2004) but rather to the formation of the choice set; the set of all 
products attractive enough to be considered immediately before purchase (Häubl and Trifts 2000; 
Shocker et al. 1991; Wu and Rangaswamy 2003). It is among the products in the choice set that a 
consumer will finally choose the product with the highest utility (Andrews and Srinivasan 1995; Jang et al. 
2012) if the utility exceeds the consumer’s utility threshold (Roberts and Lattin 1991) and if the perceived 
purchasing risk is acceptable (Roselius 1971).  

Figure 1 illustrates how the three-stage model which we examine in this paper extends the generally used 
two-stage model. The remainder of this section summarizes the results of prior research on multi-stage 
consumer decision processes and on the effects of system- and user-generated recommendations on 
purchase decisions. 
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Figure 1.  Purchase Decision Process 

System-generated and User-generated Recommendations  

Consumers strive for a balance between decision effort and accuracy (Payne 1982; Payne et al. 1992). 
This precludes their using all available information for decision-making, e.g. making attribute-level 
comparisons between all available products (Hauser and Wernerfelt 1990). The most important 
information, and the most likely to be incorporated in the decision process, are those which reduce 
product quality uncertainty and the risk associated with the purchase (Akdeniz et al. 2013; Dimoka et al. 
2012). A (purchase) decision is perceived as risky if its consequences are uncertain and some are more 
desirable than others (Roselius 1971). Perceived risk is determined subjectively by each consumer as the 
expected loss associated with a purchase (Stone and Winter 1987) – higher levels of perceived risk 
decrease consumers’ purchase intention (Cunningham et al. 2005). To reduce the perceived risk of a 
purchase to an acceptable 1 level, consumers use information from external sources as risk relievers 
(Greatorex and Mitchell 1993; Roselius 1971; Urbany et al. 1989).  

In online shopping environments, online consumers usually have direct access to two kinds of external 
information sources, or cues, to help them find and choose the individually best (i.e. utility-maximizing) 
product: system-generated recommendations (e.g. Xiao and Benbasat 2007) and user-generated 
recommendations (e.g. Jang et al. 2012). System-generated recommendations (SGR) are usually provided 
based on either content-based mechanisms – recommending products similar to the ones a consumer 
purchased before – or collaborative filtering mechanisms – recommending products which other 
consumers with similar preferences bought before (Xiao and Benbasat 2007). User-generated 
recommendations (UGR) are usually provided in the shape of consumer reviews (e.g. Benlian et al. 2012; 
Pathak et al. 2010). 

SGR and UGR suggest a solution for the problem of balancing decision effort and accuracy: instead of 
carrying out detailed comparisons and information search, consumers can make use of summarized or 
second-hand information about products they might consider buying (Benlian et al. 2012; Kumar and 
Benbasat 2006; Smith et al. 2005). In other words, SGR promise to increase decision accuracy at a lower 
or at least no higher level of effort than consumers would expend without decision aids (e.g. Pfeiffer and 
Scholz 2013; Todd and Benbasat 2000); textual UGR involve higher processing effort but also promise 
increased accuracy (Benlian et al. 2012;  Xia and Bechwati 2008). SGR and UGR act as risk relievers by 
reducing the uncertainty of purchase consequences (Benlian et al. 2012; Häubl and Trifts 2000; Roselius 
1971) and therefore affect consideration and choice set formation.  

SGR can expand consumers’ awareness sets by pointing out new, attractive products (Fleder and 
Hosanagar 2009) and help consumers build their consideration and choice sets faster and more 
accurately (Häubl and Trifts 2000). When SGR are presented in descending order (of product utilities), 
the average expected utility of the next product in the recommendations list is higher, but the marginal 
expected utility (of inspecting the next product) decreases with the number of previously inspected 
products (Dellaert and Häubl 2012). The screening phase is shorter and the consideration set contains 
fewer products with more homogeneous utilities (Parra and Ruiz 2009). Consumer focus shifts from 
screening to evaluating the products in the consideration set (Dellaert and Häubl 2012; Lenton and 
Francesconi 2010). The indirect effect of SGR on purchase decisions is generally found to be positive: 
purchase intentions (Benlian et al. 2012) and sales increase (Gorgoglione et al. 2011; Pathak et al. 2010), 

                                                             
1 “Acceptable” perceived risk in this case means “low enough to make the purchase attractive”. 
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and choice quality improves (Häubl and Trifts 2000; Xiao and Benbasat 2007). But SGR are often 
provided without information about the order in which they are presented (Schafer et al. 2001). 
Research by Dellaert and Häubl (2012) indicates that unordered SGR may indeed have little or no effect 
on consumer decision-making: it is hard for consumers to determine the diagnosticity of unordered SGR 
and to decide whether to incorporate them in their decision process. Consumers need to expend 
additional effort evaluating unordered SGR in order to determine whether they will improve decision 
accuracy. Lower transparency in SGR generation (and, implicitly, order) accordingly leads to lower 
consumer adoption intention towards SGR (Wang and Benbasat 2007). Different findings on the effects of 
SGR on purchase decisions (Benlian et al. 2012; Lajos et al. 2009; Sismeiro and Bucklin 2004) could thus 
be due to different types of SGR and different models of consumer decision processes having been 
investigated; if no distinctions are made, direct and indirect effects of SGR on the final purchase decision 
cannot be discerned.   

