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Abstract 

A core activity in information systems development involves understanding the 
conceptual model of the domain that the information system supports. Any conceptual 
model is ultimately created using a conceptual-modeling (CM) grammar. Accordingly, 
just as high quality conceptual models facilitate high quality systems development, high 
quality CM grammars facilitate high quality conceptual modeling. This paper seeks to 
provide a new perspective on improving the quality of CM grammar semantics. For the 
past twenty years, the leading approach to this topic has drawn on ontological theory. 
However, the ontological approach captures just half of the story. It needs to be coupled 
with a logical approach. We show how ontological quality and logical quality 
interrelate and we outline three contributions of a logical approach: the ability to see 
familiar conceptual-modeling problems in simpler ways, the illumination of new 
problems, and the ability to prove the benefit of modifying CM grammars. 
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Introduction 

Underlying any information system (IS) is a model of the domain that the information system is intended 
to support. Such models are often called conceptual models, because they focus on the way domain 
phenomena are to be conceived independent of the technology used to represent them. Sometimes 
conceptual models are made explicit in the form of graphical models during systems development; 
sometimes they remain implicit. Either way, their importance has long been recognized, from early 
research on databases (Chen, 1976; Kent, 2000) and systems analysis (Yourdon, 1989) to recent research 
on model-driven development (Selic, 2003; Utting and Legeard, 2007), configurable packages (Scheer 
and Habermann, 2000), and user-generated content (Lukyanenko and Parsons, 2011). Because 
conceptual models are often created early in the systems development process, errors in them can 
propagate to later phases of systems development where they are much more costly to fix (Boehm, 1981; 
Moody and Shanks, 2003). As a result, evaluating the quality of conceptual models has long held a central 
place in IS research (Iivari et al., 2006), practice (Fettke, 2009), and pedagogy (Ginzberg, 2012). 

Evaluating the quality of a conceptual model is not a straightforward task. A conceptual model manifests 
an IS professional's understanding of users' conceptions of the domain in which they work. This 
understanding is a social construct; it is often the outcome of discourse and negotiation that occur among 
multiple stakeholders (Hirschheim et al., 1995). Moreover, this understanding is fluid; it may change as 
stakeholders engage with the domain and each other. Because of these social, fluid properties, researchers 
have struggled to develop appropriate theoretical perspectives that can be used to guide the evaluation of 
conceptual models. As Moody (2005, p. 243) observes, “conceptual models continue to be evaluated in ... 
an ad hoc way, based on common sense, subjective opinions, and experience.” Similarly, Siau and Rossi 
(2011, p. 249) argue, “the blooming production of modeling methods is not the problem, the lack of 
standardized techniques for evaluating them is.” 

Our research aims to address the problem of the quality of conceptual models by extending prior 
theoretical work on the quality of conceptual-modeling (CM) grammars. This perspective is critical but 
surprisingly under-developed. We focus on two attributes of quality relating to CM grammars, which we 
call “ontological quality” and “logical quality.” Ontological quality has been examined at some length in 
the conceptual modeling literature, and it has provided valuable insights. Logical quality has not been 
examined in the conceptual modeling literature, however, even though it too can provide valuable insights. 
We explain why both types of quality are required for a full understanding of the semantics of CM 
grammars. We explain their meaning, discuss their importance and how they relate, and illustrate the 
benefit of this dual view for the evaluation and design of CM grammars. 

Our paper proceeds as follows. To situate our work, we first introduce and clarify important concepts used 
in the evaluation of conceptual models and some key frameworks proposed in past research. In the 
following section, we introduce and explain the notions of “ontological quality” and “logical quality.” 
Because ontological quality has been discussed already in the literature, we focus on “logical quality.” 
Specifically, we operationalize logical quality via the dimension of completeness. We subsequently discuss 
the benefits of considering this dimension over and above existing ontological perspectives. We conclude 
by examining the implications of taking this more-comprehensive (ontological and logical) perspective on 
the quality of conceptual models for future research and practice. 

Background 

Providing a concise summary of prior research on the quality of conceptual models is difficult, because the 
field is large and diverse. In this regard, Moody (2005, p. 247) writes, “over 50 different proposals have 
been published and new ones [are] published every year.” Because the focus of our paper is on a 
theoretical evaluation of conceptual models, one way to categorize prior literature is into theoretical 
evaluations versus atheoretical evaluations. The literature describing theoretical evaluations of conceptual 
models can then be categorized using Wand and Weber's (2002) framework and Lindland et al.'s (1994) 
framework. Table 1 shows such a categorization. 
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Method General principles for syntax, semantics, and pragmatics: 
(Frederiks and van der Weide 2006; Nelson and Monarchi 2007) 

 Semantics (mapping): 
(Evermann and Wand 

2005) 

 

Grammar Physics of 
notations: (Moody 

2009) 

Semantics (mapping): 
(Wand and Weber 1993; 
Wand 1996; Shanks et al. 
2003; Harel and Rumpe 

2004; Evermann and 
Wand 2005; Guizzardi 

2007) 

Task and cognitive 
fit: (Agarwal et al. 1996; 

Aguirre-Urreta and 
Marakas 2008) 

Script General principles for syntax, semantics, and pragmatics: 
(Lindland et al. 1994; Schuette 1999; Krogstie et al. 2006) 

Physics of 
notations: (Moody 

2009) 

Semantics (enactment) and pragmatics: 
(Lyytinen 1987; Eriksson and Ågerfalk 2005) 

Semantics (mapping): 
(Harel and Rumpe 2004; 

Shanks et al. 2003) 

Cognition and 
complexity: (Agarwal 
et al. 2000; Gemino and 

Wand 2003; Genero et al. 
2008; Maes and Poels 

2007; Parsons and Wand 
2008; Rockwell and Bajaj 

2004; Siau and Tan 
2005; Stark and Esswein 

2012; Teo et al. 2006) 

Table 1. Prior work 

 

The vertical axis of Table 1 reflects three dimensions of conceptual modeling proposed by Wand and 
Weber (2002): script, grammar, and method. Specifically, a conceptual model can be conceived as a 
particular kind of script generated using a CM grammar. A conceptual modeller employs a CM method in 
conjunction with a CM grammar to generate a script that represents a domain. A CM method might cover 
a number of aspects of the modeling process–such as how to model a domain, how to engage with 
stakeholders to elicit their perceptions of a domain, how to resolve disputes among stakeholders about the 
underlying semantics of a domain, and so on. The quality of a conceptual model can therefore be assessed 
from each of these perspectives (script, grammar, and method). 

