
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2013 Completed Research ECIS 2013 Proceedings

7-1-2013

Constraint-Based Data Quality Management
Framework For Object Databases
David Weber
ETH, Zurich, Switzerland, weber@inf.ethz.ch

Stefania Leone
ETH, Zurich, Switzerland, leone@inf.ethz.ch

Moira Norrie
ETH, Zurich, Switzerland, norrie@inf.ethz.ch

Follow this and additional works at: http://aisel.aisnet.org/ecis2013_cr

This material is brought to you by the ECIS 2013 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2013
Completed Research by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Weber, David; Leone, Stefania; and Norrie, Moira, "Constraint-Based Data Quality Management Framework For Object Databases"
(2013). ECIS 2013 Completed Research. 166.
http://aisel.aisnet.org/ecis2013_cr/166

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_materials?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr/166?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

CONSTRAINT-BASED DATA QUALITY MANAGEMENT
FRAMEWORK FOR OBJECT DATABASES

Weber, David, ETH Zurich, Universitaetstrasse 6, 8092 Zurich, Switzerland,
weber@inf.ethz.ch

Leone, Stefania, ETH Zurich, Universitaetstrasse 6, 8092 Zurich, Switzerland,
leone@inf.ethz.ch

Norrie, Moira C., ETH Zurich, Universitaetstrasse 6, 8092 Zurich, Switzerland,
norrie@inf.ethz.ch

Abstract

When developing large information systems, several forms of data quality checks and controls have to
be specified. However, today’s object databases only provide very limited support for constraint
definition, which causes software engineers to implement data quality controls such as consistency
checks and exception handling in the application code. Given that it is common for several
applications to access the same database, constraints may even be distributed across applications. As
a consequence, the same or similar constraints may be checked multiple times in different components
of an information system, or even in different applications, which increases code redundancy.
Changing constraints may affect multiple parts of the application or even multiple applications.

We therefore propose an approach that complements object databases with support for constraint
definition, management and validation. We introduce a framework where data quality controls are
specified by means of constraints which are defined and managed within the framework and validated
against the database based on an event-condition-action paradigm. Our approach provides flexible
and customisable constraint validations, where constraints can either be used to ensure data quality in
a strict and traditional way with constraint violations resulting in exceptions, or a relaxed way where
constraint violation will generate user warnings and indicate possible deficiencies in data quality. Our
framework is extensible and developers are free to introduce new types of constraints. We present our
implementation for the object database db4o.

Keywords: Data Quality Management, Constraints, Object Databases, Framework, db4o.

Proceedings of the 21st European Conference on Information Systems

1

1 Introduction

While constraints are regarded as a standard approach for ensuring basic data quality in terms of data
integrity and consistency, today’s object databases still provide very limited support for constraint
definitions. For example, the object databases db4o1 and Versant2 only provide support for unique
field value constraints on single object attributes.

As a consequence, software engineers are forced to implement data quality controls in the application
code. Constraint definitions, such as basic checks for type safety of an input field in a graphical user
interface as well as complex business rules, are distributed across the information system and data
quality checks are performed in different parts of the system.

This makes it difficult for a developer to keep an overview of all data quality controls and to manage
them efficiently. Furthermore, there is often redundancy as the same checks may be defined and
executed in different layers of an information system or even in different client applications, resulting
in increased maintenance efforts and reduced performance. To make things worse, information
systems are usually not just linear architectures where only one application accesses a database. It is
more likely that several applications access a shared database and that the information system
exchanges data with other applications via machine-to-machine interfaces. Consequently, identical
constraints might not only be checked multiple times in different layers of the information system but
even by different client applications. Thus, it would be very helpful for software engineers if they
could build upon a framework that extends the capabilities of today’s object databases with support for
constraint definition, management and validation in a centralised component.

In this paper, we present an approach, framework and implementation of a constraint-based approach
to data quality that extends and complements object databases with support for constraint-based data
quality management. With our approach, information systems are designed by means of a semantically
rich data model, from which constraints are extracted and imported into our constraints framework.
Users are free to configure additional constraint definitions to those extracted. The constraints are
managed within our framework and validated against the database based on an event-condition-action
(ECA) paradigm.

