
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2013 Completed Research ECIS 2013 Proceedings

7-1-2013

Online Load Analysis For Automated Request-
Quota Controlling In Clouds
Johannes Bendler
University of Freiburg , Freiburg , Germany, johannes.bendler@is.uni-freiburg.de

Markus Hedwig
University of Freiburg , Freiburg , Germany, markus.hedwig@is.uni-freiburg.de

Dirk Neumann
University of Freiburg , Freiburg , Germany, dirk.neumann@is.uni-freiburg.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2013_cr

This material is brought to you by the ECIS 2013 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2013
Completed Research by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Bendler, Johannes; Hedwig, Markus; and Neumann, Dirk, "Online Load Analysis For Automated Request-Quota Controlling In
Clouds" (2013). ECIS 2013 Completed Research. 109.
http://aisel.aisnet.org/ecis2013_cr/109

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301361022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_materials?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr/109?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ONLINE LOAD ANALYSIS FOR AUTOMATED REQUEST-

QUOTA CONTROLLING IN CLOUDS

Bendler, Johannes, Albert-Ludwigs-University of Freiburg, 79098 Freiburg, Germany,

johannes.bendler@is.uni-freiburg.de

Hedwig, Markus, Albert-Ludwigs-University of Freiburg, 79098 Freiburg, Germany,

markus.hedwig@is.uni-freiburg.de

Neumann, Dirk, Albert-Ludwigs-University of Freiburg, 79098 Freiburg, Germany,

dirk.neumann@is.uni-freiburg.de

Abstract

The importance of efficient use of IT infrastructure capacities increases, as the growing amount of

deployed IT systems increasingly requires resources. On the one hand, companies can outsource their

IT demands to Cloud providers in order to only pay for the very amount of required computational

power. On the other hand, cloud providers themselves need to be efficient as well, as it may be the

deciding factor on their market positioning. This paper proposes a method to accept or refuse incom-

ing requests based on a load estimation and load forecast. We will present the architecture and a gen-

eral implementation of the so-called Quota-Control-Unit (QCU), followed by results of an extensive

simulation. The evaluation will show that the introduced method is a promising approach of securing

IT systems from overload while keeping the economic outcome at the possible maximum.

Keywords: Decision Support, Load Analysis, Cloud Computing.

Proceedings of the 21st European Conference on Information Systems

1

Introduction

Nowadays, outsourcing of computational demands to Cloud systems or service networks increases. As

companies’ ecological awareness grows, they request highly flexible IT infrastructure to avoid any

spare capacities that would be present only keeping in-house IT systems. Besides the ecological base,

another factor that brings Cloud computing forward is the fact that only a minimum of IT infrastruc-

ture management effort is required when having all computational demands relayed to Cloud provid-

ers. Less spare in-house IT infrastructure leads to less unnecessary power-consumption and mainte-

nance efforts. On the other side, companies that offer Cloud services (Infrastructure as a Service, Plat-

form as a Service, and Software as a Service) for rent, based on the “pay-as-you-go” principle, need to

be efficient as well.

Basically, Cloud computing is the aggregation of large amounts of hardware and delivering seemingly

endless computational power to customers by massive use of virtualization. However, there are limits

on provider side, since available hardware in fact is not endless. Providers have to properly scale their

IT systems in order to satisfy the arbitrary demands of their customers, which is usually achieved by

over-provisioning their hardware: large amounts of resources are running spare to cover eventual vari-

ation in customers’ demands (Armbrust, et al., 2009). Since being efficient may be the deciding factor

on providers’ market positioning, the provisioning of resources on provider side has to be balanced

between the satisfaction of customer demands and the amount of capacities running spare. In this pa-

per, we deliver a system component, namely Quota-Control Unit (QCU), which aims to generate max-

imum possible revenue in case of customers’ requirements exceeding the provider’s capacities.

