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Abstract 

This paper presents DeepEC (Deep Web Extraction and Cataloguing Process), a new method for 

content extraction of Deep Web databases and its subsequent cataloguing. Our focus is on the 

extraction of hidden Web content presented in HTML pages generated from Web forms query 

submissions. While state-of-the-art information extraction and cataloguing methods address this issue 

separately, DeepEC is able to simultaneously perform the extraction and cataloguing of data without 

expert user intervention. This is accomplished with the support of a knowledge base that allows 

semantic inference for relevant records to be extracted and then catalogued. An experimental 

evaluation on some Deep Web domains shows that DeepEC achieves very good results. If compared to 

related work, DeepEC provides a unified process for Deep Web content extraction and cataloguing, 

being able to infer missing values for extracted records to be catalogued. 

 

Keywords: Deep Web, data extraction, data cataloguing, knowledge base. 
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1 INTRODUCTION 

The Deep Web refers to the content on the World Wide Web which is not indexed by standard search 

engines and comprises, among other information, all “hidden” databases behind Web applications, like 

car dealers, hotel booking and e-commerce (Halevy et al. 2009). The increasing volume of data 

available on the Deep Web increases, in turn, the need for accessing this kind of information by users. 

However, schema and data of Deep Web databases are hard to discovery as well as to extract because 

their structure and content become visible (or partially visible) only when shown on dynamic pages 

created as a result of a query specified over a Web form (Bergman, 2001).  

To get access to Deep Web information, specific solutions are required to discover Web forms that act 

as entry points to hidden databases, like focused crawlers, meta-searchers and integration systems. 

However, after the discovery process, data extraction techniques are needed to allow users' access to 

these data sources. This is a challenging task because schema and data are heterogeneous and may be 

also formatted for presentation in many different ways. 

Data extraction is a common problem for various processes related to data management, such as 

structure/data discovery and similarity search ((Ferrara and Fiumara, 2010) (He et al. 2003) (Meng et 

al. 2010) (Oro and Ruffolo, 2011)). In particular, a complete extraction process for Deep Web data 

corresponds to the acquisition and further cataloguing of relevant information among raw data, such as 

the extraction of metadata (attributes) of Web forms, as well as content extraction of query results 

shown in Web pages. 

The motivation of this paper is the lack of efficient solutions related to the extraction of relevant 

information from Deep Web databases, in particular, the cataloguing of extracted information for 

further consumption by users of information systems. One example could be a searching for car rental 

Web sites based on specific values for car make, model, year and/or price. 

This problematic is the focus of this paper, i.e., extraction and cataloguing of relevant content and 

structure presented in hidden databases on the Web. We consider that the data to be extracted comes 

from dynamic pages that hold query results. This is still a challenging and open problem due to the 

existence of a wide variety of Web sites with different patterns for showing the content of these 

databases and the existence of many useless information (menus, ads, etc.) that hinder the 

identification and extraction of relevant content.  

On reviewing related work, we verify that no one still address the issues of cleaning/adjustment and 

cataloguing the discovered content besides data extraction. Consider, for example, in Figure 1, the 

result page of a query submitted to a car dealer Web site.  Current extraction methods usually make 

the selection of relevant content (data shown in the central frame), removing menus and 

advertisements. However, no further data classification and cataloguing are provided in order to treat 

these data as useful information in one or more domains.  

In order to deal with these issues, this paper presents DeepEC, a new method that performs relevant 

data extraction based on the existing work, but, in addition, it stores these data in a structured and 

domain-aware way with the intention to facilitate structured queries over Deep Web catalogued 

content. Thus, our first contribution is the simultaneous extraction and cataloguing of Deep Web data.  
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Figure 1. Example of Web page with a hidden database query result. 

Table 1 illustrates the result data structuring of DeepEC execution over the Web page of Figure 1. A 

Knowledge Base (KB) with data from the more frequent Deep Web domains aids on the process of 

discovering the correct meaning of each relevant data that is extracted in order to generate a relational 

database with “surfaced” data from Deep Web databases. 

 
Make Model Km Price Year … Domain 

Audi A7 2,250 129,990 2011 … Auto 

Audi A7 11,500 114,990 2011 … Auto 

Table 1. Example of DeepEC extraction result with complemented information highlighted. 

