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Abstract
Autonomous detection and correction of potentially missing or corrupt sensor data is a
essential concern in building technologies since data availability and correctness is necessary
to develop accurate software models for instrumented experiments. Therefore, this paper
aims to address this problem by using statistical processing methods including: (1) least
squares; (2) maximum likelihood estimation; (3) segmentation averaging; and (4) threshold
based techniques. Application of these validation schemes are applied to a subset of data
collected from Oak Ridge National Laboratory's (ORNL) ZEBRAlliance research project,
which is comprised of four single-family homes in Oak Ridge, TN outfitted with a total of
1,218 sensors. The focus of this paper is on three different types of sensor data: (1)
temperature; (2) humidity; and (3) energy consumption. Simulations illustrate the threshold
based statistical processing method performed best in predicting temperature, humidity, and
energy data.
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likelihood estimation; segmentation averaging; threshold based; building technologies.
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LIST OF NOMENCLATURE 

 

Abbreviations 

GHG  Greenhouse gas 

K-SOM Kohonen self-organizing map 

MLE  Maximum likelihood estimation 

ORNL  Oak Ridge National Laboratory 

PCA  Principal component analysis 

RMSE  Root-mean-square error 

USGBC U.S. Green Building Council 

WAHP  Water-to-air heat pumps 

WWHP Water-to-water heat pumps 

 

Symbols 

µ  Mean 

σ  Standard deviation 

��  Maximum likelihood estimate 

C  Standard deviation multipliers 

c  Element of C 

d  Degree of polynomial 

erel  Relative error 

eabs  Absolute error 

f  Predicted value  

g  Gaussian distribution 

histMean Historical mean 

histStd  Historical standard deviation 

L  Least squares estimation 

m  Expected value 

����   Segmentation average 

N  Number of samples 

n  current time-step 

o  Size of observation window 

P  Coefficients of polynomial 

p  Element of P 

r  Residual 

X  Independent variables 

x  Element of X 

s  First time-step of observation window 

Y  Sensor data 

y  Element of Y 

 

INTRODUCTION 

 

Energy consumption in the U.S. is a critical area of concern where residential and 

commercial buildings consume approximately 40% of total primary energy (U.S. Department of 

Energy, 2008). Retrofitting inefficient existing buildings with new and innovative technologies 
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that help to curb energy consumption will ensure the reduction of energy consumption and 

enhance the ability to optimize use of our energy distribution infrastructure (Miller et al., 2011). 

Buildings also have the best potential for reducing green-house-gas (GHG) emissions since the 

building sector exceeds both the industrial and transportation sectors in the U.S. 

(Intergovernmental Panel on Climate Change, 2007). There is a need for integrated building 

strategies, according to the U.S. Green Building Council (USGBC), in order to achieve Net Zero 

Energy buildings (U.S. Green Building Council Research Committee, 2007). Therefore, the 

conservation of energy and mitigation of GHG emissions hinges on the continued research of 

energy efficient buildings and technologies. 

There is much research dealing with the improvement of energy efficiency in commercial 

buildings and residential homes (Christian, 2010; Norton and Christensen, 2006; Miller and 

Kosny, 2008; Parker et al., 2011). These include several fundamental concerns relevant to 

sensors being used to collect a wide variety of variables (e.g., humidity ratio, solar flux, 

temperature, time, wind speed, etc.) in order to analyze and understand the capabilities of 

components, systems, and whole-buildings for enhanced energy efficiency. Based on the number 

of variables being collected and sampling rates, the amount of data being assembled has the 

potential of being large-scale. An example of this is the ZEBRAlliance research project, which in 

2008 built four residential homes to be used for integration of Oak Ridge National Laboratory’s 

(ORNL’s) energy-efficient technologies to gauge the integral success and affordability of 

components and houses (ZEBRAlliance, 2008). The first and second homes consist of 279 

sensors, the third home has 321 sensors, and the fourth home has 339 sensors, a majority of 

which are measuring temperature (thermistors, thermocouples, and combo probes), relative 

humidity (RH and combo probes), and electrical usage (watt-meters). Most sensors have a 15-

minute resolution with approximately 80 sensors having a resolution of 1-minute, although 

hourly, daily, and monthly reports are also consolidated. There are 9,352 data points in an hour, 

224,448 in a day, 1,571,136 in a week, and 81,699,072 in a year. Many concerns arise with this 

amount of data points being collected in such a real-world experiment, specifically data 

corruption from sensor failure, sensor fouling, calibration error, and data logger failure. 

