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Abstract 

The importance of efficient use of IT infrastructure capacities increases, as the growing amount of 

deployed IT systems increasingly requires resources. On the one hand, companies can outsource their 

IT demands to Cloud providers in order to only pay for the very amount of required computational 

power. On the other hand, cloud providers themselves need to be efficient as well, as it may be the 

deciding factor on their market positioning. This paper proposes a method to accept or refuse incom-

ing requests based on a load estimation and load forecast. We will present the architecture and a gen-

eral implementation of the so-called Quota-Control-Unit (QCU), followed by results of an extensive 

simulation. The evaluation will show that the introduced method is a promising approach of securing 

IT systems from overload while keeping the economic outcome at the possible maximum. 

Keywords: Decision Support, Load Analysis, Cloud Computing. 
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Introduction 

Nowadays, outsourcing of computational demands to Cloud systems or service networks increases. As 

companies’ ecological awareness grows, they request highly flexible IT infrastructure to avoid any 

spare capacities that would be present only keeping in-house IT systems. Besides the ecological base, 

another factor that brings Cloud computing forward is the fact that only a minimum of IT infrastruc-

ture management effort is required when having all computational demands relayed to Cloud provid-

ers. Less spare in-house IT infrastructure leads to less unnecessary power-consumption and mainte-

nance efforts. On the other side, companies that offer Cloud services (Infrastructure as a Service, Plat-

form as a Service, and Software as a Service) for rent, based on the “pay-as-you-go” principle, need to 

be efficient as well. 

Basically, Cloud computing is the aggregation of large amounts of hardware and delivering seemingly 

endless computational power to customers by massive use of virtualization. However, there are limits 

on provider side, since available hardware in fact is not endless. Providers have to properly scale their 

IT systems in order to satisfy the arbitrary demands of their customers, which is usually achieved by 

over-provisioning their hardware: large amounts of resources are running spare to cover eventual vari-

ation in customers’ demands (Armbrust, et al., 2009). Since being efficient may be the deciding factor 

on providers’ market positioning, the provisioning of resources on provider side has to be balanced 

between the satisfaction of customer demands and the amount of capacities running spare. In this pa-

per, we deliver a system component, namely Quota-Control Unit (QCU), which aims to generate max-

imum possible revenue in case of customers’ requirements exceeding the provider’s capacities.  

In case of a provider receiving urgent or short-term requests, respective to their Service-Level Agree-

ments, it may be crucial to have them executed and answered as soon as possible. Should a provider 

accept more requests, if systems already run near overload? Not only by a high amount of incoming 

requests, but also by partial breakdown of infrastructure is the provider possibly faced with an over-

load situation. For example, in the morning of April 21
st
 2011, many Amazon cloud-based service 

providers were stricken to find their cloud services unavailable (AWS Tech Team, 2011). Should a 

provider faced with an overload situation still try to run all requests on narrowed resources? There is 

no universally valid answer, however, we can derive and deliver approaches to keep the generated 

revenue in these situations as high as possible. On provider-side, we assume requests to generate reve-

nue when accepted and successfully executed or penalties when accepted but aborted or not answered 

in time. Based on this assumption, we can calculate the economic outcome for a provider by their sys-

tem load and request acceptance in phases of heavy load. Tracking the load and its tendency can be 

important for early decisions on accepting or refusing incoming requests for the service provider, since 

the option of scaling up IT infrastructure is not available in case of partial breakdown or unexpected 

load peaks. 

Thus, we tackle the outlined problem by searching for an approach of making informed decisions 

about whether new requests should be accepted by the provider. 

This paper is structured as follows. First of all, the Related Work section takes existent approaches 

into account and analyzes proposed solutions. In the subsequent section, the Quota Control Unit 

(QCU) Model is introduced in detail. Afterwards, the Evaluation section describes the approach of an 

experimental study as a discrete event simulation using jobs and their requirements based on real 

workload traces. The simulation is executed under various parameter settings and its results are evalu-

ated. The last chapter concludes the contents and findings and delivers open aspects that still should be 

reviewed for further work. 