The horizontal axis of Table 1 reflects the three dimensions of conceptual modeling proposed by Lindland 

                                                             
1 In addition to method, grammar, and script, Wand and Weber (2002) included context. We do not show 
it because it is captured by the column for pragmatics, i.e., what is practical in a given context (per 
Burton-Jones et al. 2009). Similarly, Lindland’s et al. framework of syntax, semantics, and pragmatics 
was supplemented with social and physical by Krogstie et al. (2006). We exclude these because they have 
rarely been studied and are quite distant from our paper’s focus on semantics. 
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et al. (1994). In principle, a conceptual model should be evaluated according to its “totality of features and 
characteristics” (Moody, 2005, p. 252), but the wide variety of such features and characteristics makes 
this difficult to achieve in practice. By concentrating on the linguistic aspects of conceptual models, 
Lindland et al. (1994) were able to propose a parsimonious set of three dimensions: (a) syntactic quality—
the extent to which a conceptual model conforms to the constructs and rules of the grammar used to 
express it; (b) semantic quality—the extent to which a conceptual model captures the perceived meaning 
of the domain; and (c) pragmatic quality—the extent to which stakeholders find a conceptual model easy 
to use and useful. Their framework has since been used widely (e.g., Maes and Poels 2007; Moody and 
Shanks 2003; Siau and Tan 2005). 

The cells of Table 1 show exemplary papers of each major type. As the table shows, some papers have 
provided principles that cover all three dimensions of representation (syntax, semantics, and pragmatics), 
with a focus on either methods (Frederiks and van der Weide, 2006; Nelson and Monarchi, 2007) or 
scripts (Krogstie et al., 2006; Lindland et al., 1994; Schuette, 1999). In contrast, other papers have 
focused on just one or two cells of Table 1. For instance, Moody's (2009) work on the physics of notations 
addresses the syntax of grammars and scripts, whereas Wand and Weber's (1993) work on ontology 
focuses on the semantics of CM grammars alone. 

Two trends in Table 1 are particularly relevant to note. First, prior literature has focused predominantly 
on assessing (a) pragmatics over syntax and semantics, and (b) scripts over grammars and methods. 
Second, research on semantics has taken two perspectives: a “mapping” perspective, and an “enactment” 
perspective. The “mapping” perspective views semantics as a mapping from “one domain (the universe of 
discourse) to another (the model)” (Eriksson and Ågerfalk, 2005, p. 201). In contrast, the “enactment” 
perspective views semantics in terms of action—what people do with words (Austin, 1962). In Table 1, we 
show entries for the mapping perspective in the “semantics” column, whereas we show entries for the 
enactment perspective in the “semantics” and “pragmatics” columns. 

We highlight these two traditions on semantics because (a) each offers value, and (b) each is based on a 
different philosophical tradition that is somewhat incommensurable (Lyytinen, 1987; Wand et al. 1995). 
In this study, we take the mapping perspective only, because we see several opportunities to extend prior 
work that adopts this perspective. We leave extensions of the enactment perspective to future research. 

Although all cells of Table 1 reflect important domains of research, we focus on just one–namely, the 
middle cell of Table 1, which covers the semantics of CM grammars. We chose this cell for four reasons. 
First, the raison d'être of conceptual models is to convey a domain’s semantics (at least according to the 
“mapping” view), so semantics is arguably its most-critical dimension. Second, a CM grammar often 
precedes a CM method and script—systems analysts first choose a grammar and then employ a method to 
create a script using that grammar. Third, research on the semantics of CM grammars can be used to offer 
rules and guidelines (methods) for modeling (e.g., Evermann and Wand, 2005). Thus, advancing research 
on the semantics of grammars has benefits for research on methods too. Finally, recent research has 
emphasized the need to clarify the semantics of CM grammars (e.g., Harel and Rumpe 2004). 

As Table 1 shows, several papers have proposed ways to evaluate the semantics of CM grammars. The 
predominant approach is to use theories of ontology (see, e.g., the work of Wand, Weber, and Guizzardi in 
Table 1). Since the ontological approach was proposed (Wand and Weber, 1993), it has been used widely. 
For instance, according to Moody (2009, p. 774) “ontological analysis is a widely accepted approach for 
analyzing semantics of notations, which supports rigorous, construct-by-construct analysis.” Despite its 
maturity, we show in this paper that it requires significant extension. Indeed, we show it addresses only 
half the problem of the quality of CM grammars. The extension we provide stems from an analysis of the 
logical quality of language semantics and its relationship to ontological quality. Some papers have alluded 
to logic when considering the semantics of CM grammars (Carasik et al., 1990; Guizzardi, 2007; Harel 
and Rumpe, 2004; Lyytinen, 1987), but we are aware of no detailed treatment. 

The field of computer science has a long history of using formal logic to provide the semantic 
underpinnings of formal languages. Nonetheless, this work has quite different aims from our work, 
because it focuses on implementation-oriented issues (such as computation and automated reasoning). 
For instance, Calvanese et al. (1998) use Description Logic (DL) to give semantics for entity-relationship 
diagrams and object-oriented data models. In part, their aims are to compare these two grammars and to 
automate reasoning. More recently, Fillotrani et al. (2012) present a DL-enabled CASE tool with similar 
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aims. They provide an automated-reasoning engine to identify errors during the design of CM scripts. 
Much recent research has also investigated the design and use of ontologies on the Web. For instance, 
Franconi (2004, p. 76) writes that OWL Full, which is a web-based ontology language, “turned out to be 
very expressive—beyond first-order logic. This means that [it] can express most of the details we'd want 
described in an ontology, but other agents can still understand that ontology without any problems.” 