Sensor validation is vital for energy efficiency research and control in buildings. Even with 

the most sophisticated instruments and control systems, analysis and decisions based on faulty 

data could lead to inaccuracies when dealing with components, systems, and whole-buildings for 

improved energy efficiency. There are currently two approaches that are widely used for the 

validation of data: analytical redundancy and hardware redundancy (Ibarguengoytia et al., 2001). 

Analytical redundancy uses mathematical relationships between measurements to predict a 

sensor’s value. When the number of sensors and the complexity of the model increase, the 

analytical redundancy approach becomes inefficient. Another disadvantage of the analytical 

redundancy approach is that each derived relationship is very specific to the data; meaning a 

slight modification may require significant resources to stabilize. Hardware redundancy on the 

other hand is not always possible due to the need for increased sensors, data acquisition 

channels/systems, installation and maintenance labor, etc.). Therefore, this research aims to use 

independent relationships (e.g., interpolation based on available data from a single sensor), 

instead of dependent relationships (e.g., prediction using data from other sensors), and statistical 

processing methods. Sensor calibrations and manufacturer’s rated accuracy is not considered in 

this work. Calculating the predicted value of a sensor as a function of others and assuming or 

leveraging periodic patterns in the data is also not covered in this research. 
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The statistical processing methods that are investigated in this paper are: (1) least squares; (2) 

maximum likelihood estimation; (3) segmentation averaging; and (4) threshold based techniques 

for sensor data validation. These procedures are used for data prediction which is compared with 

original data to determine the accuracy of each method and is applied to ZEBRAlliance sensor 

data for temperature, humidity, and energy consumption. Results from this study show the data 

to be best predicted using the threshold based statistical processing method. 

 

BACKGROUND 

 

There has been a rich variety of research dealing with data validation for numerous 

applications (Ibarguengoytia et al., 2001; Frolik et al, 2001; Uluyol et al., 2006; Postolache, 

2005). In Ibarguengoytia et al., 2001, two Bayesian networks were used for the detection of 

faults in a set of sensors; the first represents the dependencies among all sensors and the second 

isolates the faulty sensor. Self-validation, fusion, and reconstruction of sensor data was tackled in 

Frolik et al, 2001 by exploring three key steps: (1) employ fuzzy logic rules for self-validation 

and self-confidence; (2) exploit near-linear relationships between sensors for reconstructing 

missing or low-confidence data; and (3) fuse this data into a single measurement along with a 

qualitative indicator for its reliability. A start-up fault detection and diagnosis method was 

presented for gas turbine engines in (Uluyol et al., 2006), which consisted of three key 

techniques: (1) statistics; (2) signal processing; and (3) soft computing. Sensor profiles were 

generated from good and bad engine start-ups in which a feature vector was calculated and signal 

processing was used for feature selection. In the signal-processing step, principal component 

analysis (PCA) was applied to reduce the samples consisting of sensor profiles into a smaller set. 

The features obtained from this step were then classified using neural-network-based methods. In 

Postolache, 2005, a Kohonen self-organizing map (K-SOM) was used to perform sensor data 

validation and reconstruction. Sensor failure and pollution event detections were also studied 

with the use of this methodology for a water quality sensor network application. 

There has been a wide range of work in regards to sensor data validation using not only 

statistical methods, but also filtering and machine learning techniques as well. However, all 

previously mentioned research deals with dependent relations among multiple sensors for 

validation. Dependencies in data prediction require greater computational resources and datasets. 