1 Related Work 

This work combines various research threads that are relevant to the admission and management of 

job requests. This section points out aspects relevant to modeling a scenario, such as performance 
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modeling and workload forecasting, and addresses the technical challenges for systems like SOA 

(Service Oriented Architecture) and Clouds. Those models typically employ no or only naïve econom-

ic models that are feasible and result in monetary outcome. 

Performance modeling is an active research field and has produced a variety of models as shown in 

(Urgaonkar, et al., 2008), (Cohen, et al., 2004). Furthermore, a detailed overview of how workload can 

be modeled is presented by (Feitelson, 2002), (Feitelson, 2011). An approach towards realization of 

high service levels and end-to-end Quality of Service (QoS) is the GLOBUS Architecture for Reserva-

tion and Allocation (Foster, et al., 1997), which uses advanced reservations to guarantee QoS. Specifi-

cally addressing the question of how job allocations affect resources, (Kournev, et al., 2007) introduce 

a framework for designing resource managers, using GLOBUS as a case study, that are able to predict 

the impact of a certain job on the overall system performance and to adapt the resource allocation in a 

way towards Service-Level Agreement (SLA) satisfaction. A model to optimize the system allocation 

for immediate use is developed by (Ardagna, et al., 2007). A good overview of SLAs that are com-

monly used in the field of Cloud Computing is provided by (Buyya, et al., 2009). Most of the newer 

contributions in this field extend the performance models to dynamic research management systems. 

For instance, the authors in (Gmach, et al., 2008) developed a reactive migration controller for virtual-

ized environments. However, compared to our concept, their approach is only designed for basic sin-

gle-layered systems. The paper by (Chandra, et al., 2003) introduces a resource allocation model for 

shared datacenters based on a queuing network performance model and a time series workload fore-

cast mechanism. However, they do not consider SLAs in the provisioning process. Another concept 

Padala, et al., 2009) is an automated control model for virtual resources. The model manages the vary-

ing resource demands by dynamically allocating resources to or migrating virtual machines. Neverthe-

less, in modern cloud environments this migration approach is usually not supported. In (Ardagna, et 

al., 2009) a model has been developed to manage the resource demand of multiple concurrent systems. 

In contrast to our model, it optimizes the system only for a single point in time, rather than for the near 

future. The authors in (Lim, et al., 2010) developed an autonomic control model to scale elastic stor-

age systems based on the utilization of the system. 

Apart from technically oriented research streams, concerning revenue management, (Nair, et al., 2001) 

provides research results about the use of revenue management concepts by Internet Service Providers 

(ISPs). They consider the decision to accept or reject customers but did not take different service types 

or advanced reservation into account. Towards revenue generation, (Yeo, et al., 2007) show an ap-

proach for a pricing function depending on a base pricing rate and a utilization pricing rate. 

The related work covers different aspects of related research problems. However, the proposed mech-

anisms mostly focus on resource allocation and do not take an upstream instance (e.g. placed in front 

of the request queue) into account that is able to filter requests before they enter the certain system. 

2 Quota Control Unit Model 

As previously mentioned, the problem we tackle in this research is the lack of an upstream instance 

able to filter incoming requests before they enter the certain system. We address this problem by using 

the well-known design science research approach (Hevner, et al., 2004) to develop an IT artifact that 

allows us to measure and compare upstream decision performance in a confidential manner. The de-

sign science methodology seeks to create IT artifacts that are intended to solve specific organizational 

problems and provide rigorous evaluation of these artifacts based on utility rather than an empirical 

test of theories. This encompasses successive steps of problem identification, definition of objectives 

for a solution, design or development of a suitable IT artifact, and demonstration of the proof of con-

cept, evaluation and communication (Hevner, et al., 2004). 

In order to gain the ability of analyzing and controlling incoming requests, as it is the intention of the 

QCU, it has to be properly positioned within an IT system. Most IT systems that may receive demand 

spikes provide a central request interface (as the web frontend for an online-shop, for example), be-

cause they are laid out for application of load balancers and dynamically scaled infrastructure. To gain 
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full control over incoming requests, the QCU is positioned as an upstream instance even before re-

quests reach the central interface in our setup. It may be reasonable to place the QCU behind an avail-

able load-balancer though, when it comes to multi-tier architectures or specialized hardware for certain 

tasks. Figure 1 outlines the QCU positioning. 