In sum, our predecessors who have used the logical approach have been interested in automating the task 
of determining whether a particular conceptual model entails a certain conclusion (for a particular model 
expressed in a particular grammar). In contrast, our aim is to discover those properties of CM grammars 
that support production of CM scripts with high-quality semantics. Computational and automated-
reasoning concerns are not our focus.2 Nonetheless, despite the wide gulf between current ontological 
research and logical research on the semantics of CM grammars, we believe a logical approach to the 
evaluation of CM grammars offers important benefits. In this regard, we argue below that a joint 
consideration of ontology and logic is not only useful but essential. 

Semantic Quality: Ontological and Logical Perspectives 

Formal languages, such as CM grammars, have two parts to their syntax: a vocabulary of symbols 
(“terminal symbols”), and a set of production rules for combining those symbols into well-formed 
expressions. Corresponding to these two parts of a formal language's syntax are two parts of a formal 
language's semantics: first, a mapping from the terminal symbols to their referents; second, a recursive 
definition of the referent (meaning) of complex expressions in terms of the meanings of their components. 
These two parts can be seen as describing the respective contributions of the language's vocabulary and its 
production rules to the meaning of a given well-formed expression. A complete assessment of the quality 
of a formal language's semantics, therefore, must consider both elements of its semantics—vocabulary and 
production rules. We argue in this section that a grammar's ontological quality depends only on the 
former aspect of its semantics, its vocabulary, and the interpretation thereof. We therefore develop a 
notion of logical quality that turns on the remaining aspect of a grammar's semantics, its production rules, 
and their contribution to script meaning. 

Wand and Weber's (1993) Theory of Ontological Expressiveness (TOE) assesses CM grammars in terms of 
a mapping between constructs of the grammar and constructs of a benchmark ontological theory. The 
mapping in question is semantic: it is a mapping from grammatical constructs to their referents. A 
grammar is defective, according to TOE, if the semantic mapping is not one-to-one and onto. Each 
construct in the grammar must be mapped to exactly one construct in the benchmark ontology. 
Furthermore, every construct in the ontology must have exactly one construct in the grammar mapped to 
it. If the mapping is one-to-one, then the grammar is considered ontologically clear; if the mapping is onto, 
then the grammar is considered ontologically complete. As an immediate consequence of this 
characterization of ontological quality following TOE, we can see that ontological analysis of a CM 
grammar is blind to its production rules. All that matters in determining whether a grammar is 
ontologically clear and complete is the grammar's vocabulary and the semantic values of the vocabulary 
elements. Production rules have no impact on the mapping between grammatical constructs and 
ontological constructs. 

Ontological quality is a matter of comparison between a grammar and a benchmark ontological theory 
(e.g., Bunge's 1977 theory). A theory of ontology tells us the fundamental types of phenomena that make 
up the real world. A grammar of high ontological quality will clearly and completely reflect this theory in 
its vocabulary of constructs—every type of phenomenon in the world will be represented by exactly one 
construct in the grammar. Similarly, logical quality, as we define it, will be a matter of comparison 
between a grammar and a benchmark logic. A logic tells us how logically complex propositions can be 
constructed from simple ones and from sub-propositional elements (objects, properties, relations, etc.). It 
will also tell us which of these propositions entail which other ones. 

                                                             
2 More formally, we seek CM grammars all of whose scripts have desirable sets of entailments. This 
desideratum is independent of the desideratum in prior computer science research that we should be able 
to efficiently compute the model's entailments. 
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A logic gives us a list of ways the world could possibly be. Given a set of objects, properties, and relations, 
a logic tells us how they can and cannot be combined in the world. If our ontology contains employees as a 
category of objects, and being male and being female as properties, then our logic might tell us that the 
world could contain (1) only male employees, or (2) only female employees, or (3) both male and female 
employees, but that it is not possible for the world to be such that both (1) and (2) are true. A logic tells us 
how different ways of combining objects, properties, and relations relate to each other. Every employee 
has a salary entails every female employee has a salary. The latter deliverances of our logical theory—
relations of entailment or consequence—are nonetheless formal. On a standard understanding of what it 
means for logic to be formal (Beall and Restall, 2005), this means that whether one sentence entails 
another does not depend on the content of the particular terms supplied by the ontology. If we were to 
systematically replace the terms employee, female, and has a salary throughout the two propositions just 
stated, the relation of entailment would still hold: every φ has ψ entails every φ who has χ also has ψ, 
regardless of which predicates we substitute for φ, ψ, and χ. Because logic is formal in this way, logical 
analysis is as blind to a grammar's vocabulary of constructs as ontological analysis is blind to a grammar's 
production rules. 

So far, we have an idea of what kind of structure a benchmark logical theory provides. Now we must show 
how to leverage that sort of theory into an account of a CM grammar's logical quality, just as TOE showed 
us how to leverage a benchmark ontological theory into an account of a CM grammar's ontological quality. 
We take a script-driven approach to analysis of grammars, based on the idea that a high-quality grammar 
is one that yields high-quality scripts. 

As we indicated previously, a benchmark logic gives us a list of ways the world could possibly be, given a 
vocabulary of constructs. We can understand this list in terms of a set of questions that can be asked 
about the world: for any way φ that the logic tells us the world could possibly be, we can ask the question, 
“Is φ an accurate description of the world?” In other words, we can ask, “Is φ true?” As we argue in the 
next section, a high-quality script should answer all relevant questions about the domain being modeled 
(i.e., either “yes” or “no”); therefore, to assess a script's logical quality, we compare the list of questions 
answered by the script with the list of questions produced by our benchmark logic. A script of high logical 
quality answers all the questions on an appropriately formed list and answers them coherently. 
Correspondingly, a grammar of high logical quality produces only scripts of high logical quality. 