Independent data validation conserves these resources by requiring past data for a given sensor, 

lending itself to greater parallel throughput and scalability. Therefore, this paper uses statistical 

processing methods for independent data validation applied to building technologies. 

 

STATISTICAL PROCESSING METHODS 

 

The following statistical methods from Bo et al., 2009 detailed the use of statistical 

techniques to predict wireless field strength. The four methods discussed: (1) least squares; (2) 

maximum likelihood estimation; (3) segmentation averaging; and (4) threshold based, are 

modified to meet the needs of fault detection and sensor data prediction. Artificial gaps are 

introduced by randomly removing portions of existing data for testing the accuracy of auto-

correcting algorithms. This is accomplished by randomly generating training and testing subsets. 

In this paper, training and testing subsets are split 70% and 30% respectively. Each sensor is 

used as an independent variable and predicts sensor values based upon a variable-sized window 

of observations. A prediction model is generated for each window of observations and auto-
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correction (interpolation and/or extrapolation) occurs if values are missing or corrupt (far away 

from the predicted value), though original data is always preserved for reference. This paper does 

not take into consideration when all elements in a given window are missing and/or corrupt. This 

scenario can be handled using previous and subsequent models generated from windows with 

enough elements for predictions (i.e., using multiple windows to generate a model instead of 

elements within a window). 

For all statistical processing techniques in this research, an observation window of size o is 

used to predict the sensor’s data value for each time-step within the observation window. The 

observation window moves forward by o time-steps (no overlap) and prediction for each sample 

within the observation window is calculated. This process occurs for every possible window 

within a given set of time-series sensor data. Root-mean-square error (RMSE), relative error, and 

absolute error, Equations 11, 12, and 13 respectively, are calculated for each prediction to 

determine the performance. 

To give the reader a better understanding of observation windows, an example of its use is 

given. Let’s say least squares method is used for validation purposes (reviewed in the following 

section) with the observation window being of size o=24. Temperature data is used which is 

randomly split into training (70%) and testing (30%) subsets. During training, each observation 

window generates a model based on the training samples in that window. The model is used to 

predict the behavior of temperature in that observation window. An example in Figure 1 shows 

the 10
th

 observation window in the temperature dataset (left). This model is then used to predict 

at time-steps where testing data is located (right). 

 

 

Figure 1. Actual and predicted temperature values of training (left) and testing (right) subset. 

 

Least Squares 

Calculating least square estimation is accomplished through calculating the squared residual 

between the inputs and the predicted values and summing. This is shown as: 

 

� = ∑ [��
� − ��
�]���������          (1) 

 

where n is the current time-step, s represents the time-step relative to the observation window, 

y(s) is actual sensor data, and f(s) signifies the predicted value. Polynomial fitting is used to 

predict data values based on a learned model of data in the observation window. Polynomial 

fitting is achieved by finding (d+1) coefficients, P, of a d
th

 degree polynomial. A generalized 

form of the polynomial is: 

 

� = �� + ��� +⋯+ ������         (2) 
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where x is the independent variable (i.e., time-step) and f is the dependent variable (i.e., 

prediction). The polynomial in its generalized matrix form is shown as: 
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The matrix notation for polynomial fit is: 

 

� =  !           (4) 

 

The coefficients of the polynomial, P, can be solved by multiplying both sides of Equation (4) by 

the transpose X
T
: 

 

 "� =  " !          (5) 

 

Therefore, the coefficients of the polynomial, P, are: 

 

! = � " ��� "�          (6) 

 

Maximum Likelihood Estimation 

The maximum likelihood estimation is calculated using the Gaussian distribution (Harris and 

Stocker, 1998; Hoel, 1984), which is assumed in this research for temperature, humidity, and 

energy data. For a Gaussian distribution: 
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where m is the expected value, σ is the standard deviation, y(s) represents actual sensor data, and 

s represents the time-step. Therefore, the maximum likelihood estimate is: 

 