 

Figure 1. Proposed QCU Positioning 

Based on the assumptions outlined above, several basic QCU requirements can be derived. First of all, 

the QCU has to be aware of the overall system load, e.g. the information about the current workload 

being above maximum capacity or not is required.  

Requirement 1: The QCU needs to include an estimation of the current system load. 

A decision only based on the very current system load may be misleading, thus the QCU should be 

able to calculate the trend of the system load, such that it could already start accepting more jobs if the 

system load is slightly decreasing though still near to full capacity, for example. 

Requirement 2: The QCU needs the capability to identify the system load’s tendency. 

Since the QCU should be applied to make a decision about the amounts of requests that shall be han-

dled in order to strictly avoid any overload situation, it should contain some metric for acceptance 

ratio finding. 

Requirement 3: The QCU has to support an informed choice of job refusals. 

Towards fulfillment of the requirements, the QCU model proposed in this work consists of mainly 

four aspects (cf. Fig. 2). Essentially, the QCU: 

i. estimates the average load in the considered time slot, 

ii. calculates a weighted and smoothed tendency value 

iii. derives the tendency function to calculate a trend, 

iv. and applies a quota-based metric as decision basis for defining the part of the new jobs that 

shall be accepted in the current time slot. 

 

Figure 2. QCU Process Pipeline 

According to the introduction above, the QCU’s four main aspects are described in the following four 

sub-sections. Table 1 lists required variables and parameters. Please note that the QCU properties in-

troduced here shall only serve as an orientation towards an efficiently working QCU. The simulation 

framework applied later on for evaluation allows full modification or replacement of any of the mod-

ules as well as free parameter modification. This paper considers the two resource types CPU and 

Memory exemplarily. However, the set of available resources   can be arbitrarily extended based on 

the requirements of the application scenario. 
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Variable Domain Description 

          Horizon; Amount of time slots the QCU is looking into the past to calcu-

late the tendency. 

      Time slot; A certain position within system runtime. 

    Set of Services; Contains all Services from within the system that are cur-

rently pending or running, dependent on time slot. 

  {            } Resource; Set of available resources. This work only uses CPU and 

Memory. 

              
         [   ] 

Capacity utilization; Level of usage of the certain resource between 0 (no 

usage) and 1 (used to capacity). 

     Load; Estimated characteristic of the system load, dependent on time slot. 

     Tendency; Calculated, smoothed tendency in time slot   of the system load 

over the past   time slots. 

   [   ] Refusal ratio; Quota of jobs in time slot   that are refused and hence not 

added to the system. 

Table 1. QCU Variable Definition 

The upcoming sections make use of some key terms that require introduction. First of all, the term 

load refers to the overall system utilization, i.e. it is larger than or equal to zero. since in this approach, 

it is calculated by scaling the average level of resource utilization by the amount of service requests in 

the system, it may become larger than 1. The exact formula is delivered in section 2.1, equation (1). 

The next sections use formulae and terms that refer to time slots, denoted  . Generally speaking, a 

time slot can represent any time span, only dependent on the desired resolution of calculations. These 

calculations are performed in discrete steps, related to each other in a timed order. For simulation pur-

pose, time slots do not have a fixed width - in case of calculations becoming more complex, they are 

completed before the simulation proceeds to the next time slot, such that a real-time system can be 

modeled and simulated (time-criticalness is eliminated). 

2.1 Load Estimation 

As the QCU will calculate a load tendency later on, the overall load estimation is required at any time. 

