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Abstract 

This work examines the predictive power of public data by aggregating information from multiple 

online sources. Our sources include microblogging sites like Twitter, online message boards like 

Yahoo! Finance, and traditional news articles. The subject of prediction are daily stock price 

movements from Standard & Poor’s 500 index (S&P 500) during a period from June 2011 to 

November 2011. To forecast price movements we filter messages by stocks, apply state-of-the-art 

sentiment analysis to message texts, and aggregate message sentiments to generate trading signals for 

daily buy and sell decisions. We evaluate prediction quality through a simple trading model 

considering real-world limitations like transaction costs or broker commission fees. Considering 833 

virtual trades, our model outperformed the S&P 500 and achieved a positive return on investment of 

up to ~0.49% per trade or ~0.24% when adjusted by market, depending on supposed trading costs. 

Keywords: Predictive Analytics, Data Mining, Sentiment Analysis, Financial Markets, Twitter, Social 

Media. 
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1 Introduction 

Recent academic discourse on information systems speaks of a paradigm shift toward data-intensive 

computing and “big data”-based studies (Hey, Tansley and Tolle, 2009). A new level of connectedness 

among peers creates a huge database by providing new ways for the dissemination and consumption of 

data and ever-easier means of collecting vast amounts of public data from various on- and offline 

resources, including posts, tweets, Web documents, and news feeds. Evolving data mining 

technologies and the increasing processing power of today’s computers support the desire to 

appropriately analyze at least parts of today’s growing (public) data deluge in real time, and thus 

tackle the core question of what meaningful information can be derived through algorithmic analyses 

and what predictive value can be inferred in automated fashion from public data. 

Social media data in particular have been the subject of academic research in the recent past (Schoder 

et al., 2013). Asur and Huberman (2010) investigated the predictive power of tweets for box office 

returns, analyzing some 2.89 million tweets. Bollen, Mao and Zeng (2010) collected and classified 

tweets to forecast daily closing values of the Dow Jones Industrial Average. Among many others 

(Koch and Schneider, 2002; Forster, 2002; Antweiler and Frank, 2004; Wang, Jank and Shmueli, 

2008; Xu et al., 2012), these studies represent the research field of predictive power in publicly 

available data. In their research essay, Shmueli and Koppius (2011) suggest a framework they call 

“predictive analytics,” which is concerned with the assessment of predictive power in empirical 

research and statistical inference, and propose six roles for its application. This paper adopts the role 

of “the assessment of the predictability of empirical phenomena” from their framework. 

The work presented herein extends previous attempts to assess the predictive power of social media 

talk by aggregating data from multiple resources (Twitter, eleven online message boards, and 

traditional news) and considering an extended period of six-month of data. The subjects of prediction 

are daily stock price movements from the Standard & Poor’s 500 index (S&P 500). Most research 

concerned with stock market predictions based on online data is mainly theoretical in nature and does 

not take into account real-world limitations such as broker fees, bid/ask differences, and liquidity. To 

demonstrate the potential practical application of our findings, we describe a simple trading model 

based on the predictor, considering commission fees, transaction costs, and stock liquidity. 

2 Literature Review 

This section provides a brief summary of past literature concerned with the predictive power of online 

data for financial markets and shows how results improved with the progress of time. While older 

research found that discussion followed market movements, more recent results clearly detect 

predictive value in online data for stock price changes.  

There are two main research streams which are relevant for the scope of this work. The literature can 

be categorized in works related to sentiment analysis and works related to predictive power of user 

generated content (UGC). Sentiment analysis is a broad research field and is applied on many different 

domains (Berger, Della Pietra and Della Pietra, 1996; Pang, Lee and Vaithyanathan, 2002; Whitelaw, 

Garg and Argamon, 2005; Abbasi, Chen and Salem, 2008; Boiy and Moens, 2009; Choi, Kim and 

Myaeng, 2009; Lin and He, 2009; Narayanan, Liu and Choudhary, 2009; Mizumoto, Yanagimoto and 

Yoshioka, 2012; Fang, Datta and Dutta, 2012). The second major research stream relevant for this 

study relates to works of predictive power of UGC. Although this topic is much broader and applies to 

many different domains, the following articles focus on making predictions for developments in 

financial markets based on UGC. 