�� = #��� = $∑�%&�'�(
)          (8) 

 

Segmentation Averaging 

In segmentation averaging, a window is set for the smoothing average. The window length 

(i.e., number of observations) is denoted as o and the sensor data is represented by y in the 

segmentation averaging process which can be express as: 

 

 ���� = *�+,-⋯-+./,�0 ��+(-⋯-+./,�0 �⋯�1+2/0-,-⋯-+230 4
5�6��       (9) 

 

where n is the current time-step and N is the total number of samples. 
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Threshold Based 

The threshold based method uses a threshold value to determine whether or not the sensor 

data is too large or too small for averaging. In this research work, the threshold is defined as: 

 

7ℎ9:
ℎ;<= = μ + ?�          (10) 

 

where µ  is the mean, σ is the standard deviation, and c is the standard deviation multiplier which 

controls the threshold value. Any sensor data value, y, within the threshold, is used to calculate a 

moving average, predMean, based on the o observations. The predMean value is then used as the 

prediction for all time-steps in the observation window. 

 

EXPERIMENTAL DATASET 

 

The experimental dataset for this research is taken from ORNL’s ZEBRAlliance project 

(ZEBRAlliance, 2008), specifically temperature, humidity, and energy usage sensor data from 

house #2 of four during the 2010 calendar year. House #2 consists of high efficiency 

technologies, specifically advanced framing for its envelopes, high-efficiency florescent lighting, 

and Energy Star appliances. Space conditioning is provided by water-to-air heat pumps (WAHP). 

Water heating is provided by special build water-to-water heat pumps (WWHP). The 

temperature and humidity data is taken from the energy recovery ventilation (ERV) unit’s 

outside intake (“Z09_T_ERV_IN_Avg” and “Z09_RH_ERVin_Avg” respectively). Units for 

temperature and humidity are degrees Fahrenheit (°F) and percentage of relative humidity 

(%RH) respectively. The energy usage data is taken from the home’s refrigerator 

(“A01_WH_fridge_Tot”). The unit for energy usage is Watt-hour (Wh). Data was collected 

through Campbell Scientific’s CR1000 measurement and control datalogger. The resolution of 

all three data types is 15 min giving a total number of samples for each sensor, N = 35,040. 

 

EXPERIMENTAL SETUP 

 

Simulations using statistical processing methods include least squares, maximum likelihood 

estimation, segmentation averaging, and threshold based applied to temperature, humidity, and 

energy data. Procedures for each technique are discussed to understand how results are 

generated. Pseudo-code for each method is also given. 

The performance metrics used for statistical processing methods are root-mean-square error 

(RMSE), relative error, and absolute error. RMSE is calculated by: 

 

@AB# = $�
6 �9�� + 9�� +⋯+ 96��        (11) 

 

where rs
2
 represents a residual difference between the actual sensor value and the predicted 

value. The relative error is calculated by: 

 

:CDE,6,� = ∑ GC���%���G�������6          (12) 
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where n is the current time-step, s represents the first time-step of the observation window, y(s) is 

actual sensor data, and r(s) is the residual corresponding to y(s). The absolute error is calculated 

by: 

 

:HI�,6,� = ∑ G C���
%JKL�%JM.

G�������6         (13) 

 

where ymax and ymin are the maximum and minimum sensor data values respectively within the 

sensor dataset, Y. 

 

Least Squares 

The pseudo-code for least squares statistical processing method is shown in Figure 2. The 

inputs of this technique are the sensor dataset, Y and the observation window’s size, o, which are  

 
Figure 2. Algorithm of least squares experimental setup. 
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used to determine a model for the data within the window. The outputs are the calculated 

performance metrics, specifically RMSE, relative error, and absolute error. The sensor dataset, Y, 

is randomly split into a training set (70%) and test set (30%). The training set is used to 

determine the model for each observation window. These models are then used with the test set 

to determine the prediction accuracy of least squares. 