Thus, a second contribution of our method is the ability of inferring values for missing domain 

attributes´ contents in the result data structure. This is useful for cases where attribute values are 

absent in a given result page or it is not properly extracted. For example, if a record with values 

"civic", "automatic", "2012" is extracted, DeepEC recognizes that these data belong to the domain of 

automobiles (Auto) and are related to a car whose brand is "Honda".  

More details about DeepEC method are given in the following. Section 2 of this paper discusses 

related work. Section 3 describes the method, while Section 4 presents the results of an experimental 

evaluation. Finally, Section 5 is dedicated to the conclusion and future work. 

2 RELATED WORK 

This section reviews the main features of some work in the literature related to Web data extraction 

and cataloguing. 

2.1 Data Extraction 

Web data extraction focuses on the definition of algorithms that identify and retrieve information 

presented on Web pages (Kaiser and Miksch, 2005). The main techniques applied to data extraction 

are the following: 

 Tree-based: this technique converts the content of an HTML document into a tree structure, using 

mainly the standard DOM model. DOM (Document Object Model) is a cross-platform and 

language-independent convention and API for representing and interacting with objects in HTML, 

XHTML and XML documents. Works that adopt this approach usually search for specific 

hierarchical patterns in order to recognize relevant data to be extracted ((Kim et al., 2007) (Liu et 

al., 2003) (Zhai and Liu, 2005)); 
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 Web Wrappers: this class of technique, summarized in (Ferrara and Fiumara, 2010), develops 

specific procedures that seek and find data required by a user, extract them from unstructured (or 

semistructured) Web sources, and transform them into structured data, merging and unifying this 

information for further processing, in a semi-automatic or fully automatic way ((Liu et al., 2000) 

(Muslea et al., 2001)). They are designed in three steps: (i) generation, which is defined according 

to some techniques; (ii) execution, that runs and extracts information continuously; and (iii) 

maintenance, considering that data sources structure may change and the wrapper must be adapted 

accordingly to continue working; 

 Machine Learning: techniques that usually extract information from a specific Web source 

domain. They define extraction rules based on delimiters from training sessions. The training data 

usually comprises large amounts of manually labeled pages, requiring a lot of human involvement 

((Hsu et al., 1998) (Phan et al.2005)); 

 Ontology: techniques based on the analysis of a knowledge representation of a particular domain 

that it is shared to various applications. Construction of this knowledge is a time consuming task 

done manually by experts in ontology design as well as in the application domain. For a specific 

application domain, the ontology is used for locating the Web page and the construction set of 

objects with it. The more accurate and flexible is the semantic representation, more automated is 

the extraction. An example of such technique is (Embley et al., 1998). 

For extraction purposes, we evaluate, in this paper, two well-known data extraction approaches. One is 

the Road Runner algorithm, applied to data extraction over multiple pages (Crescenzi et al., 2001). It 

is a hybrid approach, because it applies both tree-based and a machine learning techniques. The other 

one is MDR (Mining Data Records) (Liu et al. 2003) which is a tree-based technique that traverses the 

structure in a depth-first way looking for patterns that represent data records. 

2.2 Data Cataloguing 

With respect to data cataloguing, the work of (Zhao et al., 2008) presents a technique for text 

segmentation based on the concept of CRFs (Conditional Random Fields). CRF uses tables with 

structured data as reference for each domain. A sample is used as input to build schemas of CRF. 

These schemas are based on the recognition and training of the data input sequence for each attribute 

in the reference table. After this training, where is defined the sequence of the attributes in the 

generated schema, the schema is applied to the rest of the entry for cataloguing. 

ONDUX (On-Demand Unsupervised Learning for Information Extraction) (Cortez et al., 2010) and 

JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) (Silva et al., 2011) take 

into account an automatic induction technique for cataloguing, i.e., features learned with data obtained 

from an input source are used to induce the structure-related from other distinct sources in the same 

domain. Given as input a text containing a set of data records, the approach initially segments data and 

labels the potential values, comparing them with a set of pre-existing data in a knowledge base. After 

this procedure, an algorithm, based on a model of data positioning and sequencing, labels them again, 

confirming or making corrections on the labels initially catalogued. The difference between the two 

approaches is that ONDUX requires user intervention to define each input record in the data sample, 

as well as to define the structure of the records to be extracted. 