In the next section, we make these general ideas more precise. We will use a notion of information loss to 
give conditions scripts and grammars must meet to exhibit high logical quality. These conditions turn on 
the factors just mentioned—namely, a comparison between a list of questions generated by a benchmark 
logic and a corresponding list of answers generated by a script (or by the scripts a grammar produces). As 
we will show subsequently, attending to this dimension of quality has three primary benefits: 

1. It illuminates an existing debate in conceptual modeling, over optionality. 

2. It surfaces new problems, analogous to optionality, hitherto unrecognized. 

3. It points to guidelines for the design of CM grammars so as to avoid all problems of information 
loss. 

Benefit 3 is where our formal results come into play. Here is a brief map of what is to come and how our 
formal results fit into the picture. First, we give a formal analysis of information loss via the logical notion 
of (in)completeness. We then identify some sources of information loss, both familiar and new. 
Importantly, information loss has been suggested as a reason why optionality is to be proscribed in 
conceptual models, but the notion was only partially understood (an inevitable consequence of using 
ontological analysis for a task better suited to logical analysis). We devote a subsection to clarifying and 
simplifying the debate over optionality. On the other hand, in another subsection, we reveal that another 
feature of conceptual models—namely, the standard way of representing mandatory associations between 
classes—leads to the same sort of information loss as optionality, though this outcome has not yet been 
appreciated in the literature. By addressing an explicit list of issues,3 our formal results (discussed in a 
later section) then show an ERM-type grammar can eliminate all sources of losses of information. These 

                                                             
3 For reasons of space, we do not present the full list. Nevertheless, the issues we discuss in this section 
(concerning optionality and cardinalities for mandatory associations) are representative. 
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results naturally lead to guidelines for constructing grammars of high logical quality. Our primary 
purpose in this paper is to discuss the significance and applicability of our formal results. In this light, we 
suppress details of the proof. 

Logical Quality: Information Loss and Completeness 

Inaccuracy versus Information Loss in Scripts 

A CM script aims to answer questions about the domain being modeled. It tells the user what the domain 
is like. One way a script can be flawed, then, is to give the wrong answer to a question. If a script says, for 
example, that some research assistants have no supervisor, when in fact all research assistants in the 
domain must have supervisors, the script is flawed because it is inaccurate. Identifying instances of 
inaccuracy generally requires some knowledge of the domain: we need to know both what the script says 
and what the truth is, so that we can identify cases where these two things are different. 

Scripts can have another sort of flaw, which is our concern here. Rather than giving the wrong answer to a 
user's question, a script might give no answer. If a script is ambiguous between saying that all research 
assistants must have a supervisor and saying that some research assistants may lack a supervisor, then the 
script fails to answer the following question: Must all research assistants have a supervisor? The script 
has lost information about the domain, namely the answer to this question. We can identify instances of 
information loss without any prior knowledge of the domain. No matter which answer to the question is 
the correct one, we only need to know how to read our script to know whether it provides any answer. 

We call a script that provides answers to all of a user's questions a complete4 script. We call a script 
incomplete otherwise. An incomplete script, we say, loses information about the domain modeled. An 
incomplete script is not one that falsely represents the domain (one that misinforms). Instead, it fails to 
inform users about some aspect of the domain. Complete scripts show no loss of information. 
Completeness is perfectly suited to study via logical analysis. Moreover, it is likely to be overlooked by 
ontological analysis, because of the feature noted above. We can determine whether a script is complete 
(in the sense defined here) without any prior knowledge of the domain—without performing any 
ontological analysis. 

Ensuring scripts are complete is particularly important in light of what we know about the practice of 
conceptual modeling. Specifically, systems analysts often: (1) fail to elicit a complete set of semantics from 
users—they stop their elicitation work too soon (Pitts and Browne, 2004), (2) fail to verify scripts carefully 
with users (Wastell, 1996), (3) make incorrect assumptions about domain semantics, because they assume 
(incorrectly) that the domain is similar to other ones they have seen (Hadar et al., in press), and (4) base 
the design of information systems on conceptual models that have not been validated (Dawson and 
Swatman, 1999). For these reasons, systems analysts most likely will either use incomplete scripts to 
construct the information system or will complete the script themselves (possibly incorrectly) without 
validating it with users. Although a grammar cannot solve these human/social problems, the problems 
would be alleviated to some extent if we could guarantee the grammar would produce only complete 
scripts. Such scripts might allow systems analysts and users to better pinpoint where a script is defective 
because it does not model all the phenomena that are of interest to users or it models these phenomena 
incorrectly. 

The definition of completeness we have given, therefore, needs development. Most importantly, what do 
we mean by “all of a user's questions”? Of course, we would not expect a conceptual model of one business 
to provide an answer to questions about a completely separate business. It would be a mistake to label a 
script incomplete for failing to characterize the workings of an organization it was never intended to 
characterize. This observation points to a basic restriction on the kind of questions we expect a script to 

                                                             
4 The term “complete” is used in many distinct ways in literatures relevant to the present work. For 
example, Wand and Weber's (1993) TOE contains a notion of ontological completeness distinct from the 
logical notion introduced here. Our use of the term is inspired by, and most closely analogous to, the 
notion of a complete theory in first-order logic. We explain the notion of a complete theory on page 13. 
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answer—specifically, the question must be about the domain that has been modeled. Questions about a 
certain hospital are relevant in assessing a script intended to model that hospital, but questions about a 
manufacturing company in another country are not relevant. 

This restriction does not go far enough. There are even questions about the domain that has been modeled 
that we would not reasonably expect a script to answer. Continuing with our example, our model of the 
hospital should not be expected to answer questions about, say, surgeons' shoe sizes (unless, of course, for 
some reason surgeons’ shoe sizes were relevant to questions that stakeholders might ask about the 
hospital domain). In short, the questions must be framed only in terms of phenomena that have been 
modeled. 

The point is general: a central task in conceptual modeling—perhaps the central task—is separating 
relevant from irrelevant information. We produce models of the world, abstractions from the world, in 
part because the world itself is “noisy” in an informational sense. Surgeons encode information about 
their shoe sizes by possessing particular shoes; they also encode information about their areas of 
specialization by performing specialized surgery. The latter bit of information is important to the hospital, 
while the former usually is not. 