The data samples in the observation window are used to calculate coefficients in Equation (6) 

for polynomial curve fitting. Degree, d = o, is used to calculate the coefficients, P, for 

polynomial curve fitting. The calculated curve based on P is used to calculate the predicted o 

values within the observation window using Equation (2). The residuals are then calculated for 

each observation window within the sensor dataset, Y. The results section and accompanying 

tables show the performance metrics for all observation windows within the dataset, Y, for the 

sensor data. 

 

Maximum Likelihood Estimation 

The pseudo-code for maximum likelihood estimation is shown in Figure 3. The inputs of this  

 

 
Figure 3. Algorithm of MLE experimental setup. 
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technique are the sensor dataset, Y, and the window size, o. The sensor dataset, Y, is randomly 

split into a training set (70%) and test set (30%). The training set is used to determine the model 

for each observation window. These models are then used with the test set to determine the 

prediction accuracy of maximum likelihood estimation. The number of observations being 

studied, o, in the observation window is used to calculate the maximum likelihood estimate 

shown in Equation (8). The maximum likelihood estimate is calculated for all observation 

windows of size o for the sensor dataset, Y. The calculated maximum likelihood estimate is the 

predicted value for all o observations within the window which are used to calculate the 

residuals. 

 

Segmentation Averaging 

The pseudo-code for segmentation averaging is shown in Figure 4. The inputs of this  

 

 

Figure 4. Algorithm of segmentation averaging experimental setup. 
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technique are the sensor dataset, Y, and the number of observations, o. As before, the data is split 

into a training set (70%) and test set (30%). The number of observations being studied, o, in the 

observation window is used to calculate the segmentation average in Equation (9) for each 

sample in the observation window. The calculated segmentation average is used as the predicted 

value for all o observations within the window and used to calculate the residuals. The 

segmentation average is calculated for all observation windows of size o for the sensor dataset, 

Y. Results show the mean RMSE, relative error, and absolute error values for all of the 

observation windows within the dataset, Y, for temperature, humidity, and energy data. 
 

Threshold Based 

The pseudo-code for threshold based statistical processing method is shown in Figure 5. The 

standard deviation (histStd), and the number of standard deviations used to calculate the 

threshold (c). The outputs are the calculated performance metrics which are reported in the 

results section. The sensor dataset, Y, is randomly split into a training set (70%) and test set 

(30%). The training set is used to determine the model for each observation window. These 

models are then used with the test set to determine the prediction accuracy of threshold based 

averaging. The input values within the observation window of size o are compared with a 

specified threshold. The threshold is calculated using Equation (10). The threshold is calculated 

for all observation windows of size o for the sensor dataset, Y. This study takes into 

consideration C = {1, 2, 3} which signifies investigating data within one, two, and three standard 

deviations (σ) away from the mean (µ). If the observation is less than or equal to the threshold 

value, the value is used in an average, which is used as the predicted value for all o observations 

within the window and to calculate the residuals. 
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Figure 5. Algorithm of threshold based experimental setup. 

                             Sprouts - http://sprouts.aisnet.org/12-6



  13 

RESULTS 

 

The results based on least squares, maximum likelihood estimation, segmentation averaging, 

and threshold-based statistical processing methods are presented for temperature, humidity, and 

energy usage sensors. Generated performance metrics are mean RMSE, relative error, and 

absolute error. The objective is to determine the number of observations, o, and statistical 

method that generates, in order of priority, the lowest RMSE, relative error, and absolute error. 

 

Least Squares 

The least square results for all window sizes, o=6 (1 ½ hours), 12 (3 hours), 24 (6 hours), 48 

(1/2 day), and 96 (1 day) are shown in Table 1. Results from the training sets shows the lowest 

absolute error from o=6 for all sensor types. The trend from training illustrates error increasing 

as o increases. The size that gave the smallest absolute error for test cases is o=24 for humidity 

and energy and o=12 for temperature data. 