While constraint violations are typically prevented by an action that, for example, aborts a transaction
or throws an error message, in our approach, such actions may be configured to perform arbitrary
functionality. For instance, there may be cases where data quality violations should be handled in a
more relaxed way such as simply informing the user of possible data quality deficiencies.

Our framework is extensible and developers are free to define new custom constraint types. Moreover,
the fact that constraints are managed in a separate component, independent of the application code,
allows for the reuse of constraint definitions across applications. This further reduces redundancies
and increases development efficiency.

Section 2 presents the background of our work. In Section 3, we introduce our constraint-based
approach to data quality management. The constraints framework is presented in Section 4, while we
describe in Section 5 how our framework can be extended with new constraint types. Section 6
presents the implementation of the framework and Section 7 introduces the scenario application used
to evaluate the framework. Finally, further steps are discussed in the conclusions.

1 http://www.db4o.com/
2 http://www.versant.com/

Proceedings of the 21st European Conference on Information Systems

2

2 Background

A lot of research has been conducted in the field of semantic data models, for example early efforts
include (Hammer and McLeod, 1978), (Peckham and Maryanski, 1988) and (Norrie, 1993) where data
models with semantically rich constructs and forms of constraints were proposed. These models are
targeted at capturing the semantics of an application domain in a more natural way. For example, in
(Norrie, 1993), an object-oriented model is proposed that integrates features of extended ER models
such as rich classification structures over collections of objects and relationships.

Several approaches of embedding constraints into object databases have been introduced. In
(Narasimhan et al., 1994) they provide simple error check methods for individual classes as well as
the organisation of integrity constraints into duplicated classes. In (Elmasri et al., 1993) and
(Bouzeghoub and Métais, 1991), they propose constraint checking in basic update operations. More
advanced approaches are COI methods (Fahrner and Vossen, 1995) where integrity constraints are
declaratively stored alongside each class using attributes and DICE (Fahrner et al., 1997) where every
integrity constraint type is implemented by a parametrised integrity check method and an exception
handling method.

Nonetheless, such approaches have not been applied in practice and are not integrated in current object
databases. In fact, today’s databases generally lack sophisticated constraint support. RDBMSs
typically provide support for integrity constraints, such as key and domain constraints. Inherent
integrity constraints are represented with the DDL at schema definition time and explicit constraints
are expressed and enforced by verification mechanisms such as check conditions and assertions.
Today’s object databases provide even less constraint support. For example, db4o and Versant only
provide unique field constraints and explicit constraints are usually specified by means of methods
(Beneventano et al., 1998). For constraint enforcement, typically active database techniques such as
the event-condition-action (ECA) paradigm are used (Paton and Díaz, 1999). The checking of integrity
constraints in object databases is a fundamental problem in database design (Formica, 2002) (Rao,
1994) and the functionality to declare, enforce and maintain integrity constraints in existing object
databases is still very limited (Eick and Werstein, 1993) (Zaqaibeh and Daoud, 2008). Furthermore,
both database management system types lack functionality for defining more complex constraints or
relaxed validations of data quality controls, which, for example, only indicate possible data quality
deficiency.

Other approaches have been proposed to overcome the distribution of constraints and consequent
redundancies as well as facilitating constraint management. So-called centralised integrity
maintenance approaches (Zaqaibeh and Daoud, 2008) (Do et al., 1997) (Urban and Desiderio, 1992)
(Eick and Werstein, 1993) introduce a dedicated component next to the database that centralises the
management of integrity constraints and is responsible for constraint enforcement. We build on this
idea and provide a framework specifically targeted at enriching object databases with rich constraint-
based data quality management. Defining and managing constraints separately from the object
database allows the definition of complex and sophisticated constraint types which may go beyond the
constraint support proposed for object databases, for example (Fahrner and Vossen, 1995) and
(Fahrner et al., 1997). In addition, our approach introduces relaxed constraint validation, where
violations may result in a user-defined action. To allow for the definition of arbitrary data quality
controls and complex business rules, our framework is extensible and new types of constraints can be
implemented.