In many studies both streams are tied together since the value of user generated content can be 

captured better when it is analyzed with automated methods (Antweiler and Frank (2004), Das and 

Chen (2007), Bollen, Mao and Zeng (2010), Zhang and Swanson (2010), Sprenger and Welpe (2010)). 
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These authors apply sentiment analysis for extraction of predictive value from UGC and to study its 

impact on the stock market. Antweiler and Frank (2004) studied the predictive power of online 

message boards for the stock market by analyzing 1.5 million messages from Yahoo! Finance 

(http://finance.yahoo.com) and Raging Bull. Applying sentiment analysis, they found that the number 

of messages is a predictor for stock turnover. However, their model’s performance would not deliver a 

significant return on investment, as plausible transaction costs would be too high. Das, Martinez-Jerez 

and Tufano (2005) found that sentiment follows stock price returns. 

All more recent research applies sentiment analysis to a changing number of messages from a variety 

of online resources. While Oh and Sheng (2011) looked at a comparably small subset of messages 

from Stocktwits, Bollen, Mao and Zeng (2010) collected a large amount of ~9.85 million microblog 

postings from Twitter (http://www.twitter.com). Schumaker et al. (2012) looked at a small sample 

(9211 news articles) of traditional news articles; the amount of data for other studies falls between 

these parameters. However, the latest work focuses on a single source of data (mainly Twitter), 

leaving out other, well-researched sources such as Yahoo! Finance, Raging Bull, or traditional finance 

news – which may or may not improve the results. 

Traditional news evaluated by natural language processing can carry alpha information as well (Cohen 

and Frazzini, 2008; Schumaker and Chen, 2009; Dion et al., 2011). Alpha information refers to 

information that is not yet reflected in stock price levels, thus leading to future stock price movement 

according to the Efficient Market Hypothesis (EMH) (Fama, 1970). 

There is a number of studies over the last decade which found predictive evidence of UGC on stock 

return (Bagnoli, Beneish and Watts, 1999, Tumarkin and Whitelaw, 2001, Jones, 2006, Gu et al., 

2006, Das and Chen, 2007, and Sabherwal, Sarkar and Zhang, 2008). 

Bollen, Mao and Zeng (2010), Zhang and Swanson (2010), Sprenger and Welpe (2010), Oh and Sheng 

(2011), and Xu et al. (2012) are examples of recent studies that have found clear evidence for the 

predictive power of online communication for stock price movements. Oh and Sheng (2011) examined 

~72,000 microblog postings from Stocktwits.com, extending over a three-month period, to predict 

stock price movements. Applying sentiment analysis, they found microblog messages predict future 

stock price movement. They also briefly evaluated potential return on investments, finding that simple 

(not adjusted returns) deliver better results than market-adjusted returns.  

Our work and that of other researchers hypothesizes that online talk in social media and microblogs 

has predictive power over future stock price movements. Microblog posts in particular are 

characterized by strong focus on their subject because they are succinct, happen in nearly real-time, 

and have high posting frequencies (Xu et al., 2012; Oh and Sheng, 2011; Bollen, Pepe and Mao, 2010; 

Java et al., 2007).  

Andrew Lo (2004) provides a theoretical foundation for the predictive power of public data over 

financial markets with the Adaptive Market Hypothesis (AMH), as suggested by Brown (2012). 

Taking behavioral economics and finance research (De Long et al., 1990; Hirshleifer, 2001; Camerer 

and Loewenstein, 2004; Tetlock, 2007; Xu and Zhang, 2009; Zhang and Swanson, 2010) into 

consideration, the AMH describes an evolutionary model of individuals adapting to a changing 

environment via simple heuristics. It provides an explanation for the existence of alpha information 

and how learning and competition gradually restore market efficiency (Neely, Weller and Ulrich, 

2009). Thus, social media, microblog posts, and news could be considered contributors to the 

competition and learning process that drives prices (Brown, 2012). 