In case of a provider receiving urgent or short-term requests, respective to their Service-Level Agree-

ments, it may be crucial to have them executed and answered as soon as possible. Should a provider

accept more requests, if systems already run near overload? Not only by a high amount of incoming

requests, but also by partial breakdown of infrastructure is the provider possibly faced with an over-

load situation. For example, in the morning of April 21
st
 2011, many Amazon cloud-based service

providers were stricken to find their cloud services unavailable (AWS Tech Team, 2011). Should a

provider faced with an overload situation still try to run all requests on narrowed resources? There is

no universally valid answer, however, we can derive and deliver approaches to keep the generated

revenue in these situations as high as possible. On provider-side, we assume requests to generate reve-

nue when accepted and successfully executed or penalties when accepted but aborted or not answered

in time. Based on this assumption, we can calculate the economic outcome for a provider by their sys-

tem load and request acceptance in phases of heavy load. Tracking the load and its tendency can be

important for early decisions on accepting or refusing incoming requests for the service provider, since

the option of scaling up IT infrastructure is not available in case of partial breakdown or unexpected

load peaks.

Thus, we tackle the outlined problem by searching for an approach of making informed decisions

about whether new requests should be accepted by the provider.

This paper is structured as follows. First of all, the Related Work section takes existent approaches

into account and analyzes proposed solutions. In the subsequent section, the Quota Control Unit

(QCU) Model is introduced in detail. Afterwards, the Evaluation section describes the approach of an

experimental study as a discrete event simulation using jobs and their requirements based on real

workload traces. The simulation is executed under various parameter settings and its results are evalu-

ated. The last chapter concludes the contents and findings and delivers open aspects that still should be

reviewed for further work.

1 Related Work

This work combines various research threads that are relevant to the admission and management of

job requests. This section points out aspects relevant to modeling a scenario, such as performance

Proceedings of the 21st European Conference on Information Systems

2

modeling and workload forecasting, and addresses the technical challenges for systems like SOA

(Service Oriented Architecture) and Clouds. Those models typically employ no or only naïve econom-

ic models that are feasible and result in monetary outcome.

Performance modeling is an active research field and has produced a variety of models as shown in

(Urgaonkar, et al., 2008), (Cohen, et al., 2004). Furthermore, a detailed overview of how workload can

be modeled is presented by (Feitelson, 2002), (Feitelson, 2011). An approach towards realization of

high service levels and end-to-end Quality of Service (QoS) is the GLOBUS Architecture for Reserva-

tion and Allocation (Foster, et al., 1997), which uses advanced reservations to guarantee QoS. Specifi-

cally addressing the question of how job allocations affect resources, (Kournev, et al., 2007) introduce

a framework for designing resource managers, using GLOBUS as a case study, that are able to predict

the impact of a certain job on the overall system performance and to adapt the resource allocation in a

way towards Service-Level Agreement (SLA) satisfaction. A model to optimize the system allocation

for immediate use is developed by (Ardagna, et al., 2007). A good overview of SLAs that are com-

monly used in the field of Cloud Computing is provided by (Buyya, et al., 2009). Most of the newer

contributions in this field extend the performance models to dynamic research management systems.

For instance, the authors in (Gmach, et al., 2008) developed a reactive migration controller for virtual-

ized environments. However, compared to our concept, their approach is only designed for basic sin-

gle-layered systems. The paper by (Chandra, et al., 2003) introduces a resource allocation model for

shared datacenters based on a queuing network performance model and a time series workload fore-

cast mechanism. However, they do not consider SLAs in the provisioning process. Another concept

Padala, et al., 2009) is an automated control model for virtual resources. The model manages the vary-

ing resource demands by dynamically allocating resources to or migrating virtual machines. Neverthe-

less, in modern cloud environments this migration approach is usually not supported. In (Ardagna, et

al., 2009) a model has been developed to manage the resource demand of multiple concurrent systems.

In contrast to our model, it optimizes the system only for a single point in time, rather than for the near

future. The authors in (Lim, et al., 2010) developed an autonomic control model to scale elastic stor-

age systems based on the utilization of the system.

Apart from technically oriented research streams, concerning revenue management, (Nair, et al., 2001)

provides research results about the use of revenue management concepts by Internet Service Providers

(ISPs). They consider the decision to accept or reject customers but did not take different service types

or advanced reservation into account. Towards revenue generation, (Yeo, et al., 2007) show an ap-

proach for a pricing function depending on a base pricing rate and a utilization pricing rate.

The related work covers different aspects of related research problems. However, the proposed mech-

anisms mostly focus on resource allocation and do not take an upstream instance (e.g. placed in front

of the request queue) into account that is able to filter requests before they enter the certain system.