For constraint definition, a number of declarative constraint definition languages have been proposed,
for example (Urban and Wang, 1995) and (Bailey et al., 2002), which support the specification of
active database rules with an object-oriented view of data. In software engineering, the Object

Proceedings of the 21st European Conference on Information Systems

3

Constraint Language (OCL)3 (Redman, 1997) is used to define constraints for UML models
(Rodríguez-García et al., 2010). We take a similar approach, where constraints can be defined
declaratively by the user alongside the data model.

3 Approach

It is a complex undertaking to ensure data quality in large applications. Our approach supports a
software developer in defining, enforcing and maintaining constraints in information systems in order
to enhance and control the data quality. The goal of our approach is to provide the uniform handling of
different constraint types. Therefore, we separate the constraint definitions and validations of a given
application domain from its database, business logic and graphical user interface and propose a
framework that manages and validates constraints in a clearly represented and well organised manner.
Our focus lies on managing constraints for semantically rich data models in order to complement
object databases with an extended data quality management facility.

Our approach distinguishes two types of constraints: hard constraints and soft constraints. Hard
constraints such as integrity constraints are necessary conditions that data has to fulfil to be valid. If a
hard constraint is violated, data quality is deficient. For example, a hard constraint could specify that
an attribute value for email address has to contain an @ in order to be valid. To offer more flexibility,
soft constraints are constraints that are validated in a more relaxed way compared to hard constraints.
They could also be seen as recommendations since they are not just valid or invalid, but rather
increase or decrease data quality. For example, an attribute description could be recommended to be
longer than 30 characters to increase data quality. Another example is the age of data, which could
indicate that data is outdated. Violations of soft constraints do not lead to errors, but the user is instead
informed of possible data quality deficiencies.

Figure 1. Approach Overview

As shown in the top section of Figure 1, the design of an application is divided into the design of the
structural data model and data quality controls represented by means of constraints. In our approach,
data quality controls consist of inherent hard constraints that are extracted from the application model
into constraint definitions and additional explicit constraints may be defined by the developer. Such
explicit constraints can either be hard or soft constraints. As shown in Figure 1 on the right side, these

3 http://www.omg.org/spec/OCL/2.2/

Proceedings of the 21st European Conference on Information Systems

4

constraint definitions are taken as input to our constraints framework which manages and validates the
defined constraints while the applications are running.

As indicated in Figure 1, our approach allows the definition of constraints for various applications that
access the same database and it is possible to reuse constraint definitions from one application in
another. For example, a course management application running on top of a university database could
reuse constraints defined in a study management application running on top of the same database. The
constraints framework interacts with the database based on an ECA paradigm, where constraint checks
are triggered by database events. In the case of a violation of a hard constraint, our framework triggers
an exception in the application, while a warning is thrown in the case of a soft constraint violation.

4 Constraints Framework

In this section, we present the constraints framework which realises our approach and is used to
define, validate and manage constraints.

The constraints for an application are defined with a constraint definition language that is based on the
DDL proposed in (Würgler, 2000). Our approach supports the definition of simple constraints such as
consistency constraints for single attributes, but it is also possible to define constraints that involve
more than one object. We distinguish the definition of hard constraints and soft constraints with the
appropriate key words hardconstraint and softconstraint.

The constraint definitions can have different structures depending on the constraint type but are always
of the form of

type name details [events] validator {’message’};

The type defines if the constraint is validated as a hard or soft constraint. Each constraint has a name
which identifies the kind of constraint and details which provide information about the individual
attributes and conditions. The details are followed by a list of database events upon which the
validation should take place. The validator defines the validation type. This can be the standard
validator or a custom one. The standard validator offers simple attribute validations, while the custom
validators usually offer more complex validations. The message is optional, and, if present, it will be
used for the exception or text message, respectively. Otherwise, a standard text will be used. Below,
we give an excerpt of a constraint definition file with four constraint definitions.