This paper contributes by providing a case study of a virtual trading model based on the predictive 

power of online communication. Our first goal is to demonstrate that it is indeed possible to trade 

based on an online message board predictor and achieve a positive return on an investment (adjusted 

by the market). We gathered communication from Twitter, eleven online message boards, and Yahoo! 

Finance’s news stream, thus extending the scope of data utilized in earlier research. 
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3 Methodology and Sentiment Analysis 

For this paper, we collected 2,971,381 messages concerned with stocks of the S&P 500 index during a 

six-month period from June 1 to November 30, 2011. Table 1 shows the different online sources 

which we have used to collect the messages.  

The first step is to assign these messages to stocks. For that we filtered the dataset by either looking 

for messages in sub-forums concerned with particular stocks on online message boards or by using 

Twitter’s “cash tag”. The cash tag is a stock’s ticker symbol with a preceding dollar sign ($). Not 

considering spam at this point (more details on how we filter spam in the following paragraph) we can 

rely on that a tweet which contains a cash tag refers to the stock price or anything related to the 

financial value of the underlying company (e.g. $MSFT for company Microsoft).  

In sources other than Twitter stock specific communication can be accessed in sub-forums which exist 

for each component of the S&P 500 index. In these sub-forums users exclusively discuss topics related 

to a particular company. For example Yahoo! Finance provides direct access to a stock’s sub-forum by 

appending the ticker symbol to the following hyper-reference: http://finance.yahoo.com/mb/ (e. g. 

http://finance.yahoo.com/mb/MSFT for company Microsoft). With a similar approach specific sub-

forums can be accessed for all other sources listed in table 1. With this method, each tweet / forum 

post can clearly be assigned to a single company which is important to ensure only relevant 

communication is considered when calculating sentiment.  

Thus we get a relatively precise assignment of messages to a specific company / stock which helped us 

to avoid some common name entity conflicts as mentioned in Yerva & Miklós & Aberer (2010). 

Although we cannot rely with full certainty, we can assume that people talk about the company or 

company-related issues when posting in the financial discussion board about Apple and not about the 

fruit apple. Nevertheless, after collecting all messages we applied a spam filter which cleaned our data 

set. Our self-developed spam filter searches for example for posts which intend to insult other users 

without contributing relevant information. Most of these posts can be identified by the usage of 

scurrile and nasty language. Everything related was removed from the data set. 

Following the state-of-the-art research as established in the previous section, in the next step we 

applied sentiment analysis to microblog messages, forum posts, and traditional news using a Naïve 

Bayes classifier with an adapted bag-of-words in combination with part-of-speech tagging to find 

negations and spam filtering based on keywords. The basis of the applied sentiment methodology can 

be found in Krauss and Nann and Schoder (2012). One key finding in this study indicates that the 

quality of sentiment recognition depends on how specific the sentiment analysis algorithms are 

adjusted to the analyzed context. The more context-specific the algorithms are designed the higher the 

quality of sentiment recognition will be. This is determined e.g. by the choice of bag-of-words and the 

adjustment of part-of-speech tagging. For example, authors use different language and words to write 

a positive review about a digital camera and say something positive about their favorite stock. In the 

current study we adjusted the sentiment analysis very specifically to the stock market domain.  

For this reason we initially read a few hundred tweets and posts from the available dataset and 

manually annotated it with positive or negative sentiment. This sample data was used to train our self-

developed sentiment algorithm. In the next step we applied the trained algorithm to a newly and not 

annotated data sample from the available data set to determine the precision of the sentiment 

algorithm. Also in a manual process we defined lists of positive (e.g. buy, long, call, etc.) and negative 

(e.g. sell, short, put, etc.) words which resulted in our bag-of-words. During text analysis the algorithm 

scans the content for these words. We also manually defined specific words for part-of-speech tagging. 