2 Quota Control Unit Model

As previously mentioned, the problem we tackle in this research is the lack of an upstream instance

able to filter incoming requests before they enter the certain system. We address this problem by using

the well-known design science research approach (Hevner, et al., 2004) to develop an IT artifact that

allows us to measure and compare upstream decision performance in a confidential manner. The de-

sign science methodology seeks to create IT artifacts that are intended to solve specific organizational

problems and provide rigorous evaluation of these artifacts based on utility rather than an empirical

test of theories. This encompasses successive steps of problem identification, definition of objectives

for a solution, design or development of a suitable IT artifact, and demonstration of the proof of con-

cept, evaluation and communication (Hevner, et al., 2004).

In order to gain the ability of analyzing and controlling incoming requests, as it is the intention of the

QCU, it has to be properly positioned within an IT system. Most IT systems that may receive demand

spikes provide a central request interface (as the web frontend for an online-shop, for example), be-

cause they are laid out for application of load balancers and dynamically scaled infrastructure. To gain

Proceedings of the 21st European Conference on Information Systems

3

full control over incoming requests, the QCU is positioned as an upstream instance even before re-

quests reach the central interface in our setup. It may be reasonable to place the QCU behind an avail-

able load-balancer though, when it comes to multi-tier architectures or specialized hardware for certain

tasks. Figure 1 outlines the QCU positioning.

Figure 1. Proposed QCU Positioning

Based on the assumptions outlined above, several basic QCU requirements can be derived. First of all,

the QCU has to be aware of the overall system load, e.g. the information about the current workload

being above maximum capacity or not is required.

Requirement 1: The QCU needs to include an estimation of the current system load.

A decision only based on the very current system load may be misleading, thus the QCU should be

able to calculate the trend of the system load, such that it could already start accepting more jobs if the

system load is slightly decreasing though still near to full capacity, for example.

Requirement 2: The QCU needs the capability to identify the system load’s tendency.

Since the QCU should be applied to make a decision about the amounts of requests that shall be han-

dled in order to strictly avoid any overload situation, it should contain some metric for acceptance

ratio finding.

Requirement 3: The QCU has to support an informed choice of job refusals.

Towards fulfillment of the requirements, the QCU model proposed in this work consists of mainly

four aspects (cf. Fig. 2). Essentially, the QCU:

i. estimates the average load in the considered time slot,

ii. calculates a weighted and smoothed tendency value

iii. derives the tendency function to calculate a trend,

iv. and applies a quota-based metric as decision basis for defining the part of the new jobs that

shall be accepted in the current time slot.

Figure 2. QCU Process Pipeline

According to the introduction above, the QCU’s four main aspects are described in the following four

sub-sections. Table 1 lists required variables and parameters. Please note that the QCU properties in-

troduced here shall only serve as an orientation towards an efficiently working QCU. The simulation

framework applied later on for evaluation allows full modification or replacement of any of the mod-

ules as well as free parameter modification. This paper considers the two resource types CPU and

Memory exemplarily. However, the set of available resources can be arbitrarily extended based on

the requirements of the application scenario.

Proceedings of the 21st European Conference on Information Systems

4

Variable Domain Description

 Horizon; Amount of time slots the QCU is looking into the past to calcu-

late the tendency.

 Time slot; A certain position within system runtime.

 Set of Services; Contains all Services from within the system that are cur-

rently pending or running, dependent on time slot.

 { } Resource; Set of available resources. This work only uses CPU and

Memory.

 []

Capacity utilization; Level of usage of the certain resource between 0 (no

usage) and 1 (used to capacity).

 Load; Estimated characteristic of the system load, dependent on time slot.

 Tendency; Calculated, smoothed tendency in time slot of the system load

over the past time slots.

 [] Refusal ratio; Quota of jobs in time slot that are refused and hence not

added to the system.

Table 1. QCU Variable Definition

The upcoming sections make use of some key terms that require introduction. First of all, the term

load refers to the overall system utilization, i.e. it is larger than or equal to zero. since in this approach,

it is calculated by scaling the average level of resource utilization by the amount of service requests in

the system, it may become larger than 1. The exact formula is delivered in section 2.1, equation (1).