Although JUDIE does not take into account the attribute label in the cataloguing process, it is used as 

the baseline for this paper, as compared to ONDUX, because it does not require user intervention to 

delimit the records in the text input. It is important to observe that the record structure plays a 

significant role in this context, since the extraction task depends on particular features (positioning and 

sequencing) to work properly. 

In general, the limitations of these works are the fact they do not consider metadata extraction from 

Deep Web search result pages (attribute extraction) and its associated values, as well as a process for 

cataloguing the extracted data in order to facilitate future reference, e.g., to assist future extractions of 
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pages in the same domain based on the features of this domain. Another drawback is the absence of 

index structures for Deep Web sites based on the terms extracted from the content of the hidden 

databases. These limitations had motivated the design and implementation of DeepEC, which is 

detailed in the following. 

3 DeepEC Overview 

In this section, we present our method by describing the two major modules that comprise it. Figure 2 

presents the DeepEC architecture. It supports extraction and cataloguing of hidden databases relevant 

content from HTML pages obtained through the submission of queries formulated over Web forms.  

 

Figure 2:  DeepEC architecture. 

The input for DeepEC is generated by an external component called the Engine (1). It encapsulates the 

discovery process of hidden databases on the Web followed by Web form filling out, query 

submission and generation of HTML pages with the result set (2). The two main components that 

comprise our method are Extraction (3) and Cataloguing (4) modules, and, besides that, DeepEC also 

interacts with two data repositories: a Knowledge Base (5) and a relational database (DB) (6). All of 

these modules and repositories are described in the following. 

3.1 Extraction 

Given an input HTML page containing a set of implicit structured data records from a hidden Web 

database, such as the one illustrated in Figure 1, the Extraction modules outputs a set of relevant 

records. As mentioned before, we are currently considering two extraction algorithms with good 

performance: Road Runner and MDR. Both are highly referenced in the literature ((Hong, 2010) (Oro 

et al. 2011) (Zhai et al. 2005)). 

Road Runner focuses on automatic generation of templates to extract data by matching features from 

different pages in the same domain. MDR also automatically identifies and extracts data records with 

regular structures. Our intention in this paper is also to compare their performance in terms of hidden 

Web database record extraction, as described in Section 4. We limit to compare only this two well-

know extraction approaches, because we intend to develop, as a future work, our own approach based 

on the best features of them. We will detail them in the following. 
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3.1.1 MDR 

MDR algorithm initially assembles the input HTML page in a DOM tree (Liu et al. 2003). Figure 3 

shows an example of a DOM tree, where HTML tags are internal nodes and text are in the leaf nodes. 

Note that the analysis of Web pages in HTML aims at discovering the information found within the 

leaf nodes in the DOM tree. 

 

Figure 3:  Example of DOM tree for an HTML page. 

The code responsible for parser construction and definition of root node in MDR is presented in high 

level Algorithm 1. Line 3 builts the DOM structure from the HTML page. Line 4 identifies root node 

and line 5 calls the procedure “MDRExtract”. 

 

 
 

The code of the “MDRExtract” procedure is presented in the high level Algorithm 2. The algorithm 

traverses the tag tree from the root downward in a depth-first way (lines 3 and 4). At each internal 

node, procedure “CombComp” receives as parameter "childNode" (root node of the HTML 

document), "k" (maximum number of nodes that should be gathered for comparison), and "t" 

(similarity threshold to be considered in the comparisons). It performs string comparisons of various 

combinations of children sub-trees. Comparisons are performed by combining nodes in groups of 1 to 

“k” nodes and only data regions with a score equal or higher than "t" that probably represents data 

records are selected. To compare the trees it is used the STM algorithm (Simple Tree Matching) 

(Yang, 1991) to measure the similarity degree between two trees. 
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3.1.2 Road Runner 

Given a sample with similar Web pages containing one or more data records, the Road Runner 

algorithm compares the HTML content of the pages to detect similarities and differences in order to 

create a regular expression during this analysis. At each new comparison, the expression is 

refined/widespread, solving differences as follows: 

 Differences between text, that denotes data fields; 

 Differences between tags, that denotes optional items or lists. 

After the end of the comparisons, the regular expression is used to extract data records from other Web 

pages. The set of the extracted data is produced in HTML format. 