Table 1. Data Prediction Accuracy as a Function of Window Size Using Least Squares 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.1695 0.0209 0.016 2.153 0.036 0.024 6.639 2.202 0.051 

12 1.699 0.031 0.021 3.196 0.055 0.032 9.341 3.173 0.065 

24 2.272 0.041 0.027 4.352 0.070 0.042 10.157 3.508 0.071 

48 3.755 0.070 0.043 6.530 0.107 0.062 10.609 3.623 0.073 

96 55.385 0.941 0.741 56.946 0.947 0.623 15.784 1.172 0.095 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 4.652 0.093 0.066 8.045 0.152 0.093 21.547 7.483 0.171 

12 3.438 0.064 0.042 5.225 0.095 0.057 100.199 9.940 0.471 

24 5.812 0.086 0.053 6.096 0.095 0.054 24.657 8.900 0.123 

48 4.205 0.077 0.051 91.489 0.697 0.323 11.468 3.948 0.080 

96 56.136 0.953 0.745 56.877 0.952 0.626 16.173 1.185 0.098 

 

Maximum Likelihood Estimation 

The maximum likelihood estimation results for all window sizes, o=6 (1 ½ hours), 12 (3 

hours), 24 (6 hours), 48 (1/2 day), and 96 (1 day) are shown in Table 2. Results from the training 

sets shows the lowest absolute error from o=6 for temperature, humidity, and energy data. The 

trend from training illustrates error increasing as o increases. The size that gave the smallest 

absolute error for test cases is o=12 for temperature and humidity and o=96 for energy data. An 

interesting observation on testing for energy data is error increases as o decreases. 
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Table 2. Data Prediction Accuracy as a Function of Window Size Using Maximum Likelihood 

Estimation 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.824 0.034 0.023 4.229 0.072 0.043 9.953 3.523 0.072 

12 2.183 0.039 0.026 4.334 0.073 0.043 10.193 3.605 0.072 

24 2.839 0.048 0.033 5.683 0.092 0.054 10.48 3.726 0.074 

48 3.899 0.063 0.045 7.748 0.126 0.074 10.627 3.732 0.074 

96 4.862 0.079 0.056 9.733 0.161 0.093 10.691 3.764 0.074 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 2.398 0.047 0.031 4.553 0.083 0.049 11.104 4.234 0.084 

12 2.494 0.046 0.031 4.707 0.082 0.048 11.188 4.117 0.081 

24 3.012 0.052 0.036 6.029 0.101 0.059 10.815 3.859 0.077 

48 3.927 0.063 0.045 8.014 0.131 0.076 10.796 3.965 0.076 

96 4.893 0.079 0.056 9.951 0.168 0.096 10.924 3.919 0.076 

 

Segmentation Averaging 

The segmentation averaging results for all window sizes, o=6 (1 ½ hours), 12 (3 hours), 24 (6 

hours), 48 (1/2 day), and 96 (1 day) are shown in Table 3. Results from the training sets shows 

the lowest absolute error from o=6 for humidity and energy and o=12 for temperature data. The 

size that gave the smallest absolute error for test cases is o=48 for temperature and o=6 for 

humidity and energy data. 

Table 3. Data Prediction Accuracy as a Function of Window Size Using Segmentation 

Averaging 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 10.166 0.163 0.134 7.949 0.193 0.080 9.944 3.657 0.071 

12 10.015 0.161 0.131 15.140 0.251 0.161 10.548 3.679 0.075 

24 10.121 0.160 0.130 15.423 0.251 0.161 10.655 3.694 0.075 

48 10.350 0.160 0.130 15.744 0.250 0.161 10.808 3.711 0.075 

96 10.561 0.159 0.130 16.115 0.250 0.161 10.900 3.753 0.075 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 10.011 0.162 0.134 8.087 0.212 0.086 9.927 3.405 0.074 

12 9.881 0.160 0.131 14.911 0.251 0.162 10.407 3.716 0.076 

24 10.129 0.161 0.131 15.196 0.250 0.162 10.559 3.704 0.075 
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48 10.253 0.158 0.129 15.727 0.249 0.159 10.515 3.733 0.075 

96 10.473 0.158 0.129 16.012 0.249 0.160 10.575 3.690 0.075 

 

Threshold Based 

The threshold based results are shown in Table 4 through 6 for c = 1, 2, and 3 respectively. 