Consumers use UGR to reduce uncertainty about product quality (Dimoka et al. 2012; Mudambi and 
Schuff 2010) and to ascertain the level of expected (individual) product utility (Li et al. 2011). Compared 
to SGR, consumers generally consider UGR to be more credible (Benlian et al. 2012) and trustworthy (Bae 
and Lee 2011). For consideration set formation, consumers are more likely to rely on summary UGR 
(Jang et al. 2012), like mean product rating or number of recommendations for consideration set 
formation, because they are more easily accessible than textual UGR. Note that the different types of UGR 
– summary UGR and textual UGR – affect effort and accuracy of decision-making differently. Summary 
UGR more closely correspond to ordered SGR in that they enable fast processing, i.e. discerning attractive 
and unattractive products quickly. Textual UGR provide detailed information and are thus cognitively 
much more expensive to process but promise greater increases in decision accuracy. Reading about other 
consumers’ usage experiences helps form a clearer opinion on product quality and also about the level of 
agreement between the reader’s and writer’s preferences and opinions. In contrast to SGR, textual UGR 
provide reasons and elaborations for product quality claims (Awad and Ragowsky 2008). The indirect 
effect of UGR on purchase decisions is generally found to be positive: choice quality (Jang et al. 2012) and 
purchase intention (Ivanova et al. 2013; Shu et al. 2011) increase, and search and evaluation costs 
decrease (Mudambi and Schuff 2010). However, most studies either concentrated on textual UGR only or 
did not distinguish between summary and textual UGR; neither did they take into account varying 
information needs depending on the stages of the purchase process (with the notable exception of Jang et 
al. 2012). As a result, there is very little evidence to show how UGR affect consumers at the different 
stages of the purchasing process - specifically whether consumers use textual UGR for evaluation or 
selection. 

There is equally little research on the effect of both SGR and UGR being present. Some evidence indicates 
that the interaction effect of SGR and UGR may be smaller than their accumulated main effects. Kumar 
and Benbasat (2006), for instance, reported a 24% increase in perceived social presence if UGR were 
available compared to when they were not. SGR improved perceived social presence by 16%, but the 
availability of both types of recommendations improved consumers’ perceived social presence to only 31%. 
Their combined effects on the outcomes of different stages of the purchasing process, however, are 
unclear. 

To summarize, prior research found similar effects of SGR and UGR on purchase intention and choice 
quality, especially in those cases where both types of recommendations reduce decision effort and 
increase accuracy. How they affect the intermediate stages of consideration set formation and choice set 
formation is less clear. An important moderating factor for the effects of SGR and UGR during the 
decision process appears to be gender: SGR and UGR can have quite different effects on male and female 
consumers, due to gender differences in valuations of effort and accuracy (Mitchell and Walsh 2004) and 
information processing (Meyers-Levy and Maheswaran 1991); perceptions of the risks of online shopping 
(Garbarino and Strahilevitz 2004); trust (Bae and Lee 2011; Riedl et al. 2010); and social behavior (e.g. 
Laroche et al. 2000; Seock and Bailey 2008).  

The Moderating Effect of Gender and Individual Decision Process Variables 

Male consumers typically value effort reduction more than female consumers: males are predisposed to 
use informational cues for fast processing whenever possible, rather than more effortful detailed 
processing (Darley and Smith 1995; Meyers-Levy and Maheswaran 1991). They also typically have a more 
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positive attitude to online shopping due to its high efficiency and convenience (e.g. Seock and Bailey 2008; 
Van Slyke 2012). As a consequence, reliance on SGR is higher among male consumers: SGR offer highly 
diagnostic cues (e.g. product order) for schema-based processing and reduce the time required for 
product screening (Häubl and Trifts 2000). Females, on the other hand, place greater emphasis on 
avoiding the consequences of a wrong decision (Croson and Gneezy 2004) – they value decision accuracy 
more highly (Mitchell and Walsh 2004) and are more inclined towards detailed information search and 
processing (Meyers-Levy and Maheswaran 1991). They use SGR and UGR more extensively than male 
consumers (Doong and Wang 2011), but their tendency to engage in detailed processing reduces the 
impact of SGR’s informational cues. Instead, female consumers rather rely on textual UGR which are rich 
in details. This tendency is reinforced by female consumers’ higher propensity to trust information 
conveyed by word-of-mouth (Awad and Ragowsky 2008) and their appreciation of high levels of social 
presence of a website (Chai et al. 2011); high social presence in turn increases trust in the 
recommendations posted on the website (Chai et al. 2011). As a consequence, UGR can affect female 
consumers’ perceptions of purchasing risk and purchase intentions more strongly than those of male 
consumers (Bae and Lee 2011; Garbarino and Strahilevitz 2004). 

Some of the most important individual consumer characteristics that influence specific purchase 
decisions are product experience and product type-specific preferences (e.g. Hoch 2002; Pan and Lehman 
1993). Although mainly individual, these characteristics have been shown to be gender-specific under 
certain circumstances. Depending on product type, perceived product experience often varies with gender: 
apart from gender-specific products, male consumers tend to have greater perceived experience with, for 
instance, beer (Wu and Wyer 2010) or with technical and electronic products like smartphones 
(Karjaluoto et al. 2005) and computers (Sebastianelli et al. 2008), but lower experience with beauty 
products (Wu and Wyer 2010). Greater product experience reduces the effort of processing product-
related information because informational cues can be used for fast processing (Beatty and Smith 1987; 
Anderson et al. 1979) and increases decision accuracy because the consumer is better able to determine 
whether product attributes match his or her preferences (Mason and Bequette 1998). Especially in terms 
of processing UGR, experienced consumers will be able to determine more easily how closely their 
preferences match those of the UGR creator and thus judge the relevance of UGR faster and more 
accurately. Experienced consumers typically have better formed preferences (Hoeffler and Ariely 1999) 
and are thus better prepared for determining SGR and UGR diagnosticity and to use them effectively in 
their decision processes.  