The next sections use formulae and terms that refer to time slots, denoted . Generally speaking, a

time slot can represent any time span, only dependent on the desired resolution of calculations. These

calculations are performed in discrete steps, related to each other in a timed order. For simulation pur-

pose, time slots do not have a fixed width - in case of calculations becoming more complex, they are

completed before the simulation proceeds to the next time slot, such that a real-time system can be

modeled and simulated (time-criticalness is eliminated).

2.1 Load Estimation

As the QCU will calculate a load tendency later on, the overall load estimation is required at any time.

Depending on the certain setup, productive environments may deliver direct system load observation

at runtime. If this is the case, the live load monitoring can be utilized instead of the estimation step

presented in this section. In this work, we assume the system to not deliver live load monitoring. Fur-

thermore, all resources are presented abstractly in a single resource pool where services may satisfy

their requirements when launched. As listed in table 1, we do only focus on the two resources CPU

and Memory. Nonetheless, this approach will work with various resource pools and a complex distri-

bution of services to them, but for the basic goal the narrowed approach we apply is satisfactory. The

set of all available resources can be arbitrarily extended if desired, since equation 1 normalizes the

average of all resources by the amount of resource types considered. Our QCU calculates the current

average system load by multiplying the amount of available (e.g. running or pending) services by the

mean of all resource usage levels, respective to equation 1. Currently, the estimated load is scaled by

the total amount of services. Future research will distinguish between pending and running services

since scheduling services may lead to

∑

| |
 | |

(1)

In this approach, we explicitly decided to use the resource load average for load estimation instead of

the maximum over all resources due to the following considerations. Though equation (1) may result

in an underestimation of resource usage, because the arithmetic mean over all resource levels is calcu-

lated, it is satisfactory for the load extrapolation following below. As another approach, the maximum

resource usage level over all types of resources could be selected to estimate the current system load,

but since resources may have different impacts on the computational capacities of the entire system,

Proceedings of the 21st European Conference on Information Systems

5

this may lead to overestimation of resource usage. In case of load overestimation, the cloud system

could only hardly be utilized up to full capacity and would always have spare computational power

that remains unused. However, this difference between the two possibilities of load estimation will be

regarded closer in future research.

2.2 Tendency Calculation

Basically, the tendency is defined as the difference between estimated loads in sequential time slots.

This alone is not satisfactory, since the estimated load may be quite noisy and thus the calculated ten-

dency may eventually become inaccurate. In order to fix this issue, tendency values are calculated by

including previous results in a time series approach with moving average, weighted by their time dis-

tance. Additionally, they are smoothened afterwards.

 ∑

(2)

According to equation 2, the last load values within the horizon are used to calculate the mean tenden-

cy of the load in time slot . The factor

 scales the result by the horizon size. Note that equation 2

uses differences between old load values and the current estimation to calculate the mean slope and

hence results in a tendency. For further smoothing, the resulting tendency value and all its predeces-

sors within the given horizon are averaged. The result is the tendency value in the current time slot.

2.3 Tendency Derivation

Now that the averaged tendency is available, its slope can be calculated by derivation. Using the deri-

vation to estimate the system load trend is a proper way for automated decision support, since it can be

directly compared to zero in order to check whether tendency is going up or down and at which slope

steepness. In order to approximate the derivation in a certain point based on discrete values, the func-

tion usually needs to be estimated first. As we do not know which polynomial degree may fit best be-

cause load values can be arbitrarily various concerning their flow, only a linear regression over the

past tendency values is applicable.

 (3)

Equation 3 delivers the approximation of the first derivative in a certain time slot. Basically, we per-

form a linear regression based on the horizon and linear extrapolation prior to the right-hand side ap-

proximation (eq. 3) towards the derivation. This extrapolation sorts out the problem of time slots being

discrete values and being continuous.

Figure 3: Example of Tendency and its Derivative without Job Refusals

Figure 3 shows an example of a tendency trace in a frequently overloaded setup and its approximated

derivative without actually making a decision (e.g. all incoming jobs are accepted). The upper red

(solid) graph is a calculated tendency trace based on results from a discrete event simulation. The

Proceedings of the 21st European Conference on Information Systems

6

lower blue (dashed) graph is its derivative representing slope steepness (the offset in Figure 3 emerges

from the use of a horizon and corresponds to its size in time slots). Comparing the derivative to zero,

one can clearly identify the trend of the current system load.