As shown in the example above, the length constraint could be defined as a hard or soft constraint. The
first constraint definition defines that the attribute phone of the class Address must have the length
of 13. This will be checked upon the database events Creating and Updating, thus when an
Address object is created or updated and the object is to be stored in the database. The validation will
be done with the standard validator and, if a violation occurs, an error with the default message for the
length constraint will be thrown. The length constraints are instances of two different constraint
types with the same constraint name but different validations. The default message is of the form
‘Constraint violated:’ with an output of the constraint details attached as a string. The second line also
defines a length constraint specifying that the attribute description of the class Course should be at
least 30 characters long. If a violation occurs only a message will be thrown as a hint that the data
quality could be increased by adding more details to the description. On the third and fourth line, more

hardconstraint length Address.phone = 13 [Creating, Updating] Standard;

softconstraint length Course.description >=30 [Creating, Updating] Standard;

hardconstraint association attends from Student (5:*) to Course (0:*) [Committing] Custom;

hardconstraint cover (Staff and Student) Person [Committing] Custom ’Cover violated’;

Proceedings of the 21st European Conference on Information Systems

5

complex constraints are defined: an association with cardinality constraints and a cover constraint
specifying that every person must be either staff or student (or both). Both definitions are validated
with a custom validator upon the Committing event. The cover constraint defines a custom message
which is passed to the application upon constraint violation.

Figure 2. Association Constraint

The constraint types are represented by Java4 classes defining particular attributes that hold the
detailed information. As an example, the UML diagram of an association constraint is depicted in
Figure 2. It shows the attributes that are required to store the detailed information of the association
constraint and the customValidate method.

Figure 3. Constraints Framework

Figure 3 gives an overview of the constraints framework and its different components. In the left
upper corner, the input file is depicted that contains all constraint definitions. The
ConstraintsGenerator is responsible for parsing the input file and generating the appropriate constraint
definition objects and validation configuration. The constraint definition objects and the validation
configuration are stored in the constraints repository. The EventConstraintsRegistry is responsible for
linking the constraints from the repository to the appropriate EventListeners depending on the
database events that were configured with the constraints in the input file. The
EventConstraintsRegistry also adds the EventListeners as listeners to the adequate db4o database
events. For example, an association that is defined with the Creating event and custom validation
would cause the framework to associate the ‘CreatingListener’ and the concrete association constraint

4 http://www.java.com/

Proceedings of the 21st European Conference on Information Systems

6

to it. Afterwards, the ‘CreatingListener’ would be added as a listener to the Creating event. Upon
notification, the ‘CreatingListener’ would trigger the custom validation.

The method EventConstraintRegistry.registerForValidation(DB)is invoked by
applications to register themselves and their database, DB, with the constraints framework.

The framework works with an event-condition-action mechanism. If a database event occurs due to
database operations triggered by the applications, the applicable EventListener is notified. The
EventListener holds a list of constraints that were configured to be validated with the according event.
Upon a triggered event, the suitable EventListener passes the constraint list with the associated objects
for validation to the Validator. The Validator decides which validation method has to be invoked for
each constraint based on the configured validation type in the constraint and consequently invokes the
validation of the constraint with the objects received from the database event. As a standard validator,
we use the validator from the validation framework OVal5. OVal is a pragmatic and extensible general
purpose validation framework for Java where objects can easily be validated on demand. To validate
objects, it extracts a validation configuration from the constraints repository. As shown in Figure 3,
the validations can imply the participating objects received from the db4o event but validations can
also perform extensive checks against the database.
Depending on the validation result, an exception or a message is thrown, and the transaction may be
aborted. Hard constraints will rather raise an exception while soft constraints will alert with a message.
The application then has to handle the validation result of the framework.

5 Extensibility

Our framework is extensible and developers are free to introduce new constraint types. New constraint
types are defined by means of a user-defined constraint class that describes the constraint with its
particular attributes and one or more validators.

Figure 4. Constraint Types

A user-defined constraint class extends the Constraint class as shown in Figure 4. A constraint has
a name, defines a list of events specifying when it will be checked and a message that may be used
upon constraint violation. On the right of Figure 4, the AssociationConstraint class is shown as
an example of a custom constraint defining cardinality constraints.