Depending on the certain setup, productive environments may deliver direct system load observation 

at runtime. If this is the case, the live load monitoring can be utilized instead of the estimation step 

presented in this section. In this work, we assume the system to not deliver live load monitoring. Fur-

thermore, all resources are presented abstractly in a single resource pool where services may satisfy 

their requirements when launched. As listed in table 1, we do only focus on the two resources CPU 

and Memory. Nonetheless, this approach will work with various resource pools and a complex distri-

bution of services to them, but for the basic goal the narrowed approach we apply is satisfactory. The 

set of all available resources   can be arbitrarily extended if desired, since equation 1 normalizes the 

average of all resources by the amount of resource types considered. Our QCU calculates the current 

average system load by multiplying the amount of available (e.g. running or pending) services by the 

mean of all resource usage levels, respective to equation 1. Currently, the estimated load is scaled by 

the total amount of services. Future research will distinguish between pending and running services 

since scheduling services may lead to  

   
∑             

| |
 |  | 

(1) 

In this approach, we explicitly decided to use the resource load average for load estimation instead of 

the maximum over all resources due to the following considerations. Though equation (1) may result 

in an underestimation of resource usage, because the arithmetic mean over all resource levels is calcu-

lated, it is satisfactory for the load extrapolation following below. As another approach, the maximum 

resource usage level over all types of resources could be selected to estimate the current system load, 

but since resources may have different impacts on the computational capacities of the entire system, 
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this may lead to overestimation of resource usage. In case of load overestimation, the cloud system 

could only hardly be utilized up to full capacity and would always have spare computational power 

that remains unused. However, this difference between the two possibilities of load estimation will be 

regarded closer in future research. 

2.2 Tendency Calculation 

Basically, the tendency is defined as the difference between estimated loads in sequential time slots. 

This alone is not satisfactory, since the estimated load may be quite noisy and thus the calculated ten-

dency may eventually become inaccurate. In order to fix this issue, tendency values are calculated by 

including previous results in a time series approach with moving average, weighted by their time dis-

tance. Additionally, they are smoothened afterwards. 

   
 

 
 ∑

       

 

 

   
 

(2) 

According to equation 2, the last load values within the horizon are used to calculate the mean tenden-

cy of the load in time slot  . The factor 
 

 
 scales the result by the horizon size. Note that equation 2 

uses differences between old load values and the current estimation to calculate the mean slope and 

hence results in a tendency. For further smoothing, the resulting tendency value and all its predeces-

sors within the given horizon are averaged. The result is the tendency value in the current time slot. 

2.3 Tendency Derivation 

Now that the averaged tendency is available, its slope can be calculated by derivation. Using the deri-

vation to estimate the system load trend is a proper way for automated decision support, since it can be 

directly compared to zero in order to check whether tendency is going up or down and at which slope 

steepness. In order to approximate the derivation in a certain point based on discrete values, the func-

tion usually needs to be estimated first. As we do not know which polynomial degree may fit best be-

cause load values can be arbitrarily various concerning their flow, only a linear regression over the 

past tendency values is applicable. 

  
     

   

       
 

 (3) 

Equation 3 delivers the approximation of the first derivative in a certain time slot. Basically, we per-

form a linear regression based on the horizon and linear extrapolation prior to the right-hand side ap-

proximation (eq. 3) towards the derivation. This extrapolation sorts out the problem of time slots being 

discrete values and   being continuous. 

 

Figure 3: Example of Tendency and its Derivative without Job Refusals 

Figure 3 shows an example of a tendency trace in a frequently overloaded setup and its approximated 

derivative without actually making a decision (e.g. all incoming jobs are accepted). The upper red 

(solid) graph is a calculated tendency trace based on results from a discrete event simulation.  The 
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lower blue (dashed) graph is its derivative representing slope steepness (the offset in Figure 3 emerges 

from the use of a horizon   and corresponds to its size in time slots). Comparing the derivative to zero, 

one can clearly identify the trend of the current system load. 

2.4 Ratio Calculation 

The goal of the decision within the QCU is to flatten the load value graph, e.g. to have it constantly 

near the maximum possible load, but strictly avoid phases of further system overload. Hence, the most 

important part to focus on is the derivative being positive. Since the QCU does not know the maxi-

mum system capacity that is available, the decision must not only be based on the derivative being 

positive or not. We have to include values from the past in order to allow increasing system load up to 

a certain level. A good decision would result in the derivate graph oscillating around zero and thus 

keeping the system at a stable load level. 