Figure 4 shows an example of the extraction process followed by Road Runner. The extraction method 

works on two objects at a time: (i) a list of HTML pages, called the sample, and (ii) a wrapper, i.e., a 

union-free regular expression. Given two HTML pages (called page 1 and page 2), one of them is 

considered the initial version of the wrapper. Then, the wrapper is progressively refined trying to find 

a common regular expression for the two pages. This is done by solving mismatches between the 

wrapper and the sample. 

A mismatch happens when some token in the sample does not comply to the grammar specified by the 

wrapper. Mismatches are very important, since they help to discover essential information about the 

wrapper. Whenever one mismatch is found, Road Runner attempts to solve it by generalizing the 

wrapper. The algorithm succeeds if a common wrapper can be generated by solving all mismatches 

founded during the parsing. Once the mismatch has been solved, the parsing can be resumed. In the 

running example of Figure 4, after solving all the mismatches, the parsing is successfully completed, 

generating a common wrapper for the input HTML pages. 

 

 

Figure4:  Example of RoadRunner extraction method (Crescenzi et al., 2001). 

A record set extracted by Road Runner produces a file like the one exemplified in Figure 5, for the 

Auto domain. The extraction algorithm identifies the limits of each record through the hierarchy tree 

and set record delimiters. 
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Figure 5:  Example of file with extracted hidden database records. 

3.2 Cataloguing 

The Cataloguing module (4) follows a text segments’ analysis and characterization (if they are 

attribute labels or values) approach based on a KB (5) built from data samples collected from several 

hidden database domains. This step takes as input the generated file in the previous step with the 

selected records (an example is shown in Figure 6), and outputs a set of tuples with cataloguing data.  

 

Figure 6:  Input list with selected data 

The cataloguing code is presented in Algorithm 3. In line 5, it analyses each term of the KB. For each 

item of each record list (lines 6 and 7) it tries to detect the domain to which the item belongs (lines 8 

and 9). In line 11, we have the analysis of the specific types of data. For example, in Auto and Book 

domains we have specific attributes for price and year. This procedure verifies if these specific data 

types to these domains occur, and tries to match to the current item. The matches between KB terms 

and record items are detected (line 12) using comparison by similarity. Once a match is identified, the 

term and its definition are stored (line 13), generating a tuple to be added to the database, as shown in 

Table 2 for data from Figure 6. 
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One of the contributions of this work is the auto-completion of information, i.e., after identified the 

correspondences, we induce supplementary information that are not available on the result pages. The 

KB plays an important role in that context. The supplemental information is based on the KB 

hierarchy: if the information is not present in the list of extracted records, depending on the level that 

the information is stored in the KB, the method infers information from higher levels. For example, 

Table 2 shows the determination of the domain and make content. This information is filled out 

because it were not among the extracted data of Figure 6, but it was taken from KB. 

 
Make Model Door Color Price Year Domain URL 

Honda Civic 2 Gray 18991 2012 Auto www… 

Honda Civic 2 Red 18988 2012 Auto www… 

Table 2:  Example of Catalogued Tuple. 

Our KB (5) acts as a dictionary of indexed terms. It contains attributes and sample values utilized to 

compare the extracted terms of the input records with the terms in the KB in order to discover their 

meaning. There are some free available knowledge bases and its design and usage is a current topic of 

research ((Chiang et al., 2012) (Serra et al., 2011)). Figure 7 shows an example of the XML structure 

of our KB. We had implemented wrappers for extracting data from the database of DeepPeep 

(Barbosa et al., 2010), Freebase
1
 and Wikipedia

2
 that were used to populate our KB. 

 

Figure 7:  Example of DeepEC knowledge base. 

In order to complete the process, the data records, represented by the labels and their values, are stored 

in a relational database (6), in the format described in Table 2. 

 

4 EXPERIMENTAL EVALUATION 

In this section, we describe preliminary experiments for evaluating DeepEC. We consider data from 

two Deep Web domains and use the traditional precision, recall and F-measure (Yates and Neto, 1999) 

information retrieval metrics to evaluate the tests, as presented in Figure 8. According to Figure 8, Bi 

corresponds to the set of terms that compose the values of a particular attribute in a Web page, and Si 

means the set of terms assigned by our system. 

 A first data set (Data set 1) used in the experiments as well as the data sources used to create the KB 

comes from hidden databases data for Book and Auto domains. It was considered 35 pages that create 

                                              
1 http://www.freebase.com 
2 http://www.wikipedia.org/ 
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198 records for the Auto domain and 126 records for Book domain. This data set was used as input to 

DeepEC, generating the results presented in Table 3. 