Depending on the desired validation type, the custom constraint class implements one or both of the
interfaces CustomValidator and OValValidator depicted in Figure 4. The methods validate
and customValidate respectively, will be invoked by the validator during the constraint

5 http://oval.sourceforge.net/

Proceedings of the 21st European Conference on Information Systems

7

validation. The validate method defines a validation based on OVal, while the method
customValidate may define any user-defined validation.

An excerpt of the custom validation for a maximum length constraint is depicted below:

The code snippet shows the customValidate method of a custom maximum length validation which
checks if an attribute of an object exceeds a certain length. The objectToValidate is the object that
is to be validated. The reference to the database db is not needed here. The classToValidate,
attributeName and maxLength are particular constraint attributes which define the class, the
attribute and the maximum length that should be validated. In the getLength method, a class cast for
the objectToValidate would be done with the classToValidate and the length of the attribute
with the attributeName would be evaluated. In the customValidate method, it is then
determined whether the length exceeds the maximum length.

In a second step, the parser has to be extended in order to translate declarative constraint definitions
specified in the input file into constraint definition objects that are used by the framework at run-time.
As an example, a part of the association parser configuration is shown below:

In the first block, the code snippet shows the read-out of the specific constraint attributes according to
the grammar specification of the parser. In the second block, the constraint object instance
AssociationConstraint is instantiated.

Our framework also allows the definition of new EventListeners. Currently, our framework offers
EventListeners for all events of db4o. If the framework was to be used with another database which
offers additional event types, developers have the possibility to implement custom EventListeners.

Such a custom EventListener is a subclass of our abstract EventListener class and implements the
db4o EventListener4 interface which defines an onEvent method, as shown below, that takes an
eventType and, depending on that event type, a list of event type arguments. For example, the db4o

 /* Association Definition */
 <ASSOCIATION>
 associationName = <IDENT>
 <FROM>
 collectionSource = <IDENT>
 <OPAR>
 (minSourceCardinality = <NUMBER> | minSourceCardinality = <STAR>)
 <COLON>
 (maxSourceCardinality = <NUMBER> | maxSourceCardinality = <STAR>)
 <CPAR>
 <TO>
 …
 {
 return new AssociationConstraint(
 "Association Definition",
 associationnName.image,
 collectionSource.image,
 minSourceCardinality.image,
 maxSourceCardinality.image,
 …);
}

 public boolean customValidate(ObjectContainer db, Object objectToValidate) {
 boolean valid = true;
 int length = getLength(objectToValidate, this.classToValidate, this.attributeName);

 if (length > this.maxLength) {
 valid = false;
 }

 return valid;
 }

Proceedings of the 21st European Conference on Information Systems

8

update event Updating, which is fired before an object is updated, takes a
CancellableObjectEventArgs object as argument, through which the updated object can be
accessed and the transaction can be aborted.

Finally, new EventListeners have to be registered together with the respective database event in the
EventConstraintsRegistry.

6 Implementation

The implementation of our framework consists of general framework components and integration with
db4o as shown in Figure 5.

Figure 5. Framework

The ConstraintsGenerator in the upper left corner is responsible for parsing the constraint
definitions by making use of the ConstraintParser that was generated from the constraint
definitions shown in Section 5 with JavaCC6. The ConstraintsGenerator initialises the constraint
objects using concrete constraint classes, as exemplified by the AssociationConstraint class in
the bottom left corner of Figure 5, and stores them in the ConstraintsRepository. Currently, we
support basic integrity constraints such as type checks as well as rich semantic constraints as defined
in (Norrie, 1993).

At run-time, applications may register their database with the EventConstraintRegistry, which
is then responsible for loading all constraints defined for that application from the
ConstraintsRepository. It also manages a mapping between EventListeners and events which is
store in the EventConstraintRegistry.listenerRegistry map. As already mentioned, our
framework could be used with any object database that offers access to database events based on an
ECA paradigm. For each event type offered by the object database, an EventListener has to be
implemented. For our implementation, we used the db4o event registry API which gives access to all
db4o events7. In Figure 5, we illustrate the UpdatingListener class, which is an EventListener