Although quite a lot of research has been carried out regarding gender differences in online shopping, few 
studies examine female and male reactions to SGR2 and UGR at different stages of the purchasing process. 
We propose to close this gap by investigating the effects and interaction effects of both recommendation 
types on the outcomes of all three stages – consideration set formation, choice set formation and choice – 
and their effect on male and female consumers.  

Research Model 

Figure 2 summarizes our research model and hypotheses which we explain in detail in the following 
subsections. 

Consideration Set 

SGR and UGR can reduce search and evaluation effort during screening (Häubl and Trifts 2000; Todd 
and Benbasat 2000). When SGR can be processed as cues for products’ expected relative utilities, 
consumers will stop screening sooner (Häubl and Trifts 2000). SGR are only diagnostic, however, if 
consumers receive additional information about the order in which SGR are displayed, e.g. in descending 
order of their utilities (Dellaert and Häubl 2012). Otherwise, consumers have no means of judging a 
recommended product’s relative attractiveness, and SGR will not influence their consideration set 
formation. 

                                                             
2 Our research specifically addresses unordered SGR. Although they are commonly used in practice (e.g. 
Amazon.com), they are evaluated far less frequently in experimental settings than ordered SGR. 
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Figure 2.  Research Model and Hypotheses 

 

UGR against purchasing a product are particularly valuable for identifying and discarding unattractive 
products quickly. Consumers use summary statistics of UGR rather than textual UGR for consideration 
set formation because the former are less effortful to process (Jang et al. 2012). In contrast to SGR, order 
is of little importance: summary UGR provide information about the relative attractiveness of products, 
e.g. average “star ratings”, and it is easy for the consumer to infer product order.  

H1a: Consumers’ consideration sets sizes do not diminish when (unordered) SGR are present. 

H1b: Consumers’ consideration sets diminish when summary UGR are present. 

If both unordered SGR and UGR are present, we would expect to find a reduction in accumulation, which 
in our case means a smaller decrease in consideration set size. Having used summary UGR to quickly 
identify attractive products, consumers may feel unsure, when additionally presented with unordered 
SGR, about the latter products’ utility and decide to include some of them in their consideration set to 
reduce the risk of discarding attractive products so early in the purchasing process.  

H1c: Presenting unordered SGR along with summary UGR reduces their (accumulated) effect on 
consideration set size.  

Because cognitive processing capacity is limited, including more than around 7 products (Miller 1956) to 
the consideration set will make detailed product evaluation in the next stage extremely effortful or even 
cognitively impossible. However, minimizing second-stage effort by including very few products in the 
consideration set would require that consumers limit their choices severely at the first stage even though 
at this point product uncertainty is very high. We therefore suggest that the difference between male and 
female consumers in consideration set formation lies less in the absolute sizes of their consideration sets 
(Häubl and Trifts 2000; Parra and Ruiz 2009) than in the effort they expend to form it. Female 
consumers tend to screen more products (e.g. Seock and Bailey 2008) because they are more risk-averse 
and place greater emphasis on decision accuracy (Mitchell and Walsh 2004). 

H2: Consideration set size does not vary with gender. 

Instead, these differences in information processing incur differences between the genders in their 
reliance on decision aids and thus have an indirect effect on consideration set size. Male consumers are 
generally thought to be more likely to rely on SGR because they particularly value efficiency in shopping 
(Seock and Bailey 2008; Van Slyke 2012). However, the cues offered by unordered SGR are of low 
diagnosticity and promise little gain in efficiency (Dellaert and Häubl 2012): we would not expect either 
male or female consumers to rely on them. 

Female consumers are generally thought to be more likely to rely on UGR because they find them more 
credible (Awad and Ragowsky 2008) and value the increase in social presence through UGR more highly 
(Chai et al. 2011; Kumar and Benbasat 2006). Importantly, however, previous studies did not distinguish 
between summary and textual UGR. Summary UGR serve much the same purpose as ordered SGR, 
namely as informational cues for discerning attractive and unattractive products. We therefore posit that 
male and female consumers will not differ in their use of summary UGR during consideration set 
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formation: both will use them for reducing decision effort during consideration set formation.  

H3a:  The effect of SGR on consideration set formation is not moderated by gender.  

H3b:  The effect of UGR on consideration set formation is not moderated by gender. 

Choice Set 

During the evaluation stage, consumers have a closer look at the products in the consideration set to 
determine their utilities and to decide which ones to consider seriously for purchase; in other words, to 
decide which products to transfer to their choice set. We suggest that choice set size does not grow 
proportionately to consideration set size but that the transition probabilities (of a product being 
transferred to the choice set) diminish with larger consideration sets. For one, larger consideration sets 
indicate greater heterogeneity in the considered products’ utilities (Häubl and Trifts 2000). Prior research 
shows that when decision-makers are presented with (relatively speaking) bad alternatives alongside good 
alternatives, their decision confidence increases (Aljukhadar et al. 2012). In our case, consumers will be 
more confident in discarding (relatively) low-utility products from the consideration set, and will keep 
only a small number in the choice set. By contrast, consumer will be more inclined to keep a greater 
proportion of products (i.e. have a higher transition probability) from small consideration sets (with more 
homogeneous utilities). 

H4: Transition probability diminishes with larger consideration sets. 

Ordered SGR affect choice set formation uniformly across gender due to a decrease in effort and an 
increase in accuracy (Dellaert and Häubl 2012; Häubl and Trifts 2000).We suggest that unordered SGR 
have opposite effects on consumers of different gender (see H7a). Therefore, we would not expect to see a 
uniform main effect.  