The word “don’t” for example will be used during part-of-speech-tagging, if a user posts “I don’t sell 

my shares”, this will be recognized and labeled with positive sentiment since the key word “don’t” 

will give the negative key word “sell” the opposite meaning. 
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After all, the algorithm calculates a ratio (decimal number) based on the occurrences of positive and 

negative labels in a tweet or post. The sum of all ratios for all messages of a specific stock represents 

the aggregated sentiment value which was used to predict the daily stock price. 

Messages of all sources were considered with equal weight in our model. It is obvious that different 

data sources contain different value contributions. Tweets will probably have a lower half-life than 

traditional news which usually references a longer time period. It is subject of further research to 

design a process which evaluates these aspects of every single source separately. Please also refer to 

section 7 Discussion and Research Suggestions. 

 
Source URL Number of Messages 

Clearstation http://www.clearstation.com 12,743 

Free Realtime http://quotes.freerealtime.com 610 

Hotstockmarket http://www.hotstockmarket.com 1,818 

Investor’s Hub http://investorshub.advfn.com 20,359 

Investor Village http://investorvillage.com 37,180 

The Motley Fool http://www.fool.com 10,587 

Raging Bull http://ragingbull.quote.com 15,331 

Silicon Investor http://www.siliconinvestor.com 21,442 

Stockhouse http://www.stockhouse.com 37,119 

The Lion http://www.thelion.com 5,766 

Twitter http://www.twitter.com 1,801,345 

Yahoo! Finance Boards http://messages.finance.yahoo.com 802,476 

Yahoo! Finance News http://finance.yahoo.com 204,605 

Table 1. Data Sources 

As not all stocks from the S&P 500 index receive equal attention in social media, there are substantial 

differences in the average number of messages written each day for different stocks. For instance, 

Apple Inc. is one of the most discussed equities on the Web and many more messages are posted for 

Apple Inc. than for other index components. Thus we require an adjustment of sentiment values based 

on the average number of messages. For this work we chose the simple moving average (SMA) to 

achieve comparability for equities of differing attention levels. Sentiment values were used as a stock 

price movement predictor, with positive values indicating an upward movement and negative values 

indicating a downward movement. 

We began calculating our predictor one month after commencing data collection since we used a 30-

day simple moving average (SMA30) to calculate sentiment values. Thus, predictions of stock price 

movements were made each trading day from June 1 to November 30, 2011. For each trading day t, 

the predictor considered sums of positive and negative messages for each stock on the S&P 500 index 

and weighted them based on the SMA30. This value was used to predict stock price change on day t + 

1, predicting an increase in the case of positive values and a decrease in the case of negative values. 

Sentiment values can assume any value larger or smaller than zero. 

                    
                       

                          
  

                       

                          
 

Through weighting current messages in relation to the SMA30, it is possible to compare stocks that 

have significantly different attention levels and thus strongly differing message averages. We chose a 

30-day average because it takes into account enough days to even out positive and negative peaks in 

communication without being too static in comparison to longer periods. Longer periods would carry 

the danger of ignoring short-term anomalies in communication – e.g. in the case of earning releases or 

bankruptcies – which often lead to a strong increase in message numbers.  

Each trading day, we determined the level of sentiment (threshold) for each stock where the historical 

ratio of correct to total predictions is maximized. Sentiment values count as prediction signals only if 
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the absolute sentiment value lies above the threshold. For instance, for a threshold of two, a sentiment 

value of one would not be considered a signal to trade. We systematically determined historic 

prediction ratios by conducting a sensitivity analysis of sentiment thresholds each trading day for each 

stock. This was done by looking at all past trading days, comparing the sentiment on day t with the 

stock price change on day t + 1, summing dates on which a positive/negative sentiment on day t 

corresponded with a positive/negative stock price change on day t +1, and finally building the ratio for 

each threshold. Results were statistically significant on a level of 0.05 (right-sided significance test). 