2.4 Ratio Calculation

The goal of the decision within the QCU is to flatten the load value graph, e.g. to have it constantly

near the maximum possible load, but strictly avoid phases of further system overload. Hence, the most

important part to focus on is the derivative being positive. Since the QCU does not know the maxi-

mum system capacity that is available, the decision must not only be based on the derivative being

positive or not. We have to include values from the past in order to allow increasing system load up to

a certain level. A good decision would result in the derivate graph oscillating around zero and thus

keeping the system at a stable load level.

 {

(4)

According to equation 4, the current tendency value is compared to the maximum tendency value in

the horizon, if the derivative is larger than zero. If the current tendency value is the maximum from all

tendencies within the horizon, all new jobs in the current time slot are refused. Only if the system re-

laxes, more and more jobs are accepted. If the tendency is below zero, all jobs are accepted. This leads

to an oscillation around zero as shown in Figure 4. Please note, that the QCU is not responsible for

assigning priorities to each incoming request. In case of priorities being present, the QCU can easily

be extended to first sort incoming requests by their respective priorities and then to refuse them start-

ing at the request with lowest priority. For this work, we treat every request equally.

Figure 4. Example of Tendency and its Derivative with Job Refusal Applied

3 Evaluation

In order to test and evaluate the QCU model described above, a discrete event simulation is chosen.

The problem’s parameters are too manifold to perform a complete calculation towards the mathemati-

cal problem. Hence, we cannot provide a mathematically proven verification but only derive tendency

results. The basic simulation flow is outlined in Figure 5. A generator constantly feeds the QCU with

new jobs, which then decides - based on resource usage and amount of running services - which part

of the new jobs to accept and which to refuse. Refused jobs are immediately dropped from the system;

accepted ones are added to the set of currently pending jobs. The scheduler prioritizes the pending jobs

by a certain policy (for example their expected revenue or simple first-come first-serve) and starts as

many of their services as possible, restricted by the amount of available resources in a central resource

pool. Jobs that reside in pending state for too long are aborted as they are assumed to violate Service-

Level Agreements. Services in running state lock their allocated resources for a certain amount of

steps, then release them and drop from the system as finished services.

Proceedings of the 21st European Conference on Information Systems

7

Figure 5. Simulation Flow Overview

3.1 Data Sources

In our simulation, jobs are assumed to be a sequence of services with the option of concurrent execu-

tion of grouped services (as service tuples). As an example, a job consisting of three services where

the first two services may be executed concurrently but the last one may only start on successful ter-

mination of its predecessors, it would be notated as [(A, B), (C)]. This assumption shifts the

simulation towards a more general applicability since jobs are not atomic but defined as a sequence of

atomic services. Furthermore, each service requires a certain amount of available resources to be

launched and requires a certain amount of time slots to be finished.

The properties delivered in Table 2 aim to create a general scenario and thus are tightly geared to the

findings from the A*STAR data traces (e.g. those job signatures from the traces that deliver CPU and

Memory requirements). While a Gaussian distribution is assumed for capacity requirements (CPU and

Memory), the composition of services to jobs is based upon uniform distribution over a selected range.

Job templates serve as the basis for jobs that are spawned live by the generator. The valuation of a

service is geared to the cost of an Amazon EC2 instance and since these are prices per CPU hour, the

bid is also dependent on the service’s CPU requirement. Though penalties are usually defined in Ser-

vice Level Agreements (SLAs), they are drawn from a Gaussian distribution in this work in order to

minimize the amount of critical assumptions. However, variety is generated by placing the penalty’s

 -value on the certain request’s bid value and allowing a of

 of the bid value.

CPU required per service Gaussian,

Memory required per service Gaussian,

Amount of job templates per scenario Uniform in []
Amount of service tuples per job template Uniform in []
Amount of services per service tuple Uniform in []
Valuation (bid) of a service Gaussian, , multiplied by CPU

Penalty of a service Gaussian,

Table 2. Simulation Parameter Distribution

All in all, the values are chosen in a manner to easily generate system overload, but as well have the

option to have the system run below its maximum capacities. In our simulation environment, the

above mentioned distribution-parameters are fully adjustable, and even hand-written scenarios are

possible. This is required when it comes to an extensive simulation with many different parameter

values.