 

Figure 8:  Precision )( iP , Recall )( iR  and F-measure )( iF . 

Table 3 shows the results organized in three columns: (i) Extraction: records extracted from the 

original Web pages; (ii) Cataloguing: records catalogued from the input set generated by the 

Extraction module; and iii) DeepEC: the overall approach performance. DeepEC denotes how many 

records were correctly catalogued based on the number of records available in the original HTML 

files, without considering the amount of records extracted in the extraction step. 

     
  Extraction Cataloguing DeepEC 

Algorithm Domain P R F P R F P R F 

Road Runner Auto 96.10 100 98.01 98.70 99.10 98.90 99.20 99.50 99.35 

MDR Auto 94.50 100 97.17 99.10 98.90 99 99.80 99.40 99.60 

Road Runner Book 95.40 99.60 97.45 97.40 98.60 98 98.30 99.10 98.70 

MDR Book 96.60 99.40 97.98 97.90 98.20 98.05 98.70 98.80 98.75 

Table 3: Results for Data Set 1. 

The results for Cataloguing module tends to present better performance because it operates on data 

previously extracted and well structured. Instead, Extraction module operates on very heterogeneous 

data that can be loosely structured. It compromises its accuracy. The results for Cataloguing module 

are highly influenced by the existing knowledge in the KB. On considering the chosen data set, we had 

obtained excellent results, as expected, since the KB was built based on data from the domains which 

the data set belongs. On concerning the performance of the complete system (DeepEC), experiments 

show excellent results regarding the amount of original records on the Web pages versus the amount 

of catalogued records.  

In order to verify the effectiveness of our method in a deep way, we create another data set (Data Set 

2) for the same domains, being these data set not included in the KB. This data set was built with 20 

pages, which defines 240 records. The results are showed in Table 4. DeepEC continues to present 

good results on considering a complete automatic process. 

 
  Extraction Cataloguing DeepEC 

Algorithm Domain P R F P R F P R F 

Road Runner Auto 97.50 99.50 98.49 88.90 89.70 89.30 92.50 95.60 94.02 

MDR Auto 98.40 99.90 99.14 90.20 89.90 90.05 94.30 94.80 94.55 

Road Runner Book 98.80 98.90 98.85 92.50 90.10 91.28 96 93.90 94.94 

MDR Book 99 99 99 91.80 92.80 92.30 95.80 94.50 95.15 

Table 4:  Results for Data Set 2. 

Regarding the filling out of missing information for the discovered data records, Table 5 shows the 

number of records that were successfully completed for both data sets. For example, in the first table 

line, the total number of input records was 198, but DeepEC were able to infer another 20 records that 

were not present in the input pages generating a gain of 10% in terms of information enrichment in the 

database with catalogued data. 
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Table 5:  Gain with information auto-completion. 

5 CONCLUSION 

This paper presents DeepEC, an approach for extraction and cataloguing of Deep Web content. The 

motivation for DeepEC is that other approaches do not treat these tasks as a single process, presenting 

limitations in terms of the extraction of metadata values, and do not provide complementary 

information for data cataloguing purposes. DeepEC is able to perform the entire process without any 

human intervention, including auto-completion information during the cataloguing process. This is 

possible due to the support of a KB that is used for comparison and semantic inference for the 

extracted records. 

In a preliminary experimental evaluation, we investigate two classical algorithms for data extraction 

and defined a KB for two Deep Web domains. For the considered domains, we note that both 

extraction algorithms had presented good accuracy, being hard to assert which one is the best one. In 

general, results show that our method had reached a very good performance while providing a gain of 

up to 10% in enrichment of the catalog database created for storing the extracted data.  

This paper evaluates only the accuracy of the extraction and cataloguing processes. As a future work, 

we intend to evaluate the performance of the overall method in terms of processing time. Besides, we 

intend to apply DeepEC in other Deep Web domains, as well as to provide a dynamic KB, i.e., a KB 

that is able to learn from the extracted records and expand your knowledge. Moreover, we intend to 

integrate the DeepEC database with the WF-Sim database, a query-by-similarity system for Web form 

data developed by UFSC database group (Gonçalves et al., 2011). The idea is to improve WF-Sim 

query capabilities over Deep Web data including hidden database content besides Web forms content. 
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