Observation window sizes, o=6 (1 ½ hours), 12 (3 hours), 24 (6 hours), 48 (1/2 day), and 96 (1 

day) are investigated. Results from the training sets shows the lowest absolute error from o=6 for 

temperature, humidity, and energy data when c=1, 2, and 3. The trend from training illustrates 

error increasing as o increases. The size that gave the smallest absolute error for test cases is o=6 

for temperature, humidity, and energy when c=1 and 3. When c=2 for test cases, the absolute 

error is minimal when o=6 for temperature and humidity and o=12 for energy data. 

Table 4. Data Prediction Accuracy as a Function of Window Size Using Threshold Based (c = 1) 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 2.017 0.039 0.025 4.081 0.072 0.042 11.099 2.400 0.073 

12 2.325 0.042 0.028 4.919 0.082 0.048 11.257 2.540 0.075 

24 3.021 0.051 0.035 6.451 0.102 0.062 11.371 2.591 0.075 

48 4.134 0.063 0.046 8.883 0.136 0.085 11.420 2.618 0.075 

96 5.137 0.080 0.058 10.852 0.169 0.105 11.329 2.658 0.075 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.944 0.039 0.026 3.931 0.073 0.042 10.186 2.413 0.073 

12 2.264 0.042 0.028 4.684 0.081 0.048 10.632 2.620 0.074 

24 3.008 0.052 0.036 6.308 0.102 0.062 10.941 2.603 0.074 

48 4.134 0.065 0.047 8.703 0.135 0.085 11.218 2.596 0.075 

96 5.074 0.079 0.057 10.759 0.171 0.104 11.724 2.538 0.077 

 

Table 5. Data Prediction Accuracy as a Function of Window Size Using Threshold Based (c = 2) 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.995 0.038 0.025 3.746 0.067 0.038 10.194 3.671 0.074 

12 2.266 0.041 0.028 4.421 0.075 0.044 10.461 3.742 0.074 

24 2.889 0.050 0.034 5.788 0.095 0.055 10.546 3.695 0.074 

48 3.887 0.062 0.044 7.818 0.127 0.074 10.635 3.734 0.075 

96 4.852 0.079 0.056 9.760 0.162 0.093 10.723 3.762 0.075 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 
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6 1.918 0.038 0.025 3.618 0.067 0.039 9.707 3.594 0.073 

12 2.211 0.041 0.028 4.288 0.075 0.044 9.986 3.553 0.073 

24 2.822 0.049 0.034 5.585 0.093 0.055 10.549 3.756 0.075 

48 3.907 0.063 0.045 7.494 0.128 0.074 10.660 3.724 0.075 

96 4.874 0.079 0.056 9.820 0.166 0.095 10.772 3.698 0.075 

 

Table 6. Results of Data Prediction using TB (c = 3) 

TRAIN 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.994 0.038 0.025 3.746 0.066 0.038 10.139 3.706 0.073 

12 2.253 0.041 0.028 4.433 0.075 0.044 10.367 3.724 0.074 

24 2.884 0.049 0.034 5.783 0.094 0.055 10.536 3.696 0.074 

48 3.908 0.063 0.045 7.827 0.127 0.074 10.668 3.796 0.075 

96 4.849 0.079 0.056 9.763 0.163 0.099 10.753 3.740 0.075 

TEST 

 Temperature (°F) Humidity (%RH) Energy (Wh) 

o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.934 0.038 0.025 3.642 0.067 0.039 9.827 3.699 0.074 

12 2.247 0.042 0.028 4.288 0.075 0.044 10.152 3.711 0.074 

24 2.814 0.049 0.034 5.599 0.094 0.055 10.424 3.814 0.075 

48 3.849 0.062 0.044 7.732 0.127 0.075 10.604 3.626 0.075 

96 4.867 0.079 0.056 9.821 0.164 0.095 10.671 3.803 0.075 

 