Proceedings of the 21st European Conference on Information Systems

8

3.2 Results

Figure 6. Load Comparison

Figure 6 compares the simulated system load without QCU (red solid graph as actual load, red dashed

graph as accumulated amount of aborted jobs) to the simulated load when a QCU is applied (blue dot-

ted graph as actual load, blue dash-dotted graph as accumulated amount of aborted jobs). Having a

more detailed look to the graphs that represent the simulation without a QCU (red graphs, solid and

dashed) one can recognize the system constantly residing in an overloaded state, because the amount

of aborted jobs is constantly increasing. Steeper slopes can directly be linked to the load spikes several

time slots prior to them. This means, the system without a QCU is unable to complete all incoming

jobs and many of them are aborted as they are waiting too long and violate Service-Level Agreements.

The graphs representing the simulation flow where a QCU was applied (blue graphs, dotted and dash-

dotted), the first thing to notice is that the average load of the system with QCU is significantly lower

than the average load of the system without QCU. With this in mind and the fact that there are very

few jobs aborted during simulation with a QCU applied, one can derive that the system is not being

overloaded. Thus, the QCU cancels incoming job requests according to its current and maximum load

quite well. However, since the QCU only estimates load value and derives a basic tendency, it does

not refuse the perfect amount of jobs. Perfect amount of job refusal would match the amount of abort-

ed jobs in the scenario without a QCU as this number represents the overhead of requests that led to

system overload. The application of a QCU resulted in refusal or abort of overall 608 requests, while

the system without a QCU only aborted 426 jobs. The QCU cancels about 42.72% more jobs than the

system with no QCU applied had to abort due to overload. Table 3 delivers the values that are shown

graphically in Figures 6 and 7 and adds extra measures.

Figure 7. Revenue Comparison

In Figure 7, the accumulated overall generated revenue is outlined. The red dashed graph shows the

revenue of the system with no QCU, the green solid graph shows the revenue of the system with a

QCU applied. The revenue value is calculated by the difference between total bid value of all jobs that

were accepted and the penalty values of all jobs that were accepted but aborted. From time slot 50 to

time slot 170, the system without QCU performs slightly better, e.g. generates higher revenue. Starting

at time slot 170 and ongoing, the system with QCU outperforms the non-QCU simulation. The slight

Proceedings of the 21st European Conference on Information Systems

9

advantage of the non-QCU system (in the time slots mentioned above) results from the QCU having to

level off after simulation has started. Furthermore, the system without QCU is not yet at overload in

the concerned time slots and thus generates higher revenue as no jobs are canceled or aborted (cf. Fig-

ure 6, respective time slots: from time slot 100 on, jobs are being aborted by the non-QCU system). As

soon as jobs are aborted in the non-QCU system, the according revenue graph’s slope decreases. In

contrast to that, the system with QCU applied has a constantly increasing revenue value. The final

revenues drawn from our simulations are 22198 for the non-QCU system and 34904 for the system

with QCU, which is an increase by 57.24%. Please note, that these values are measured in fictional

units and to not reflect real money outcome but rather a comparison and trend of the systems with or

without QCU depending on the generated load.

Figure 8. QCU Decision on Refusal Quota

The QCU decisions over the first 500 steps are outlined in Figure 8. The calculated load tendency,

based on the overall system load estimation by the QCU, is represented by the blue graph that refers to

the left y-scale. The QCU’s request refusal quota is shown as a red filled curve scaled between 0 and 1

on the right y-scale. The figure shows that the refusal quota experiences peaks whenever load tenden-

cy spikes are detected. After the QCU has leveled off at around time slot 400, the system load tenden-

cy becomes stable with a slight upward trend. At this point, a heavy quota fluctuation can be observed,

because the system load has leveled and the QCU’s tendency derivation oscillates around zero to keep

the system state stable. As a long-term view, Figures 9 shows how the system has leveled and operates

at a constant load. The load tendency value (blue solid graph) fluctuates around zero.