In this light, we amend our initial definition of an incomplete script and say: a script is incomplete if and 
only if it fails to provide an answer to any question that can be asked about the phenomena that have been 
modeled. Defining completeness in terms of the “modeled domain phenomena,” as we have done here, is 
consistent with prior conceptual modeling research, which has used a range of terms for this domain 
including the “domain of change,” “target system,” and “universe of discourse” (Hirschheim et al., 1995, p. 
10). We next provide a characterization of relevant questions, which we will later formalize. 

Relevance and Completeness 

A modeler's task, then, centrally involves sorting relevant from irrelevant information. We see this task as 
prior to the construction of a concrete script and prior to selection of a modeling language with which to 
produce such a script. Briefly, we have in mind a picture of conceptual modeling as a five-step process. 

1. The modeler examines the domain to determine which features of the domain (which entities, 
properties, etc.) are relevant and which are irrelevant. 

2. The modeler produces or selects a basic vocabulary of symbols to represent the relevant features. 

3. The modeler determines how those features are related in the domain (in the real world). 

4. The modeler chooses a grammar appropriate to representing the relations between relevant 
domain features. 

5. The modeler produces a script that reflects the relevant features of the domain and their 
interrelations, using the selected vocabulary, put together according to the rules of the selected 
grammar. 

To clarify, we see these as the logical steps involved in conceptual modeling but not necessarily as 
chronological steps. That is, we do not pretend that standard modeling practice involves explicitly 
following these steps in this order, nor even that these steps are performed distinctly from one another. 
Rather, we think that modelers must perform all these tasks in the process of producing a script. 

This picture gives us a way of characterizing relevant and irrelevant questions about the domain. Relevant 
questions, the ones that a script must answer on pain of incompleteness, are questions about the relations 
between the relevant features of the domain as identified in the first and third steps. If the modeler thinks 
that treatment types and disease types are features of the hospital relevant to the script's purpose, then 
the script should provide an answer to questions about whether mental health conditions may be treated 
with surgery, whether a single condition may be treated with both surgery and medication, and so on. If 
the script in this scenario fails to provide answers to these questions, it is justifiably criticized as 
incomplete. 
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Completeness in Grammars 

Completeness and incompleteness are properties of scripts. Our concern here, however, is not to give 
guidelines for producing high-quality scripts in arbitrary modeling grammars. Our concern is, instead, to 
give guidelines for producing modeling grammars that facilitate production of high-quality scripts. 
Therefore, we introduce a related property at the level of grammars. We say a grammar is always-
complete if the grammar does not allow production of incomplete scripts, or, equivalently, if it only allows 
production of complete scripts. 

At this point, one might well wonder whether completeness (of scripts) and always-completeness (of 
grammars) are reasonable goals. That is, they might be desirable properties but unattainable. This 
outcome might be the case in general, but we have some optimistic results to present here. We show below 
that, for an important fragment of standard CM grammars such as the entity-relationship modeling (ERM) 
grammar, with minor amendments to standard usage, we can produce an always-complete grammar. The 
fragment in question ignores cardinalities of associations (except for the new type of cardinality notation 
introduced in Table 2), ternary and other greater-than-binary relations, and numerical properties (e.g., 
salary or mass, as opposed to dichotomic or boolean properties such as pregnancy or marital status). Even 
if always-completeness remains elusive for the full ERM grammar with cardinalities, ternary relations, 
and numerical properties represented, users of the full grammar would be better off following our 
recommendations for the fragment isolated here. That is, it may be difficult to produce a grammar that 
ensures questions about numerical properties are always answered, but it is easy to ensure that questions 
about non-numerical properties are always answered—and, ceteris paribus, it is better to have as many 
questions answered by a script as possible. 

In the following section, we discuss applications of our logical analysis of the ERM grammar to existing 
debates in the conceptual modeling literature. This provides a natural introduction to the modifications to 
the ERM grammar required for our formal results. After discussing these applications, we will provide a 
rigorous definition of always-completeness, and state our central formal result—namely, that our 
modified fragment of ERM is always-complete. 

Applications: Optionality and Mandatory Associations 

Before we discuss our formal results and the lessons to be drawn therefrom, consider two problems in 
conceptual modeling, both sources of loss of information. The first, which concerns optional attributes 
and associations, is an established debate that logical analysis helps us illuminate. The second, which 
concerns an ambiguity in mandatory associations between classes, is a new problem that logical analysis 
helps us unearth. In the following two subsections, we discuss each problem in turn, along with our 
recommended solutions to the problems, in the form of modifications to the standard ERM grammar's 
syntax. The upshot of our discussion in this section can be summarized as follows. Loss of information has 
previously been identified as a problem in conceptual modeling, specifically in connection with optionality. 
Nonetheless, as we argue in the first subsection, previous ontological analyses of the problems due to 
optionality have been unable to properly characterize this loss of information, which deficiency is 
addressed by our logical analysis. Applying our logical characterization of information loss from the 
previous section turns up further sources of loss of information (aside from optionality), notably including 
the problem with mandatory associations discussed in the second subsection. Furthermore, our logical 
analysis lets us demonstrate rigorously that the only sources of loss of information in our target fragment 
of the ERM grammar are those identified in this section and in our discussion of formal results in the next 
section. 

Optional Attributes and Associations 

Several researchers have cautioned against using optional attributes and associations in conceptual 
models. Weber and Zhang (1996, p. 158) and Wand et al. (1999, p. 512) were perhaps the first to suggest 
that optional attributes and associations obfuscate domain semantics. Wand et al. (1999, p. 518) suggest 
that difficulties with optionality might arise because information about the “laws” that cover the 
properties of things is lost when optional attributes and associations are used. Burton-Jones et al. (2012) 
take this proposition as a starting point for ontological analysis of the difficulties with optionality, using 
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Bunge's (1977) definition of laws. Their ontological analysis finds that there are some cases where 
optionality leads to loss of information that cannot be categorized as information about laws. Specifically, 
on Bunge's definition of laws, when two classes are mutually exclusive, no lawful relation exists between 
the two. Nonetheless, the information that two classes are exclusive can be obscured through the use of 
optionality. Thus, the problem of information loss due to use of optional attributes is more general than 
the ontological category of laws. In short, a clear solution to this problem still eludes ontological analysis. 