On average, we obtained 10 stocks per trading day that had statistically significant prediction ratios 

greater than 0.5. We further found that a look ahead of one day delivered the best results, which means 

that sentiment values of day t predicted stock price changes of day t + 1 with the highest accuracy 

compared to predictions for day t + 2 or day t + 3. 

                                             

                                       
      

4 Results: Prediction Ratio of Sentiment Signals 

Our results show that publicly available data in microblogs, forums, and news on day t have predictive 

power for stock price changes on day t + 1. We confirm the findings of Bollen, Mao and Zeng (2010), 

Sprenger and Welpe (2010), and Oh and Sheng (2011) for single source-based predictions and extend 

their validity to the case of using multiple sources in aggregation. Table 2 displays the overall 

prediction performance and the performance for each month. 

 
Predictions All  Ratio Buy Predictions Ratio Sell Predictions 

Entire period 60.38% 60.69% 60.03% 

November 2011 57.54% 60.71% 54.74% 

October 2011 63.76% 63.16% 64.81% 

September 2011 52.63% 48.98% 55.86% 

August 2011 67.34% 67.52% 67.18% 

July 2011 60.99% 63.38% 56.79% 

June 2011 59.73% 59.01% 60.61% 

Table 2. Prediction Ratios 

The percentage values display the ratios of correct predictions for all analyzed stocks over the entire 

period from June 1 to November 30, 2011. For example 60.38% means that ~60 percent of all stocks 

for which sentiment had significant prediction ratios in the past delivered correct predictions in the 

period considered. In sum, the algorithm made 1,300 predictions over the entire period (126 trading 

days). Table 2 lists only predictions for rising stock prices through positive sentiment and predictions 

of falling stock prices through negative sentiment. Both cases do not differ significantly. 

5 Trading Model and Model Parameters 

To extend the academic body of literature, and especially to go beyond more recent research as 

illustrated by, for example, Bollen, Mao and Zeng (2010), Sprenger and Welpe (2010), and Oh and 

Sheng (2011), we demonstrate the potential practical application of our findings. Here we describe a 

simple trading model based on the predictor, considering commission fees, transaction costs, and stock 

liquidity. Most research concerned with stock market predictions based on online data is mainly 

theoretical in nature and does not take into account real-world limitations when considering a return 

on investments. Although we are taking some of these factors into account we do not propose a 

complete trading strategy which could be executed on the stock market as is. We did not execute 

trades under real market conditions.  
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Our model is based on assumptions and simplifications that are as practical as possible. However, on 

real-world trading floors and in real trading environments, there are many factors that can influence a 

trading model that works perfectly in theory. In our opinion, it is most critical to control for large 

spreads (differences between the bid and ask prices of stocks), the traded volume of a stock (the more 

a stock is traded, the higher is its liquidity and the higher the chance to buy or sell the stock for the 

desired price), and broker commissions, which become particularly relevant if a strategy is based on 

several trades per day (as is ours).  

Table 3 shows our three most relevant and important assumptions to simulate a practical trading 

strategy. For our trading model, we considered only stocks from the S&P 500 index (as described in 

the section above). The S&P 500 is one of the most important U.S. stock market indices (and probably 

also in the world), and stocks on the index are traded mostly in the United States. Therefore, all stocks 

from this index have comparably high trading volumes, which are important to ensure liquidity. To 

enforce this criterion, we considered only stocks with a trading volume larger than 3 million shares 

traded on average per day. For these stocks, it is almost guaranteed that shares can be bought in the 

morning at the opening of the stock market and be sold at the closing bell. Further, we only considered 

stocks that cost more than $10 on the day the trade is to be executed. This is important to guarantee a 

relatively small spread. 