Figure 9. QCU in Long-Term View

Table 3 shows the accumulated results after 500 time slots in comparison to the results after 5000 time

slots. Since the QCU’s required level-off phase after initialization is quite heavy related to the first 500

time slots (cf. Figure 9), the refusal overhead (jobs being refused by QCU that would not have been

aborted without QCU) is quite high. After the system has reached its level, the refusal overhead

shrinks down to not more than 30% within 5000 time slots. The same applies for the revenue increase

being only around 60% after 500 time slots but rising up to over 70% in 5000 time slots.

 500 Time Slots 5000 Time Slots

Measure No QCU QCU No QCU QCU

Aborted jobs 426 14 5213 14

Refused jobs 0 594 0 6678

Refusal overhead by QCU to non-QCU 42.72% 28.37%

Proceedings of the 21st European Conference on Information Systems

10

Overall revenue 22198 34904 185038 315968

Revenue increase by QCU to non-QCU 57.24% 70.76%

Table 3. Accumulated Results

The revenue increase strongly depends on the amount of new requests fed into the simulation in each

time slot and hence is not to be read as an absolute economic improvement. However, it shows that the

application of a QCU affects the monetary outcome positively in case of system overload.

4 Conclusion

Being faced with a single multi-tier architecture system that centrally accepts requests and delegates

them to special hardware internally by application of load balancing requires to take an upstream in-

stance (placed in front of the request queue) for request filtering into account, which is able to accept

or refuse incoming requests based on the estimated current system load and its tendency. We proposed

our QCU concept as an upstream filtering instance as described. We have shown that the appliance of

a QCU leads to a bonus towards economic and monetary outcome of a system under heavy load, e.g.

general overload due to numerous requests or unexpected overload by resource outage. Referring to

the initially introduced requirements for the QCU instance, our simulations and evaluations have

shown that the provided QCU concept is able to cover all of them. It tracks the system load and calcu-

lates its tendency by linear extrapolation over a moving average process. Furthermore, it is able to

derive the slope of the tendency to use it as a forecast mechanism. Based on this forecast, the QCU can

make informed decisions on the quota of requests that should be refused to avoid a system overload.

In order to measure the overall QCU performance, several simulations were performed. As a next step,

an implementation is planned for extensive tests in a labor environment. Our simulations reveal the

economic value of a QCU if applied, as they deliver the following findings:

1. The system with a QCU applied still runs near maximum capacity; the QCU does not decline

more jobs than required. This means that the QCU is close to an optimal solution of the trade-off

between request refusal and system load.

2. The amount of accepted requests that had to be aborted has significantly decreased in comparison

to a system that did not use a QCU. Thus, the appliance of a QCU significantly reduces penalty

payments due to violation of Service-Level Agreements or Quality of Service.

3. The overall revenue was lifted considerably in a long-term run when a QCU was used in compar-

ison to a system without a QCU when requests are generated to provoke system overload.

Even though our straightforward model exhibits desirable results, there are possibilities to improve the

QCU and to adapt it to meet additional system requirements. Apparently, the prediction is only based

on the derivation of the weighted and smoothed tendency of an estimated system load. Using a more

general procedure to state a system’s load may greatly improve the results. As already mentioned in

section 3.1, the effect of overestimation of resource usage levels should be carefully compared to the

consequences of resource underestimation. This means reviewing the monetary tradeoff between parts

of computational capacities remaining unused (due to overestimation) and potentially more rejected

requests (due to underestimation). Furthermore, enforcement of the refusal rate does not take eventual-

ly contracted QoS (Quality of Service) levels for certain customers into account. A valuable extension

of the QCU concept could be the introduction of request prioritization based on expected profit (profit

heuristics) when applying the refusal ratio. Smoothing of the tendency graph currently is performed by

averaging the neighborhood (moving average process). Applying a mathematical process of convolu-

tion should lead to a graph with far less noise. Furthermore, instead of using the first derivative, a

more precise forecast mechanism could be applied, such as wavelets or Fourier-based forecasting.

Proceedings of the 21st European Conference on Information Systems

11

References

Ardagna, D., Trubian, M. and Zhang, L., 2007. “SLA Based Resource Allocation Policies in Auto-

nomic Environments”, in Journal of Parallel and Distributed Computing, 67(3), pp. 259-270.