Logical analysis lets us more precisely characterize the problem with optionality, through the notion of 
completeness as described above. When a grammar allows optional attributes or associations, it cannot be 
always-complete. Note that the problem identified here is at the level of grammars, not scripts. As Burton-
Jones et al. (2012) found, scripts with only one instance of an optional attribute or association do not 
suffer from loss of information. That is, some scripts containing optional attributes or associations are 
complete. Nonetheless, a grammar that includes optional attributes or associations will allow incomplete 
scripts. 

To illustrate why (but not to prove that) optionality prevents always-completeness, consider Figure 1a.5 
This diagram shows a simple script with two optional properties, mental health condition and 
psychiatrist, belonging respectively to the classes Patient and Doctor, which are associated via the (non-
optional) association treats. According to Figure 1a, all doctors treat at least one patient, all patients are 
treated by at least one doctor, some (but not all) patients have a mental health condition, and some (but 
not all) doctors are psychiatrists. Now here is a question to which the diagram provides no answer: do any 
psychiatrists treat patients without a mental health condition? 

 

Figure 1a.  ERM diagram with optionality 

 

Figure 1b. Psychiatrists treat only patients with 

mental health condition 

Figure 1c. Some psychiatrists treat patients 

without mental health condition 

Figure 1. ERM diagrams with and without optionality 

 

To see that Figure 1a does not provide an answer to this question, compare Figures 1b and 1c. Here we 
have two ERM diagrams without optionality (Figures 1b and 1c) that tell mutually inconsistent stories 
about the domain. Nonetheless, both diagrams are consistent with Figure 1a. Not only are the two 
diagrams inconsistent with each other, but they disagree over the answer to our question. In Figure 1b, 
psychiatrists only treat patients with a mental health condition. In Figure 1c, however, psychiatrists may 
treat patients without a mental health condition. Because these two diagrams disagree on the answer to 

                                                             
5 Our ER diagrams use standard notation, with minor exceptions noted in Table 2. 
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our question, but are consistent with Figure 1a, it follows that Figure 1a does not answer our question. 

 
Arrows indicate direction of relation (A 

bears R to B) 

 
Small circle indicates optionality (not all 

members of A have property P) 

 
Line with ⊂ indicates subset (all members 

of A2 are members of A) 

 

Cardinality notation (see section on 
Mandatory Associations) 

 

Cardinality notation (see section on 
Mandatory Associations) 

Table 2. Legend for non-standard ERM notation 

 

Multiple possible solutions exist to the problems generated by use of optional attributes and associations. 
We could include a limit on the number of optional attributes/associations in a single script or attached to 
a single class. This solution would be ungainly, however, so we recommend instead a general proscription 
against optionality. Our official modification of the ERM grammar will not allow optional attributes or 
associations. 

Mandatory Associations 

We now turn to the standard way of representing mandatory associations between classes, which fails to 
distinguish logically distinct ways that two classes can be related. Consider the following two situations. 
First, we have a small secondary school with one class of pupils in each year. We have, then, a class of 
teachers, each with a different specialization (science, history, mathematics, etc.), and we have a class of 
pupils. The teachers teach the pupils; this association between the two classes is mandatory. The second 
situation to consider is a research university. We have a class of faculty members, each with a different 
specialization, and a class of research assistants. The faculty members supervise the research assistants; 
we may suppose this association between the two classes to be mandatory (no faculty members lack 
research assistant supervisees). 

In our examples, two different kinds of mandatory association exist between pairs of classes. In both cases, 
all members of a class A (teachers/faculty) bear a relation R (teach/supervise) to at least one member of a 
class B (pupils/research assistants). Furthermore, all members of the class B bear R-inverse (taught 
by/supervised by) to at least one member of A. In the secondary school situation only, however, it is also 
the case that all teachers teach all pupils: the pupils must take science and history and mathematics, and 
so on. Research assistants, on the other hand, need only be supervised by faculty in their home discipline 
and specialization. A research assistant must assist some principal investigator but not all of them. We do 
not expect to find the same research assistant supervised by a literary theorist and a biologist. 

Our modeling grammar must be sensitive to the kind of difference identified here if it is to produce 
complete scripts. Therefore, we introduce a new type of cardinality notation. When class A is linked to 

class B via the relation R, we use the annotation “∀” (all) at both ends of the link to indicate that all 
members of A bear R to all members of B, and vice versa. In a relational database, this constraint must be 
enforced via the instances of the corresponding relation that occur in the database.  Specifically, the 
instances of the relation must show that all members of one set are related to all members of the other set. 
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Likewise, we use the annotation “∃” (some) to indicate that all members of A bear R to at least one 
member of B, and vice versa (see Figure 2 for an illustration). In a relational database, this constraint 
again must be enforced via the instances of the corresponding relation that occur in the database. 
Specifically, the instances of the relation must show that all members of one set are related to at least one 
member of the other set. For convenience, we will sometimes refer to associations with the notation “∀” as 
∀-type associations, and associations with the notation “∃” as ∃-type associations. 

Note that restoring standard cardinality notation to our fragment of the ERM grammar, by itself, does not 
suffice to avoid the kind of ambiguity we resolve here. Standard cardinality notation allows us to say that 
members of class A bear R to at least one member of B by giving a cardinality of 1...n to the appropriate 
side of the association, where n is the cardinality of the class B. Likewise, we can say that members of A 
bear R to all members of B by giving a cardinality of n to the appropriate side of the association. To use 
this technique to resolve the ambiguity, however, would require specifying in advance the cardinality of 
the classes A and B, which in general is not possible. Without such a specification, we cannot choose a 
number n such that bearing R to n members of class B entails bearing R to all members of class B. 
Therefore, to use standard cardinality notation to resolve the ambiguity in question, we would have to add 
to the ERM grammar a notation for the cardinality of a class. Rather than writing a numeral 
corresponding to the value of n known to be the cardinality of the class B, we would need to write “c(B),” 
where c(�) is a function giving the cardinality of the class. This is equivalent to our technique of using the 
notation “∀.” 