CONCLUSION 

 

Autonomous data correction for building data is studied using statistical processing methods, 

namely least squares, maximum likelihood estimation, segmentation averaging, and threshold 

based. This is accomplished by using observation windows which define a subset of samples, 

size o, that are used to generate a model. Validation and correction occurs for each successive 

observation window within the sensor dataset using interpolation and/or extrapolation for 

missing and corrupt data. Tables 7 through 9 summarize the best performing cases for 

temperature, humidity, and energy data respectively. The threshold based technique performed 

best with temperature (c=2), humidity (c=2), and energy data (c=1). 

While it is anticipated that the temperature, relative humidity, and energy used in this study 

would follow similar patterns in other buildings, it should be noted that the sensor data used in 

this study came from one building and that additional study would be needed to confirm the 

degree to which these results generalize across the building stock. This includes future research 

using temperature, relative humidity, and energy data with various profiles. 

Other future work in autonomous data correction for building data is studying other types of 

methods besides statistical such as filtering and machine learning techniques. Other data types 

will also be investigated such as heat flux, airflow, and liquid flow. The study of dependent data 

prediction which uses other sensor data will also be considered. This includes using ambient 
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temperature and humidity, home occupancy, time of the day, day of the week, etc… Comparison 

of automated methodologies to corrupted or missing sensor data corrected by domain experts is 

planned to validate the utility of these approaches. 

Lessons learned from these studies can be used to develop software tools for data 

visualization and analytics, ensuring data validity and improved understanding. This would be 

particularly useful for large datasets where manual validation would be next to impossible. Focus 

can also be shifted from software to hardware, implementing these techniques on a hardware 

platform, for real-time data validation at the sensor node. 

Table 7. Results of Best Performers for Temperature Data 

 Temperature (°F) 

TRAIN TEST 

o RMSE RE AE o RMSE RE AE 

LS 6 1.1695 0.0209 0.016 12 3.438 0.064 0.042 

MLE 6 1.824 0.034 0.023 12 2.494 0.046 0.031 

SA 12 10.015 0.161 0.131 48 10.253 0.158 0.129 

TB (c = 1) 6 2.017 0.039 0.025 6 1.944 0.039 0.026 

TB (c = 2) 6 1.995 0.038 0.025 6 1.918 0.038 0.025 

TB (c = 3) 6 1.994 0.038 0.025 6 1.934 0.038 0.025 

 

Table 8. Results of Best Performers for Humidity Data 

 Humidity (%RH) 

TRAIN TEST 

o RMSE RE AE o RMSE RE AE 

LS 6 2.153 0.036 0.024 24 6.096 0.095 0.054 

MLE 6 4.229 0.072 0.043 12 4.707 0.082 0.048 

SA 6 7.949 0.193 0.080 6 8.087 0.212 0.086 

TB (c = 1) 6 4.081 0.072 0.042 6 3.931 0.073 0.042 

TB (c = 2) 6 3.746 0.067 0.038 6 3.618 0.067 0.039 

TB (c = 3) 6 3.746 0.066 0.038 6 3.642 0.067 0.039 

 

Table 9. Results of Best Performers for Energy Data 

 Energy (Wh) 

TRAIN TEST 

o RMSE RE AE o RMSE RE AE 

LS 6 6.639 2.202 0.051 24 24.657 8.900 0.123 

MLE 6 9.953 3.523 0.072 96 10.924 3.919 0.076 

SA 6 9.944 3.657 0.071 6 9.927 3.405 0.074 

TB (c = 1) 6 11.099 2.400 0.073 6 10.186 2.413 0.073 

TB (c = 2) 6 10.194 3.671 0.074 12 9.986 3.553 0.073 

TB (c = 3) 6 10.139 3.706 0.073 6 9.827 3.699 0.074 
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