6 http://javacc.java.net/
7 http://community.versant.com/documentation/Reference/db4o-8.1/java/reference/

public void onEvent(EventType<...> eventType, List<EventTypeArguments> args) {…}

Proceedings of the 21st European Conference on Information Systems

9

for the Updating event. It is a subclass of EventListener, implements the db4o EventListener4
interface and holds a reference to the database and a list of constraints that were configured to be
validated with that specific event. When an Updating event occurs the UpdatingListener is
notified by invoking its onEvent method with the db4o event and the appropriate event arguments,
e.g. the object that has to be validated. The UpdatingListener passes the constraint list with the
associated objects for validation to the Validator by invoking its validate method. The
Validator decides which validation method has to be invoked for each constraint based on the
configured validation type in the constraint and consequently invokes the appropriate validation
method of the constraint. Depending on the validation result, an exception or a message is thrown, and
the transaction may be aborted.

7 Evaluation

To validate our approach, we developed two applications for a university database that manages staff,
students and courses, as shown in the left upper corner of Figure 6. The student application is used by
students to manage their studies and register for courses, while the lecturer application is used by
lecturers to manage their courses.

Figure 6. Applications

On the right of Figure 6, we show an excerpt of the data model, describing that students may attend
courses. The two applications share the same data model, but define their own constraint definitions,
based on the performed application logic, as shown at the bottom of Figure 6.

For the lecturer application, a violation of the length constraint on Course.description will result
in a message of the form ‘Please provide a more detailed description, if possible.’ which, in our
lecturer application, is propagated and displayed to the user in a text box, and the user is free to react.

The association constraint is defined by both applications for the Activating event, which is
triggered when data is accessed. The constraint definitions only differ in the specified message. As
long as fewer than five students have registered, when accessing the course site through the lecturer
application, the lecturer is presented with a message stating that fewer than 5 students have registered
so far. Then, when a student accesses the courses they plan to attend through the student application, a
message is displayed stating that the course may not take place, because less than 5 students have
registered.

Proceedings of the 21st European Conference on Information Systems

10

When a student enters an invalid email address, the framework will throw a validation exception and
the transaction is aborted. The error message is also propagated to the user interface and the user is
presented with a message that the entered email address is not valid.

8 Discussion and Conclusions

We have presented an approach, framework and implementation of a constraint-based approach to
data quality management for object databases, in particular proposing a solution for the object
database db4o. Our framework, however, could also be used for other object databases and we also
plan to support the relational model to provide advanced support for data quality validation based on
constraints. Our approach therefore is designed to offer an independent framework rather than as an
integral part of a database.

We currently provide support for basic constraint checks as offered by OVal as well as rich
classification constraints. We plan to extend the framework with constraint types that allow the
definition of complex data quality controls that cover data quality dimensions such as the ones defined
in (Wang and Strong, 1996) (Wand and Wang, 1996). Such an extension would also identify for which
dimensions constraints can be implemented and for which dimensions it would be difficult or even
impossible. For example, we can think of defining constraints for dimensions such as timeliness and
completeness but it seems to be difficult to define constraints for other dimensions like reliability.
Since the implementation of a comprehensive set of constraints types covering all these data quality
dimensions is still work in progress, we do not have a complete formal definition of the constraints
language. Our definition language is based on the OMS DDL presented in (Würgler, 2000) and the
complete formal definition is a goal of future work.

Furthermore, while our current implementation supports the definition and validation of hard and soft
constraints, we plan to generalise this approach so that arbitrary actions can be performed upon a
constraint violation.

References

Bailey, J., Poulovassilis, A. and Wood, P. T. (2002). An event-condition-action language for XML. in
Proceedings of the 11th international conference on World Wide Web, Honolulu, Hawaii,
USA, 511509: ACM, 486-495.

Beneventano, D., Bergamaschi, S., Lodi, S. and Sartori, C. (1998). Consistency Checking in Complex

Object Database Schemata with Integrity Constraints. IEEE Transactions on Knowledge and
Data Engineering. 10, 576-598.

Bouzeghoub, M. and Métais, E. (1991). Semantic Modeling of Object Oriented Databases. in

Proceedings of the 17th International Conference on Very Large Data Bases, 672308:
Morgan Kaufmann Publishers Inc., 3-14.