   {

   
   
   

   
      

   

       
   

 

(4) 

According to equation 4, the current tendency value is compared to the maximum tendency value in 

the horizon, if the derivative is larger than zero. If the current tendency value is the maximum from all 

tendencies within the horizon, all new jobs in the current time slot are refused. Only if the system re-

laxes, more and more jobs are accepted. If the tendency is below zero, all jobs are accepted. This leads 

to an oscillation around zero as shown in Figure 4. Please note, that the QCU is not responsible for 

assigning priorities to each incoming request. In case of priorities being present, the QCU can easily 

be extended to first sort incoming requests by their respective priorities and then to refuse them start-

ing at the request with lowest priority. For this work, we treat every request equally. 

 

Figure 4. Example of Tendency and its Derivative with Job Refusal Applied 

3 Evaluation 

In order to test and evaluate the QCU model described above, a discrete event simulation is chosen. 

The problem’s parameters are too manifold to perform a complete calculation towards the mathemati-

cal problem. Hence, we cannot provide a mathematically proven verification but only derive tendency 

results. The basic simulation flow is outlined in Figure 5. A generator constantly feeds the QCU with 

new jobs, which then decides - based on resource usage and amount of running services - which part 

of the new jobs to accept and which to refuse. Refused jobs are immediately dropped from the system; 

accepted ones are added to the set of currently pending jobs. The scheduler prioritizes the pending jobs 

by a certain policy (for example their expected revenue or simple first-come first-serve) and starts as 

many of their services as possible, restricted by the amount of available resources in a central resource 

pool. Jobs that reside in pending state for too long are aborted as they are assumed to violate Service-

Level Agreements. Services in running state lock their allocated resources for a certain amount of 

steps, then release them and drop from the system as finished services. 
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Figure 5. Simulation Flow Overview 

3.1 Data Sources 

In our simulation, jobs are assumed to be a sequence of services with the option of concurrent execu-

tion of grouped services (as service tuples). As an example, a job consisting of three services where 

the first two services may be executed concurrently but the last one may only start on successful ter-

mination of its predecessors, it would be notated as [(A, B), (C)]. This assumption shifts the 

simulation towards a more general applicability since jobs are not atomic but defined as a sequence of 

atomic services. Furthermore, each service requires a certain amount of available resources to be 

launched and requires a certain amount of time slots to be finished. 

The properties delivered in Table 2 aim to create a general scenario and thus are tightly geared to the 

findings from the A*STAR data traces (e.g. those job signatures from the traces that deliver CPU and 

Memory requirements). While a Gaussian distribution is assumed for capacity requirements (CPU and 

Memory), the composition of services to jobs is based upon uniform distribution over a selected range. 

Job templates serve as the basis for jobs that are spawned live by the generator. The valuation of a 

service is geared to the cost of an Amazon EC2 instance and since these are prices per CPU hour, the 

bid is also dependent on the service’s CPU requirement. Though penalties are usually defined in Ser-

vice Level Agreements (SLAs), they are drawn from a Gaussian distribution in this work in order to 

minimize the amount of critical assumptions. However, variety is generated by placing the penalty’s 

 -value on the certain request’s bid value and allowing a   of  
 

 
 of the bid value.  

 

CPU required per service Gaussian,                

Memory required per service Gaussian,                 

Amount of job templates per scenario Uniform in [    ] 
Amount of service tuples per job template Uniform in [   ] 
Amount of services per service tuple Uniform in [   ] 
Valuation (bid) of a service Gaussian,             , multiplied by CPU 

Penalty of a service Gaussian,         
   

 
 

Table 2. Simulation Parameter Distribution 

All in all, the values are chosen in a manner to easily generate system overload, but as well have the 

option to have the system run below its maximum capacities. In our simulation environment, the 

above mentioned distribution-parameters are fully adjustable, and even hand-written scenarios are 

possible. This is required when it comes to an extensive simulation with many different parameter 

values. 
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3.2 Results 

 