Textual UGR provide consumers with additional information on the products in the consideration set, 
which makes the evaluation task more complex (e.g. Hauser and Wernerfelt 1990). Having used summary 
UGR for discarding low-utility products, the consideration set will consist of products with relatively 
homogeneous utilities. Evaluating and comparing these products’ relative attractiveness will require 
greater effort, even when textual UGR are used for support: reading and processing such detailed 
information is cognitively demanding. Prior research found that UGR increase choice probability, but did 
not take into account the stage of choice set formation (e.g. Shiu et al. 2011). We suggest that UGR could 
indeed increase transition probability because consumers will be able to process only part of the available 
information with reasonable effort. Thus they will be aware of the possibility of not having processed a 
vital piece of information (correctly), which will increase the perceived risk of discarding an attractive 
product too soon. 

H5a:  Transition probability is not (uniformly) affected by unordered SGR. 

H5b:  Transition probability increases in the presence of UGR. 

During product evaluation, consumers gain a better understanding of the considered products’ relative 
attractiveness. As a result, they are better able to judge the actual informational value of SGR. If they 
deem SGR to be highly diagnostic, consumers will feel more confident in their decision to seriously 
consider a doubly recommended product for purchase and decide to forego the effort of transferring 
additional products to the choice set. If SGR are deemed to be of low diagnostic value, consumers will feel 
more confident in discarding these products from their consideration sets. In both cases, the accumulated 
effect on transition probability is reduced. 

H5c: Presenting both SGR and UGR reduces their (accumulated) effect on transition probability. 

The question of how many products to transfer to the choice set depends on the size and, implicitly, 
quality of the consideration set (Häubl and Trifts 2000) in terms of product utilities. Gender does not 
affect transition probability directly. 

H6: Transition probability does not vary with gender. 

Indirectly, however, gender can affect transition probabilities due to gender-specific reactions to SGR. 
When only SGR are present, male consumers will be more inclined to using them in order to save effort; 
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either by using them as cues to confirm their product opinions in case of high diagnosticity or by using 
them as cues to facilitate discarding products in case of low diagnosticity (H5c). Female consumers 
without access to UGR, however, are likely to react in the opposite way: their uncertainty may even 
increase if SGR are of low diagnosticity, and they may defer discarding a product to diminish the risk of 
reducing decision accuracy. 

Textual UGR simultaneously increase effort and accuracy of choice set formation (see H5b) but do not 
provide easily accessible cues for fast decisions on product inclusion into or exclusion from the choice set. 
In such situations, male consumers tend to process information similarly to female consumers (Meyers-
Levy and Mahareswaran 1990). While the direction of the effect is thus identical, it will be stronger for 
female consumers. They place more emphasis than males on avoiding the consequences of a wrong 
decision (Croson and Gneezy 2004), in this case a reduction in decision accuracy by having discarded an 
attractive product too soon.  

H7a: In the presence of SGR, transition probability decreases for males only. 

H7b: In the presence of UGR, transition probability increases more strongly for females than for 
males. 

Choice 

The uncertainty associated with a purchase increases with the number of products that appear to be a 
close match to a consumer’s preferences, which in turn increases choice deferral (Walsh and Mitchell 
2005). At the same time, consumers value being able to choose from a large array of attractive products 
(e.g. Iyengar, Wells and Schwartz 2006); small numbers of attractive products can lead to weaker 
preferences and decreased choice satisfaction (Chernev 2003). In both cases, transition probability will be 
high because consumers will have been more inclined to transfer products from the consideration set to 
the choice set – either to reduce the risk of prematurely discarding an attractive product, or to reduce the 
risk of being left with only one option.   

H8: Choice probability diminishes with higher transition probabilities. 

We suggest that SGR only have an indirect effect on choice probability through transition probability. 
Contrary to their potential value during choice set formation, unordered SGR will not affect the final 
choice because they cannot provide information relevant to the final decision, i.e. product order or a 
rationale why one product might be a better fit to consumer preferences than another product. 

UGR, on the other hand, provide information from which product (utility) order and preference fit can be 
inferred, although this can be a cognitively difficult task (Benlian et al. 2012), thus reducing pre-purchase 
uncertainty and the likelihood of choice deferral (Dimoka et al. 2012).   

H9a: Choice probability is not affected by SGR. 

H9b: Consumers are more likely to purchase a product from their choice set if UGR are present. 

Similar to the interaction effect of SGR and UGR on consideration set size and choice set size, we 
expect to see a reduced accumulation of the effects of SGR and UGR on choice probabilities. 

H9c: Presenting both SGR and UGR reduces their (accumulated) effect on choice probability. 

Male consumers are generally more inclined to make an actual purchase online because they are 
motivated by the perceived gains of their purchase decision rather than its perceived risks (Awad and 
Ragowsky 2008; Seock and Bailey 2008). Female consumers, on the other hand, place greater emphasis 
on avoiding the consequences of a wrong decision.  

H10: Male consumers are more likely to make a purchase than female consumers.  

Since SGR are of little informational value for the final choice, we would not expect either male or female 
consumers to be affected by them. UGR, on the other hand, enable consumers to infer product order and 
can thus be used in the final decision. Female consumers’ choice probability is likely to increase when 
UGR are present because they judge recommendations by word-of-mouth to be more trustworthy (Bae 
and Lee 2011; Garbarino and Strahilevitz 2004). UGR doubly affect female consumers: for one, UGR 
suggest higher website trustworthiness because other consumers have successfully shopped there (Awad 
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and Ragowsky 2008), and for another, UGR reduce product quality uncertainty (Hu et al. 2008).  