 
Criteria Description 

Tradable Stocks Only trading stocks from S&P 500 index 

Stock Volume > 3,000,000 traded shares/per day on average 

Stock Price > $10 (on the trading day selected) 

Table 3. Assumptions for our trading model 

The difference between bid and ask prices (spread or transaction costs) is the highest cost factor for a 

trading model which is based on multiple trades on one day. Transaction costs are commonly 

expressed as basis points in a finance context. A basis point (bp) is a unit of measure used in finance to 

describe the percentage change in the value or rate of a financial instrument. One basis point is 

equivalent to 0.01% (1/100th of a percent) or 0.0001 in decimal form
1
. The difference between the 

ask/bid price of a stock, which is the price that has to be paid when buying/selling the stock, and the 

actual stock price typically lies between 10 bp and 20 bp (0.1% to 0.2%) per transaction. However, 

these values are based on our assumptions that a stock has a trading volume of more than 3 million 

shares on average per day and is worth at least $10 on the day it is traded. For example, if a stock 

trades at $10.02 the broker might charge $10.03, which implies trading costs of 10 bp or 0.1%. 

For our trading model, we followed a simple trading rule:  

 If the sentiment predictor is positive, the strategy is to buy the stock on market open (open long 

position) and sell the stock (close long position) on market close (on the same day). 

 If sentiment predictor is negative, the strategy is to sell the stock (open short position) on market 

open and buy the stock (close short position) on market close (on the same day). 

We assumed that we could buy the stocks for their opening prices and sell them for their closing prices 

every day
2
. Considering criteria from Table 3 and its intersection with our algorithm’s sentiment 

signals, we obtained about 7 tradable stocks on average each day (833 trades which meet the criteria 

on 126 trading days). We obtained a daily overall return on investment (ROI) by summing individual 

                                                      

1 http://www.investopedia.com/ask/answers/05/basispoint.asp#axzz1tcGlLhM7 

2 Buying a stock for the opening price and selling for the closing price is a simplification and is not necessary applicable in 

practice. There are many reasons why it may not be possible to buy the stock for the opening price and sell it for the closing 

price (e.g., transaction execution time). 

Proceedings of the 21st European Conference on Information Systems

7



ROIs for these stocks. This was done for the entire period from June 1 to November 30, 2011. To 

simulate the model in a more realistic way, we also adjusted our ROI with market movement in the 

considered time period. For this purpose, we used the change of the SPY certificate, which is one of 

the most liquid and heavily traded titles on the financial market. The trading rule for adjusting ROIs 

with the market was as follows: 

 If the signal is positive, we buy (long) the stock and sell (short) the market. 

 If the signal is negative, we sell (short) the stock and buy (long) the market. 

The rule of adjusting results with changes of the market is a form of hedging. Concretely, this means 

that we limited losses if a positive/negative sentiment predictor turned out to be wrong and the stock 

price actually rose/fell. In many cases, stocks correlate with general market movement, which means 

that a stock often rises/falls when the market rises/falls. This is the reason that we traded the opposite 

of the current sentiment predictor on the market. This means that if a stock fell after a positive 

sentiment, we limited our losses by being short on a falling market. Table 4 (adjusted by market) and 

Table 5 (unadjusted) summarize the performance of our model with various levels of transaction costs. 

6 Results from Trading Model Considerations 

Transaction Costs 0 bp 5 bp 15 bp 20 bp 25 bp 

Total ROI 196.84% 155.19% 71.89% 30.24% -11.41% 

Avg. ROI (per trade) 0.2363% 0.1863% 0.0863% 0.0363% -0.0137% 

No. of trades 833 833 833 833 833 

Table 4. Performance with adjustment by the market (SPY certificate) 

The numbers in table 4 show that hedging with the market results in a lower total ROI (~197%, when 

not considering transaction costs). In total our model required 833 trades over the entire period of time 

resulting in average ROIs of 0.24% (adjusted) and 0.49% (unadjusted) without considering transaction 

costs (0 bp). Average ROIs are calculated by dividing the total ROI by the number of trades. This 

results in an average ROI per trade. In Tables 4 and 5 we also display the resulting performances of 

our trading model for different trading costs expressed as basis points. Broker commission fees need to 

be subtracted, after all. This is generally a constant amount that highly depends on the broker. Usually, 

one can calculate it as $10 per transaction, independent of the traded volume. However, considering 

the return of our model it would be possible to subtract a constant broker fee and still receive a 

positive result. 