Figure 6. Load Comparison 

Figure 6 compares the simulated system load without QCU (red solid graph as actual load, red dashed 

graph as accumulated amount of aborted jobs) to the simulated load when a QCU is applied (blue dot-

ted graph as actual load, blue dash-dotted graph as accumulated amount of aborted jobs). Having a 

more detailed look to the graphs that represent the simulation without a QCU (red graphs, solid and 

dashed) one can recognize the system constantly residing in an overloaded state, because the amount 

of aborted jobs is constantly increasing. Steeper slopes can directly be linked to the load spikes several 

time slots prior to them. This means, the system without a QCU is unable to complete all incoming 

jobs and many of them are aborted as they are waiting too long and violate Service-Level Agreements. 

The graphs representing the simulation flow where a QCU was applied (blue graphs, dotted and dash-

dotted), the first thing to notice is that the average load of the system with QCU is significantly lower 

than the average load of the system without QCU. With this in mind and the fact that there are very 

few jobs aborted during simulation with a QCU applied, one can derive that the system is not being 

overloaded. Thus, the QCU cancels incoming job requests according to its current and maximum load 

quite well. However, since the QCU only estimates load value and derives a basic tendency, it does 

not refuse the perfect amount of jobs. Perfect amount of job refusal would match the amount of abort-

ed jobs in the scenario without a QCU as this number represents the overhead of requests that led to 

system overload. The application of a QCU resulted in refusal or abort of overall 608 requests, while 

the system without a QCU only aborted 426 jobs. The QCU cancels about 42.72% more jobs than the 

system with no QCU applied had to abort due to overload. Table 3 delivers the values that are shown 

graphically in Figures 6 and 7 and adds extra measures. 

 

Figure 7. Revenue Comparison 

In Figure 7, the accumulated overall generated revenue is outlined. The red dashed graph shows the 

revenue of the system with no QCU, the green solid graph shows the revenue of the system with a 

QCU applied. The revenue value is calculated by the difference between total bid value of all jobs that 

were accepted and the penalty values of all jobs that were accepted but aborted. From time slot 50 to 

time slot 170, the system without QCU performs slightly better, e.g. generates higher revenue. Starting 

at time slot 170 and ongoing, the system with QCU outperforms the non-QCU simulation. The slight 
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advantage of the non-QCU system (in the time slots mentioned above) results from the QCU having to 

level off after simulation has started. Furthermore, the system without QCU is not yet at overload in 

the concerned time slots and thus generates higher revenue as no jobs are canceled or aborted (cf. Fig-

ure 6, respective time slots: from time slot 100 on, jobs are being aborted by the non-QCU system). As 

soon as jobs are aborted in the non-QCU system, the according revenue graph’s slope decreases. In 

contrast to that, the system with QCU applied has a constantly increasing revenue value. The final 

revenues drawn from our simulations are 22198 for the non-QCU system and 34904 for the system 

with QCU, which is an increase by 57.24%. Please note, that these values are measured in fictional 

units and to not reflect real money outcome but rather a comparison and trend of the systems with or 

without QCU depending on the generated load. 

 

Figure 8. QCU Decision on Refusal Quota 

The QCU decisions over the first 500 steps are outlined in Figure 8. The calculated load tendency, 

based on the overall system load estimation by the QCU, is represented by the blue graph that refers to 

the left y-scale. The QCU’s request refusal quota is shown as a red filled curve scaled between 0 and 1 

on the right y-scale. The figure shows that the refusal quota experiences peaks whenever load tenden-

cy spikes are detected. After the QCU has leveled off at around time slot 400, the system load tenden-

cy becomes stable with a slight upward trend. At this point, a heavy quota fluctuation can be observed, 

because the system load has leveled and the QCU’s tendency derivation oscillates around zero to keep 

the system state stable. As a long-term view, Figures 9 shows how the system has leveled and operates 

at a constant load. The load tendency value (blue solid graph) fluctuates around zero. 