H11a: Gender does not moderate the effect of SGR on choice probability.  

H11b: Gender moderates the effect of UGR on choice probability. Female consumers are more 
likely than male consumers to make a purchase when UGR are present. 

To summarize, we suggest that SGR and UGR affect effort and accuracy to varying degrees at the 
different stages of the purchase decision process, i.e. whether to include products in the consideration 
set; whether to transfer them to the choice set; and, ultimately, whether to buy them. Because male 
and female consumers differ in their information processing strategies, their valuations of effort and 
accuracy, and risk aversion and trust, their reactions to SGR and UGR are likely to differ at several 
stages. 

Empirical Investigation 

Experimental Design 

Measuring the choice set is subject to similar operational issues as measuring the consideration set: self-
reporting is liable to produce biased data (Moe 2006); inferring consideration sets from purchasing data 
to produce large estimation errors (Roberts and Lattin 1997). We therefore decided to collect 
observational clickstream data (Moe 2006) in an online experiment. In line with prior definitions of 
consideration set (“products evaluated in detail”; Häubl and Trifts 2000; Hauser and Wernerfelt 1990), 
we operationalized it as all products on which participants clicked to obtain more detailed information. 
The choice set (defined as “products considered immediately prior to purchase”; Shocker et al. 1991) was 
operationalized as all products which participants did not drop from the consideration set after detailed 
evaluation but retained up to the moment when they made their final choice. We were thus able to capture 
the dynamics of consumer choice; to determine whether consumers actually used two distinct sets and a 
three-stage decision process; and to examine how SGR and UGR affect decisions at each stage.  

We used a 2x2 between-subject design to test our hypotheses, generating four different versions of the 
Amazon website in real time to isolate the effects of SGR and UGR in a maximally realistic environment. 
We chose Amazon in order to eliminate the effect which different levels of trust towards a website may 
have on consumer behavior (Dimoka et al. 2012; Komiak and Benbasat 2004; Riedl et al. 2010). Amazon 
is very popular and has a good reputation for customer service (Barnes and Vidgen 2005); we could be 
reasonably certain that our participants would be familiar with Amazon and consider it a trustworthy 
vendor. Login buttons were disabled to eliminate quality differences between SGR for logged-in users and 
for anonymous users. All participants received SGR based on click-stream data only.  

Participants were instructed to search for a new digital camera on the Amazon website. Before starting the 
search task, they completed an online survey about their perceptions of Amazon. After the search task, 
they completed a second survey on individual and demographic variables. Participants were under no 
time constraints for their search; they were merely instructed to quit searching as soon as they had come 
to a final decision whether to purchase a camera. There were no constraints as to the information search 
methods or decision strategies employed. The participants were only asked to open each camera they 
wanted to evaluate in detail in a separate browser tab. These cameras constitute the consideration set. 
When participants decided not to consider a camera for purchase any longer, they closed the tab. The 
cameras retained in open tabs at the end of the experiment constitute the choice set. We logged all clicks 
on the Amazon website as well as browser tab opening and closing during the entire experiment.  

Pretest and Sample 

We carried out one-on-one pretests with 3 students, who did not take part in the final experiment, in each 
experimental condition. The 12 pretest participants’ opinions of and thoughts on every step in the 
experiment were elicited in think-aloud protocols. We also tested the manipulation checks and found that 
all pretest participants correctly perceived presence or absence of SGR and UGR on the Amazon website. 

233 undergraduate and graduate students from the University of Passau participated in our experiment. 
All participants were familiar with the Amazon website and had purchased at least one product within the 
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last 3 month at Amazon.com. Participants were assigned randomly to one of the four experimental 
conditions. Table 1 presents the descriptive statistics for participants’ purchasing processes by gender and 
assigned condition.  

Table 1. Descriptive statistics of our sample 

 
no UGR, no SGR no UGR, SGR UGR, no SGR UGR, SGR 

Female Male Female Male Female Male Female Male 

Participants 39 25 50 13 34 17 36 19 

Consideration 
Set Size 

7.846 
(4.660) 

6.800 
(4.010) 

7.600 
(3.010) 

6.846 
(2.794) 

5.941 
(2.510) 

6.529 
(3.223) 

6.472 
(3.229) 

6.526 
(2.065) 

Choice Set 
Size 

1.744 
(1.117) 

1.720 
(1.137) 

2.200 
(1.325) 

1.385 
(0.961) 

1.912 
(1.288) 

1.824 
(1.131) 

1.667 
(1.171) 

1.737 
(1.727) 

Transition 
Probability to 
Choice Set 

0.222 
(0.242) 

0.253 
(0.235) 

0.322 
(0.242) 

0.279 
(0.303) 

0.289 
(0.233) 

0.202 
(0.163) 

0.258 
(0.303) 

0.266 
(0.220) 

Choice 
Probability 

0.256 0.720 0.320 0.462 0.500 0.588 0.444 0.579 

The average set sizes and choice probabilities are similar to those reported in other studies (Dellaert and 
Häubl 2012; Gu et al. 2011; Häubl and Trifts 2000).  Our participants considered between 1 and 26 
products, but transferred only up to 8 products to their choice set. In support of our conjecture for H8, we 
indeed found a strong positive relationship between transition probability and choice set size (p<0.001).  

Manipulation Check 

After concluding the search task, participants completed another online survey, this time answering 
questions on their final purchase decision and on their perceptions of the presence (absence) of SGR and 
UGR on a 7-point scale. ANOVA results (Table 2) indicate that our participants correctly perceived 
presence or absence of the manipulated conditions. 