 
Transaction Costs 0 bp 5 bp 15 bp 20 bp 25 bp 

Total ROI 409.42% 367.77% 284.47% 242.82% 201.17% 

Avg. ROI (per trade) 0.4915% 0.4415% 0.3415% 0.2915% 0.2415% 

No. of trades 833 833 833 833 833 

Table 5. Performance without adjustment by the market 

Figure 1 shows the comparison of cumulated daily ROIs of our (unadjusted) trading model (without 

transaction costs) and cumulated daily price changes of the SPY certificate. We used the SPY 

certificate because it has very high trading liquidity and very accurately represents the current market 

value of the S&P 500 index. Thus, the SPY certificate is a suitable benchmark for our specific trading 

model. To compare its performance with our model the rule is as follows: buying the SPY certificate 

on the start day (price: 131.87) of the trading model and selling it on the last day (price: 124.99). The 

certificate lost 5.22% in this time; therefore, we outperformed it in almost every scenario from Tables 

4 and 5 only when assuming transaction costs of 25bp and applying market adjustment that the 

certificate could beat our model. 
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It is obvious that a significant part of the performance of our trading model has been achieved during 

the period from the end of July until the beginning of September. This might be a result from a certain 

market phase well suited for our model or statistical effects such as a temporary increase in correct 

signals for equities making large price changes during that time; more on that in the discussion 

section. 

 

Figure 1. Comparison of cumulative returns on investments for our trading model and the SPY 

certificate from June 1 to Nov 30. 

7 Discussion and Research Suggestions 

Our findings confirm previous studies that investigated the relationship between online talk and 

financial markets and extend their validity to the case of multiple sources. It is obvious that predictive 

power rests in publicly available data. However, until now it has been uncertain whether this power 

has substantial value. Antweiler and Frank (2004) wrote: “This effect is statistically significant but 

economically quite small in comparison to plausible transaction cost.” At least for the period between 

June 1 and November 30, 2011, we show that a positive ROI was achieved by trading based on public 

message board data – contrary to their results.  

However, causality is uncertain and should be subject to further research. We would emphasize in 

particular that the period of time we used for our analysis is rather short. Thus, we cannot rule out that 

certain market conditions that were present during that period were responsible for the positive ROI of 

our model (e.g. the period from July to September when signals performed significantly better than on 

average). Long-term studies are required extending over different market and economic phases to 

address this limitation. Additionally, we used open and close prices, which is a simplification: real-

world trading results will differ, either for better or worse.  

Another shortcoming at this stage of our research is the comparison of models based on different data 

sources. We assume that Twitter, online message boards, and traditional news differ with respect to 

their predictive power for stock price movements. Thus, for further research we would like to explore 

differences in prediction ratios between the various sources we analyzed in this study. Additionally, 

we point to the method of sentiment analysis applied herein. It is clear that more sophisticated 

methods would provide better quality of correctly detected sentiment values in texts. Thus, the trading 

model’s performance could potentially be improved by reaching higher quality in sentiment 

recognition.  

Further it is necessary to analyze effects of applying different sentiment analysis methodologies. The 

quality a particular methodology delivers is probably related to the performance of the predictor. We 
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hypothesize that a higher quality in sentiment analysis should lead to an increased number of correct 

predictions. Thus, as an extension of this work, we would like to compare the performance of the 

predictor when based on our own sentiment algorithms with the performance when other sentiment 

analysis tools are used for text classification. Improvement of performance could potentially also be 

achieved by applying separate sentiment analysis methods for different sources. E. g. Twitter 

communication is different in nature from forum communication, thus an adapted classification 

method might improve sentiment quality (Sriram et al. (2010)). 
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