Do, N. C., Bae, S. M. and Choi, I. J. (1997). Constraint maintenance in engineering design system: An

active object-oriented approach. Computers & Industrial Engineering. 33, 643-647.

Eick, C. F. and Werstein, P. (1993). Rule-based consistency enforcement for knowledge-based

systems. Knowledge and Data Engineering, IEEE Transactions on. 5, 52 -64.

Elmasri, R., James, S. and Kouramajian, V. (1993). Automatic class and method generation for object-

oriented databases in Ceri, S., Tanaka, K. and Tsur, S., eds., Deductive and Object-Oriented
Databases, Springer Berlin Heidelberg, 395-414.

Proceedings of the 21st European Conference on Information Systems

11

Fahrner, C., Marx, T. and Philippi, S. (1997). DICE: declarative integrity constraint embedding into

the object database standard ODMG-93. Data Knowl. Eng. 23(2), 119-145.

Fahrner, C. and Vossen, G. (1995). A survey of database design transformations based on the Entity-

Relationship model. Data & Knowledge Engineering. 15(3), 213-250.

Formica, A. (2002). Finite satisfiability of integrity constraints in object-oriented database schemas

Knowledge and Data Engineering, IEEE Transactions on. 14(1), 123-139.

Hammer, M. and McLeod, D. (1978). The semantic data model: a modelling mechanism for data base

applications. in Proceedings of the 1978 ACM SIGMOD international conference on
management of data, Austin, Texas, 509264: ACM, 26-36.

Narasimhan, B., Navathe, S. B. and Jayaraman, S. (1994). On mapping ER and relational models into

OO schemas in Elmasri, R., Kouramajian, V. and Thalheim, B., eds., Entity-Relationship
Approach — ER '93, Springer Berlin Heidelberg, 402-413.

Norrie, M. C. (1993). An extended entity-relationship approach to data management in object-oriented

systems in Elmasri, R., Kouramajian, V. and Thalheim, B., eds., Entity-Relationship Approach
— ER '93, Springer Berlin Heidelberg, 390-401.

Paton, N. W. and Díaz, O. (1999). Active database systems. ACM Comput. Surv. 31(1), 63-103.

Peckham, J. and Maryanski, F. (1988). Semantic data models. ACM Computing Surveys (CSUR).

20(3), 153-189.

Rao, B. R. (1994). Object-Oriented Databases: Technology, Applications and Products. McGraw Hill.

Redman, T. C. (1997). Data Quality for the Information Age. Artech House Inc.

Rodríguez-García, D., Barriocanal, E. G., Alonso, S. S. and Nuzzi, C. R.-S. (2010). Defining Software

Process Model Constraints with Rules Using OWL and SWRL. International Journal of
Software Engineering and Knowledge Engineering. 20(4), 533-548.

Urban, S. D. and Desiderio, M. (1992). CONTEXT: A CONstrainT EXplanation Tool. Data &

Knowledge Engineering. 8, 153 - 183.

Urban, S. D. and Wang, A. M. (1995). The design of a constraint/rule language for an object-oriented

data model. Journal of Systems and Software. 28, 203 - 224.

Wand, Y. and Wang, R. Y. (1996). Anchoring data quality dimensions in ontological foundations.

Commun. ACM. 39, 86-95.

Wang, R. Y. and Strong, D. M. (1996). Beyond accuracy: what data quality means to data consumers.

J. Manage. Inf. Syst. 12, 5-33.

Würgler, A. P. (2000). OMS development framework. unpublished thesis ETH Zürich.

Zaqaibeh, B. and Daoud, E. A. (2008). The Constraints of Object-Oriented Databases. International

Journal of Open Problems in Computer Science and Mathematics (IJOPCM). 1, 11-17.

Proceedings of the 21st European Conference on Information Systems

12

	Association for Information Systems
	AIS Electronic Library (AISeL)
	7-1-2013

	Constraint-Based Data Quality Management Framework For Object Databases
	David Weber
	Stefania Leone
	Moira Norrie
	Recommended Citation

	Microsoft Word - ecis-2013-DataQualityManagementFramework_refAlpha.doc