Table 2. ANOVA Results for Manipulation Check 

Source Manipulation 
Check 

Sum of 
Squares 

df Mean 
Square 

F Sig. 

Actual Support 
for SGR 

Perception of SGR 291.904 1 291.904 79.071 <0.001 

Perception of UGR 3.564 1 3.564 0.966 0.327 

Actual Support 
for UGR 

Perception of SGR 7.480 1 7.480 2.270 0.133 

Perception of UGR 570.200 1 570.200 173.159 <0.001 

Actual Support 
for SGR x UGR 

Perception of SGR 80.513 1 80.513 17.479 <0.001 

Perception of UGR 207.860 1 207.860 42.598 <0.001 

 

We recoded the variable for experimental condition as an ordinal variable by multiplying perception 
strength (measured on a 7-point scale) with the binary variables indicating whether SGR and UGR were 
present or not. If, for instance, participants relied heavily on UGR during their search process, they would 
be absolutely certain of their presence; but if they did not, they might be less certain. 

Gender-related Differences in Control Variables 

Since we used digital cameras as our experimental product, it was likely that there would be gender-
related differences in the participants’ product experience and preferences. Male consumers often have 
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more experience and thus better-defined preferences for computers (e.g. Sebastianelli et al. 2008), which 
might change how they perceive and use SGR and UGR. We therefore conducted ANOVAs for both 
variables and indeed found the expected gender differences, i.e. higher experience and more specific 
preferences among male consumers. We then used the residuals as independent variables in our main 
regression models to determine whether differences in experience and preferences not expressed by 
gender influenced the participants’ behavior at the different stages of the decision process. Regression 
results were robust; introducing the two additional variables did not change the effects of SGR and UGR 
on the outcome of any stage.  

To exclude the possibility that the gender-specific effects we found in our regression models (Table 3) 
were due to experience or preference differences only, we re-ran the regressions without gender and the 
full experience and preference variables. We did not find corresponding effects between experience or 
preference and SGR and UGR; nor did we find a significant effect of experience and preference on the 
final result of the purchase decision process, choice probability. In sum, all our cross-checks support our 
notion that gender-specific differences beyond experience and preference lead to different reactions of 
male and female consumers towards SGR and UGR and to different purchasing behavior.    

We also conducted an ANOVA to determine the gender-specific differences in trust towards SGR and 
UGR and included the trust residuals as independent variable in the main regression models. This did not 
change the effects of SGR or UGR but had a significant positive effect on choice probability for both 
genders (0.742, robust SE = 0.170). The ANOVA results indicated that female participants perceived UGR 
as more trustworthy, confirming prior findings (Awad and Ragowsky 2008). There were no differences 
between genders in their trust towards SGR. 

Effects on Consideration Set Size, Transition Probability and Choice 

We performed separate regression analyses for each of the three stages to test for effects of gender and 
experimental condition on the outcome of each stage (Table 3). The outcome of the screening stage, 
consideration set size, being a count variable without overdispersion, we performed a Poisson regression. 
The outcome of the evaluation stage is the transition probability, which corresponds to the ratio of trials 
(consideration set size) and successes (choice set size), on which we performed a logistic regression. The 
outcome of the selection stage, final choice, depends on both intermediate stages. We used the transition 
probability as an independent variable in the logistic regression on final choice and added the 
independent variable choice set filled to control for the effect of participants deciding prematurely against 
purchasing any product (choice set size zero) as opposed to making the decision during the third stage 
(choice set size at least 1).  

SGR did not affect consideration set size (H1a), supporting the supposition that consumers only reduce 
consideration set size if they are informed that recommendations are sorted by their utilities (Dellaert and 
Häubl 2012): Amazon does not provide explicit information about the presentation order. Consideration 
sets shrank in the presence of UGR (H1b): separating attractive from unattractive products became easier, 
allowing consumers to stop screening sooner and focus on evaluating fewer products in detail (Dellaert 
and Häubl 2012). Interestingly, presenting unordered SGR and UGR simultaneously did not increase 
consideration set size (H1c). As expected, gender did not affect consideration set size (H2) or moderate 
the effects of SGR or UGR on consideration set size (H3a and H3b). This indicates that male and female 
consumers alike use these decision aids for reducing the effort of screening products during consideration 
set formation.  

Transition probability diminished with larger consideration sets (H4). There were no main effects of SGR 
(H5a) or UGR (H5b) or indeed of gender (H6) on transition probability. When both SGR and UGR were 
presented, their accumulated effect on transition probability diminished (H5c). SGR also had a significant 
interaction effect with gender (H7a). Female participants transferred 28.9% of considered products to 
their choice sets when SGR were present, but only 22.2% without SGR. Male participants, on the other 
hand, included fewer products (20.2%) when SGR were present (25.3% without SGR). Contrary to 
expectations, UGR neither had a main effect on transition probability (H5b), nor was it moderated by 
gender (H7b). These findings indicate that consumers’ reliance on decision aids varies with each stage of 
the decision process.  

During the choice stage, participants did not rely on SGR (H9a). UGR increased choice probability (H9b) 
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but presenting UGR and SGR together did not affect participants’ choice probability at all (H9c). Male 
participants’ purchase probability was generally higher3 (H10). SGR did not interact with gender (H11a), 
but UGR increased female participants’ purchase probability and diminished male participants’ purchase 
probability (H11b).  