  

Figure 2a. Secondary school Figure 2b. Research university 

Figure 2. Two types of cardinality for mandatory associations. 

 

Formal Results – Proving the Completeness of an ERM Grammar 

This section contextualizes and explains the significance of a formal result whose proof is available from 
the authors. This section presumes no technical proficiency in formal logic. Note that our formal results 
are part of a project of explication (cf. Carnap 1947, pp. 8--9). That is, our aim is to study a certain 
informally understood property of CM scripts (information loss, as discussed above), but we proceed by 
proving facts about formally defined properties of certain logical constructs. The logical constructs and 
their formally defined properties serve as stand-ins for the phenomena of primary interest to us. This 
substitution has the advantage that formally defined constructs and properties are susceptible to rigorous 
proof. 

To understand our formal results, we need some concepts from first-order logic (FOL). Centrally, we need 
the notion of a first-order theory, which is the FOL-analogue of a CM script. Formally, a first-order theory 
is a set of formulas (roughly, sentences) of FOL, which is closed under entailment. We call these formulas 
the theorems of the theory. Where φ is a theorem of a theory T, we write T⊢φ. When we say that theories 
are closed under entailment, we mean that if T⊢φ1,...,φn , and ψ is entailed by φ1,...,φn, then T⊢ψ. Some 
theories can be axiomatized. That is, we can sometimes isolate a small set of formulas Γ such that for any 
formula φ, T⊢φ if and only if φ is entailed by Γ. In our official semantics for ERM-R (our modified ERM 
grammar), a script is systematically translated into a set of axioms for a first-order theory. Anything that 
is a theorem of this theory is said to be entailed by the script. 

We also need the concept of a first-order language. One might think of FOL as a language, and indeed 
some writers speak of “the language of FOL.” FOL is better thought of as a family of languages, or as a 
recipe for producing a language from a set of symbols of certain types. A first-order language, then, is a 



 Clarke et al. /Improving the Semantics of Conceptual-Modeling Grammars 
  

 Thirty-Fourth International Conference on Information Systems, Milan 2013 13 

formal language belonging to the FOL family of languages, produced from a set of symbols according to 
the FOL recipe. The symbols needed to specify a first-order language are of two kinds: function symbols, 
and predicates. A function symbol is to be interpreted as referring to a function from objects to objects, 
and a predicate as referring to a function from objects to truth values (a relation, or property). As a special 
case, we interpret a 0-ary function symbol as referring to an object. Given a stock of function symbols and 
predicates (which we refer to collectively as non-logical symbols), FOL gives us a set of well-formed 
formulas and entailment relations among those formulas: this is a first-order language. 

For example, suppose we are given symbols to refer to Alice and Bob, to the properties of being a student 
and of being an instructor, and to the relation of teaching. In that case, FOL yields a language that lets us 
say the following: Alice is an instructor and Bob is a student; there are exactly three instructors; all 
instructors teach some but not all of the students; and so on. There are some things we would not be able 
to say in this formal language, such as the following: Alice and Bob have different jobs; or Carol is a 
student. The language simply lacks any symbols referring to Carol or to jobs. For a different reason, the 
language does not allow us to say, for example, that some students love only each other. This requires a 
second-order logic. Still, FOL is powerful enough for most applications, and certainly powerful enough for 
ours. In our application of FOL, we only consider first-order languages with predicates of arity 1 or 2, and 
without function symbols. Moreover, we focus on FO2, the two-variable fragment of FOL (without 
identity). The formulas of FO2 are just the formulas of FOL that contain at most two distinct variables.6 

We can now say what it is for a theory to be complete. A theory T is complete (with respect to a first-order 
language L) if and only if for every formula φ in L, exactly one of φ and ¬φ (not-φ) is a theorem of T. One 
helpful way of thinking about complete theories is in terms of ambiguity. An incomplete theory is 
ambiguous on the truth of some formula φ, because neither φ nor its negation is a theorem. We can think 
of L as providing us with a list of yes-or-no questions corresponding to each non-negated formula: is φ 
true? If T⊢φ, then the answer is “yes.” If T⊢¬φ, then the answer is “no.” If T⊬φ and T⊬¬φ, then T fails to 
answer the question. It is better for a conceptual model to contain more information (to answer more 
questions). If conceptual models are translatable to first-order theories, then the best conceptual models 
in this regard will be translatable as complete theories. In other words, completeness of a CM script, as 
described earlier, maps to completeness of first-order theories, as described here. 

Given our modifications to the ERM grammar's syntax and our explicit semantics for ERM diagrams via 
translation to first-order theories, our central formal result shows that all ERM conceptual models will be 
translatable as complete theories (with respect to the two-variable first-order language of the theory, i.e., 
the language whose only non-logical symbols are those occurring in the theory's axioms). In other words, 
all ERM scripts produced under our modifications/guidelines will be free of information loss. 

Definition. A script S is complete if and only if its translation into FO2, TS, is complete. A grammar is 
always-complete if and only if it only allows construction of complete scripts. 

Theorem (Always-completeness). The grammar ERM-R is always-complete.7 

In the statement of the theorem, the term “always-complete” is a technical term. It is a formal explication 
of the informal notion of always-completeness introduced earlier A CM grammar with FOL semantics is 
always-complete in this sense if and only if every script produced according to that grammar is translated 
via the semantics to a complete first-order theory. 

We must be cautious in drawing lessons for the disciplined use of the ERM grammar from the always-
completeness theorem. It would be easy to misread our formal result as primarily negative: “Here are the 
problems with the ERM grammar, and here are the solutions one must adopt to fix it.” On the contrary, 
our result is primarily positive. The lesson to be drawn is that the problems we identify with our targeted 

                                                             
6 FO2 is a well-studied fragment of FOL for several reasons: notably, the standard translation of modal 
logics (including description logic) into FOL embeds them into FO2, and logical consequence in FO2 is 
computable, unlike logical consequence in FOL. See Henkin (1967) for an early study of the proof theory 
of FO2; Grädel et al. (1997) examine the computability properties of FO2 as well as its connection to modal 
logic. 