 

Figure 9. QCU in Long-Term View 

Table 3 shows the accumulated results after 500 time slots in comparison to the results after 5000 time 

slots. Since the QCU’s required level-off phase after initialization is quite heavy related to the first 500 

time slots (cf. Figure 9), the refusal overhead (jobs being refused by QCU that would not have been 

aborted without QCU) is quite high. After the system has reached its level, the refusal overhead 

shrinks down to not more than 30% within 5000 time slots. The same applies for the revenue increase 

being only around 60% after 500 time slots but rising up to over 70% in 5000 time slots. 

 
 500 Time Slots 5000 Time Slots 

Measure No QCU QCU No QCU QCU 

Aborted jobs 426 14 5213 14 

Refused jobs 0 594 0 6678 

Refusal overhead by QCU to non-QCU 42.72% 28.37% 

Proceedings of the 21st European Conference on Information Systems

10



Overall revenue 22198 34904 185038 315968 

Revenue increase by QCU to non-QCU 57.24% 70.76% 

Table 3. Accumulated Results 

The revenue increase strongly depends on the amount of new requests fed into the simulation in each 

time slot and hence is not to be read as an absolute economic improvement. However, it shows that the 

application of a QCU affects the monetary outcome positively in case of system overload. 

4 Conclusion 

Being faced with a single multi-tier architecture system that centrally accepts requests and delegates 

them to special hardware internally by application of load balancing requires to take an upstream in-

stance (placed in front of the request queue) for request filtering into account, which is able to accept 

or refuse incoming requests based on the estimated current system load and its tendency. We proposed 

our QCU concept as an upstream filtering instance as described. We have shown that the appliance of 

a QCU leads to a bonus towards economic and monetary outcome of a system under heavy load, e.g. 

general overload due to numerous requests or unexpected overload by resource outage. Referring to 

the initially introduced requirements for the QCU instance, our simulations and evaluations have 

shown that the provided QCU concept is able to cover all of them. It tracks the system load and calcu-

lates its tendency by linear extrapolation over a moving average process. Furthermore, it is able to 

derive the slope of the tendency to use it as a forecast mechanism. Based on this forecast, the QCU can 

make informed decisions on the quota of requests that should be refused to avoid a system overload. 

In order to measure the overall QCU performance, several simulations were performed. As a next step, 

an implementation is planned for extensive tests in a labor environment. Our simulations reveal the 

economic value of a QCU if applied, as they deliver the following findings: 

1. The system with a QCU applied still runs near maximum capacity; the QCU does not decline 

more jobs than required. This means that the QCU is close to an optimal solution of the trade-off 

between request refusal and system load. 

2. The amount of accepted requests that had to be aborted has significantly decreased in comparison 

to a system that did not use a QCU. Thus, the appliance of a QCU significantly reduces penalty 

payments due to violation of Service-Level Agreements or Quality of Service. 

3. The overall revenue was lifted considerably in a long-term run when a QCU was used in compar-

ison to a system without a QCU when requests are generated to provoke system overload. 

Even though our straightforward model exhibits desirable results, there are possibilities to improve the 

QCU and to adapt it to meet additional system requirements. Apparently, the prediction is only based 

on the derivation of the weighted and smoothed tendency of an estimated system load. Using a more 

general procedure to state a system’s load may greatly improve the results. As already mentioned in 

section 3.1, the effect of overestimation of resource usage levels should be carefully compared to the 

consequences of resource underestimation. This means reviewing the monetary tradeoff between parts 

of computational capacities remaining unused (due to overestimation) and potentially more rejected 

requests (due to underestimation). Furthermore, enforcement of the refusal rate does not take eventual-

ly contracted QoS (Quality of Service) levels for certain customers into account. A valuable extension 

of the QCU concept could be the introduction of request prioritization based on expected profit (profit 

heuristics) when applying the refusal ratio. Smoothing of the tendency graph currently is performed by 

averaging the neighborhood (moving average process). Applying a mathematical process of convolu-

tion should lead to a graph with far less noise. Furthermore, instead of using the first derivative, a 

more precise forecast mechanism could be applied, such as wavelets or Fourier-based forecasting. 
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