Table 3. Regression Results for 3-Stage Model [estimate (robust standard error)] 

 
Consideration 

Set Size 

Hypotheses 

Consid. Set 

Transition 

Probability 

Hypotheses 

Choice Set 
Choice 

Hypotheses 

Choice 

Intercept 
2.024 *** 

(0.088) 
- 

-0.640 *** 

(0.169) 
- 

-2.751 *** 

(0.714) 
- 

Consideration 

Set Size 
- - 

-0.096 *** 

(0.020) 
H4 supp - - 

Transition 

Probability 
- - - - 

-2.641 *** 

(0.705) 
H8 supp  

Choice Set 

Filled 
- - - - 

 2.580 *** 

(0.705) 
- 

SGR 
0.005 

(0.017) 
H1a supp 

0.035 

(0.020) 
H5a supp 

0.051 

(0.083) 
H9a supp 

UGR 
-0.039 * 

(0.017) 
H1b supp 

0.021 

(0.022) 
H5b n.supp 

0.199 * 

(0.083) 
H9b supp 

SGR x UGR 
0.002 

(0.003) 
H1c n.supp 

-0.010 * 

(0.005) 
H5c supp 

-0.010 

(0.018) 
H9c n.supp 

Gender (Male) 
-0.135 

(0.144) 
H2 supp 

0.051 

(0.169) 
H6 supp 

2.261 *** 

(0.598) 
H10 supp 

SGR x Gender 
0.001 

(0.030) 
H3a supp 

-0.086 * 

(0.041) 
H7a supp 

-0.240 

(0.136) 
H11ap.supp 

UGR x Gender 
0.041 

(0.029) 
H3b supp 

-0.022 

(0.039) 
H7b n.supp 

-0.339 * 

(0.129) 
H11b p.supp 

SGR x UGR x 

Gender 

-0.004 

(0.006) 
- 

0.017 

(0.010) 
- 

0.045 

(0.029) 
- 

Experience resid. 
-0.013 

(0.028) 
- 

-0.005 

(0.042) 
- 

0.159 

(0.163) 
- 

Preference resid. 
0.029 

(0.030) 
- 

0.076 

(0.043) 
- 

-0.019 

(0.151) 
- 

Trust resid. 
-0.046 

(0.035) 
- 

0.039 

(0.041) 
 

0.720 *** 

(0.181) 
 

Log-Likelihood 
-599.459 

(p=0.036) 
- 

-315.183 

(p<0.001) 
- 

-126.519 

(p<0.001) 
- 

Level of significance:                                          Hypothesis tests: 

* denotes significance at 0.05 level                 n. supp denotes hypothesis not supported 

*** denotes significance at 0.001 level           p. supp. denotes hypothesis partially supported 

                                                                                 supp    denotes hypothesis supported 

 

That SGR had no effect on consideration set formation presented separately (H1a) or alongside UGR 
(H1c), leads to the conclusion that participants across both treatments including SGR strictly reserved 
their judgment on SGR diagnosticity. Showing unordered SGR alongside UGR did not increase 

                                                             
3 Cross-checking (see section “Gender-related Differences in Control Variables”) revealed no significant 
effect of experience or preference on choice probability. 
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participant uncertainty to the point where they would include additional products in their consideration 
set to avoid the risk of excluding potentially attractive products prematurely. Having evaluated the 
products in the second stage, consumers are better able to determine how diagnostic unordered SGR are. 
Male consumers use them for efficiently building their choice set whereas female consumers may become 
increasingly uncertain when faced with SGR of low diagnosticity (H7a). This appears to have been the 
case in our experimental setting: female participants’ transition probabilities increase, indicating that they 
were less prepared to run the risk of discarding a potentially attractive product. In effect, they accepted 
greater effort during the purchase decision – choosing from a larger choice set – in exchange for a chance 
for greater decision accuracy. This interpretation is supported by the difference in product experience and 
preference which we found between genders. Male consumers were more certain of their preferences, thus 
better able to evaluate SGR, and relied more readily on them. Female participants had less experience to 
help them with SGR evaluation, became more uncertain and, since female consumers are generally more 
anxious to avoid the risk of making a wrong decision, “played it safe” by increasing the proportion of 
products transferred to the choice set4.  

All effects are summarized in Figure 3 with respect to the different decision aids and the participants 
gender.  

 

Figure 3.  Gender-specific Effects of SGR and UGR on all Stages of the Purchase Decision Process 

                                                             
4  Cross-checking (see section “Gender-related Differences in Control Variables”) revealed no 
corresponding interaction effect, which supports our argument that the increase in uncertainty is also due 
to gender-specific factors beyond experience or preference. 
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Two or Three Stages 

To ascertain whether a three-stage or two-stage model is better suited for modeling consumer behavior, 
we performed model comparison (Table 4). Both models are logistic regression models with consumers’ 
final choice as the dependent variable. The two-stage model assumes that only consideration set size plays 
a role, whereas the three-stage model includes the effects of both consideration and choice set sizes on 
final choice. The results clearly show that the three-stage model is superior in terms of model fitness 
(Table 4). Modeling consumer choice as a direct transition from consideration to final choice hides the 
indirect influence of SGR, moderated by gender (Table 3), on final choice: SGR affect the transformation 
of the consideration set into the choice set. 

Table 4. Comparison of Final Choice Stage in Two- and Three-Stage Models 

 Two-Stage Model Three-Stage Model 

 Estimate Robust Std. Err. Estimate Robust Std. Err. 