7 A proof of the theorem is available from the authors. 



Project Management and IS Development 

14 Thirty-Fourth International Conference on Information Systems, Milan 2013  

fragment of the ERM grammar are the only problems with that fragment. Our theorem tells us that 
addressing the problems identified in the previous section, along with the other issues that go into the 
definition of ERM-R, results in a grammar with no further sources of information loss. As we presented 
these problems, we offered solutions to them. Our result shows that these solutions are sufficient to 
produce an always-complete grammar, but not that they are necessary. Other solutions to the problems 
we identify may be preferable for some particular application, and other possible solutions exist. 

In sum, to achieve always-completeness for an ERM-style grammar of similar expressive power to the 
ERM-R grammar, it suffices to prohibit optional associations and attributes, distinguish “some” and “all” 
cardinalities for mandatory associations, and control for the remaining issues we survey elsewhere. Our 
solutions to these problems are non-unique, and furthermore some or all of these problems may fail to 
lead to information loss in some applications. For example, Burton-Jones et al. (2012) suggest that 
optionality is not problematic for scripts containing only one optional attribute or association. In such 
cases, our result shows that no modification to the ERM grammar is necessary to avoid information loss. 
Again, the force of our result is positive, because the problems we identify are all that a modeler needs to 
control to avoid information loss on the targeted fragment of the ERM grammar. 

Conclusion 

Semantics is at the heart of conceptual modeling. Semantics provides the connection between our 
representations (scripts) and the reality they represent. The current approach to evaluating the semantics 
of CM grammars relies on ontology to the exclusion of logic. Ontology only gives us half the picture in 
evaluating a grammar’s semantics. Ontology tells us what is in the reality we aim to represent with a CM 
script, but it cannot tell us about the details of how our scripts and grammars can represent that reality. A 
grammar with a wholly adequate semantics must be able both to represent all and only the relevant 
phenomena in the target domain (ontology) and to represent the phenomena precisely, without ambiguity 
(logic). In this paper, we have outlined the differences between an ontological approach and a logical 
approach to evaluating the quality of CM grammars. Moreover, we have identified an issue in the design 
of CM grammars—information loss—that cannot be treated adequately using a purely ontological 
approach. We have also given a precise characterization of information loss using logical analysis. Finally, 
we have given a rigorous application of our logical analysis to provide concrete recommendations for 
disciplined use of the popular ERM grammar to avoid information loss. In other words, we have identified 
the need for a program of logical investigation into the quality of CM grammars. We have initiated that 
research program both in theory and in application. Future research on the logical approach could 
proceed in many directions. Nonetheless, one way to guide such research would be to consider the main 
contours of research in the ontological approach over the last 25 years (since the ontological approach was 
first introduced in Wand and Weber's 1988 ICIS paper), because that would open up opportunities to 
examine synergies between the two traditions. This approach would involve focusing on: 

Theory: Just as researchers in the ontological tradition investigated the applicability of multiple 
ontological benchmarks, further research could be conducted using different logical benchmarks. 
Whereas we used FO2, other logics could be investigated such as unrestricted FOL, description logic and 
other modal logics, or even nonstandard logics (e.g., paraconsistent logics). Moreover, the relationship 
between ontological and logical dimensions of quality bears investigating. Does one type of quality take 
precedence over the other, or are they independent? If they are independent, can we produce a unifying 
theory of both types of quality? 

Evaluating different CM grammars: Other CM grammars could be evaluated to determine their 
logical quality–for instance, the different types of grammars available in the Unified Modeling Language 
(UML) and the various business process modeling grammars that now exist (such as the Business Process 
Modeling Notation (BPMN)). The extent to which and the ease with which these grammars can be 
modified to produce always-complete scripts can be assessed. 

Empirical testing: Just as researchers in the ontological tradition have made progress by testing 
ontological predictions empirically (Burton-Jones et al., 2009), researchers could test the predictions 
from the logical approach empirically too. For instance, it would be important to test the degree to which 
different stakeholders benefit from more-complete scripts. 
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Design: Just as researchers in the ontological tradition have designed CM methods (e.g., Evermann and 
Wand 2005) and tools (e.g., Wand et al. 2008) incorporating ontological insights, researchers could 
create new methods and tools (or amend existing methods and tools) based on results of logical analysis, 
such as that presented here. This avenue seems particularly promising for logical analysis given the 
computable properties of some logics. Furthermore, it would allow us to provide closer links between the 
logical approach outlined here and the logical approach carried out in computer science research. 

Given that we focused our work solely on the semantics of CM grammars, another natural direction for 
research would be to extend the approach developed here with the other dimensions of language (syntax 
and pragmatics) and the other aspects of the conceptual modeling process (scripts and methods) that we 
outlined earlier. For instance, researchers could express the modified ERM semantics that we articulated 
in this paper using different types of syntax and test whether some forms of syntax (e.g., those following 
the physics of notations, Moody 2009) are easier to understand than other forms of syntax. Likewise, 
from a pragmatic perspective, researchers could identify whether complete scripts and always-complete 
grammars are more useful in some contexts than in other contexts. After all, researchers following the 
ontological approach (e.g., Bodart et al. 2001) have found that it is more useful to apply ontological in 
contexts where a domain must be understood in detail than in contexts where a rough understanding of a 
domain will do. Most likely, similar contingencies apply to the value of logical principles. Over time, 
researchers could assemble such ontological and logical principles into CM methods that could guide 
practitioners on the best way of using a given CM grammar to produce suitable scripts for a given context. 
Overall, the ideas developed in this paper offer a rich platform for future research. We hope this paper 
motivates further research in the logical approach and contributes to the improvement of conceptual 
models in practice and our theories and methods for investigating them. 
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