Available at: http://dx.doi.org/10.1016/j.jpdc.2006.10.006

Ardagna, D. et al., 2009. “Run-Time Resource Management in SOA Virtualized Environments”, in

Proceedings of the 1st International Workshop on Quality of Service-Oriented Software Systems -

QUASOSS ’09, p. 39. Available at: http://portal.acm.org/citation.cfm?doid=1596473.1596484

Armbrust, M., et al., 2009, “Above the Clouds: A Berkeley View of Cloud Computing”, UC Berkeley

Reliable Adaptive Distributed Systems Laboratory

AWS Tech Team, „Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US

East Region,“ 2011. Available at: http://aws.amazon.com/message/65648

Buyya, R. et al., 2009. “Cloud computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility”, in Future Generation Computer Systems, 25(6), pp.599-

616. Available at: http://dx.doi.org/10.1016/j.future.2008.12.001 [Accessed April 30, 2011].

Chandra, A., Gon, W. and Shenoy, BP., 2003. “Dynamic Resource Allocation for Shared Data Cen-

ters”, in Quality of Service - IWQoS 2003, vol. 270, pp. 381-398. Available at:

http://www.springerlink.com/content/h56r570l4u707466

Cohen, I. et al., 2004. “Correlating Instrumentation Data to System States: A Building Block for Au-

tomated Diagnosis and Control”, in OSDI.

Feitelson, D.G., 2002. “Workload Modeling for Performance Evaluation”, in Lecture Notes in Com-

puter Science, 2002, Volume 2459/2002. Available at: http://www.springerlink.com/

content/xpx7gt5d7egwv3vm

Feitelson, D.G., 2011. “Workload Characterization and Modeling Book”, Available at:

http://www.cs.huji.ac.il/~feit/wlmod/.

Foster, I., Kesselman, C., 1997. “GLOBUS: A Metacomputing Infrastructure Toolkit”, in Internation-

al Journal of High Performance Computing Applications, June 1997, vol. 11, no. 2, pp. 115-128.

Gmach, D. et al., 2008. “Adaptive Quality of Service Management for Enterprise Services”, in ACM

Trans. Web, 2(1), pp. 1-46.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. “Design Science in Information Systems Re-

search”, in MIS Quarterly, 28(1). Society for Information Management and The Management In-

formation Systems Research Center Minneapolis, MN, USA.

Kounev, S., Nou, R., Torres, J., 2007. “Building Online Performance Models of Grid Middleware with

Fine-Grained Load Balancing: A GLOBUS Toolkit Case Study”, in EPEW’07 Proceedings of the

4th European Performance Engineering Conference on Formal Methods and Stochastic Models for

Performance Evaluation. Berlin, Heidelberg: Springer-Verlag.

Lim, H.C., Babu, S. and Chase, J.S., 2010. “Automated Control for Elastic Storage”, in Proceeding of

the 7th International Conference on Autonomic Computing. New York, NY, USA: ACM, pp. 1-10.

Available at: http://doi.acm.org/10.1145/1809049.1809051

Nair, S.K., Bapna, R., 2001. “An Application of Yield Management for Internet Service Providers”, in

Naval Research Logistics, vol 48, issue 5, pp. 348-362, August 2001.

Padala, P. et al., 2009. “Automated Control of Multiple Virtualized Resources”, in Proceedings of the

fourth ACM European Conference on Computer Systems - EuroSys ’09, p. 13. Available at:

http://portal.acm.org/citation.cfm?doid=1519065.1519068

Urgaonkar, B. et al., 2008. “Agile Dynamic Provisioning of Multi-Tier Internet Applications”, in ACM

Transactions on Autonomous and Adaptive Systems (TAAS), 3(1), Available at:

http://portal.acm.org/citation.cfm?id=1342172.

Yeo, C.S., Buyya, R., 2007. “Pricing for Utility-Driven Resource Management and Allocation in Clus-

ters”, in International Journal of High Performance Computing Applications, vol. 21, no. 4, pp.

405-418

Proceedings of the 21st European Conference on Information Systems

12

	Association for Information Systems
	AIS Electronic Library (AISeL)
	7-1-2013

	Online Load Analysis For Automated Request-Quota Controlling In Clouds
	Johannes Bendler
	Markus Hedwig
	Dirk Neumann
	Recommended Citation

	MAIN TITLE OF THE PAPER – STYLE "MAIN TITLE"