Intercept -1.216 *  0. 501 -2.751 *** 0.714 

Consideration Set Size -0.005 0.043 – – 

Transition Probability – –     -2.641 *** 0.820 

Choice Set Filled – –       2.580 *** 0.705 

SGR 0.052 0.081 0.051 0.083 

UGR   0.163 * 0.080    0.199 * 0.083 

SGR x UGR -0.007 0.018 -0.010 0.018 

Gender (Male)   2.140 *** 0.550         2.261 *** 0.598 

SGR x Gender -0.217 0.137 -0.240 0.136 

UGR x Gender -0.265 * 0.124   -0.339 * 0.129 

SGR x UGR x Gender 0.037 0.028 0.045 0.029 

Experience residuals 0.163 0.149 0.159 0.163 

Preference residuals 0.053 0.145 -0.019 0.151 

Trust residuals 0.717 *** 0.168 0.720 *** 0.181 

Log-Likelihood -137.364 *** -126.519 *** 

AIC 298.728   279.038 

BIC 340.141 323.901 

R2 0.238 0.336 

 

Omitting the transition from consideration set to choice set leads to incorrect conclusions about 
consumers’ usage of risk relievers during the decision-making process and about choice probabilities. 
Notably, the two-stage-model would lead one to the (erroneous) conclusion that the consumers’ purchase 
decisions are barely influenced by the search stage. The fact that transition probability – as the ratio of 
choice set size and consideration set size – is the most important predictor for the final purchase decision 
underlines the importance of including choice set formation in models of consumer purchase decision 
processes. This information is missing entirely from the two-stage model, which will thus produce 
systematically biased estimates of choice probability. Figure 4 summarizes our results and illustrates the 
effects hidden by the two-stage model. 
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Figure 4.  Results 

Discussion 

This study contributes to research on consumer choice modeling in three ways. First, it suggests a novel 
way of measuring consideration sets and choice sets as observables in a realistic setting. We were thus 
able to monitor consumer behavior more closely and to distinguish clearly between different stages of the 
purchase decision process.  

Second, our study provides evidence that consumers follow a three-stage rather than a two-stage decision 
process, supporting our supposition that tailoring decision support to accommodate different decision 
process stages is preferential to the current one-aid-fits-all solutions. Our results contribute to 
determining which decision aid is most effective at which stage, since only in the three-stage model will 
the differential effects of SGR and UGR on each stage of the purchase decision process become 
transparent. These differences are due to varying information needs at the different stages, and also to 
differences in valuations of decision effort and accuracy between female and male consumers.  

Female consumers’ choice probabilities were highest with UGR only5: when selling to female consumers, 
UGR are the best choice of decision aid. Male consumers, by contrast, had the second-to-lowest choice 
probabilities with UGR only. One possible explanation for this finding is found in a study by Grabe and 
Kawahami (2006): females tend to avoid negatively framed messages and process them less effectively 
than positive messages; the reverse is true for males. Male consumers tended to have clear-cut 
preferences and relied more readily on SGR than female consumers, but this did not translate into 
increased choice probabilities. One possible explanation for this finding is that due to their clearer 
preferences, male consumers were better able during product evaluation to determine when 
recommended products did not fit their preferences. Male consumers’ greater emphasis on effort 
reduction then led them to discard the products immediately – male consumers’ choice sets were most 
likely to be empty with only SGR available6. These issues certainly merit further research.  

On average, i.e. without taking the influence of gender into account, three scenarios (no decision aids; 

                                                             
5 We predicted choice probabilities for all combinations of SGR and UGR as well as for all extreme values 
of non-gender specific experience, preference and trust for choice sets which included at least one product 
(CHOICESETSIZEFILLED=1). We multiplied these values with each scenario’s probability of leading to 
empty choice sets to arrive at the final predicted choice probability. 

6 We predicted transition probabilities for all combinations of SGR and UGR as well as for all extreme 
values of non-gender specific experience, preference certainty and trust. Choice set sizes were then 
computed as predicted consideration set sizes multiplied by predicted transition probabilities for all cases. 
Since choice set formation is a Poisson process, we generated 10,000 Poisson distributed random 
numbers (predicted choice set size as lambda) and computed the ratio of numbers equaling zero. 
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UGR only; SGR and UGR) led to nearly identical choice probabilities. When SGR were the only decision 
aid available, consideration sets (of both female and male consumers) were largest 7 . These results 
underline the importance of making the SGR generation process or the order of SGR transparent to 
increase their effectiveness. Websites, like Amazon.com, that provide collaborative and content-based 
SGR without such additional information, could vastly improve consumer decision support by increasing 
SGR transparency, reducing both effort and improving decision accuracy.  

Third, our results support the supposition that omitting the stage of choice set formation can lead to 
incorrect estimates of choice probabilities for (considered) products. Omitting choice set formation from 
models of consumer decision making leads to incorrect estimates of choice probabilities for (considered) 
products; transition probability emerged the most important predictor for choice probability in our study. 
Our results support our supposition that only a subset of considered products actually has purchase 
probabilities greater than zero: at most, females in our sample included 27.3 % of considered products in 
their choice sets, and males 25.0 %. Introducing a third stage into models of consumer decision-making is 
therefore likely to improve the accuracy of purchase (probability) predictions. This result is particularly 
interesting from product manufacturers’ and sellers’ point of view as far as market share and sales 
predictions are concerned. With regard to e-commerce decision support design, correctly predicting 
products’ choice probabilities during the decision process would improve recommendation precision and 
accuracy, thus reducing decision effort for the consumer. 

Further research is needed to reexamine the results and predictions of two-stage models of consumer 
behavior and its determinants, especially consumers’ information needs and processing at different stages 
under different informational conditions. Further research into the dynamics of consideration and choice 
set content could expand our understanding of the kind of attributes consumers use at different stages, 
and shed light on whether different product types give rise to different information needs and thus require 
different decision aids. 
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