
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

4-11-2008

How Agile is Agile Enough? Towards A Theory of
Agility in Software Development
Kalle Lyytinen
Case Western Reserve University, kalle@case.edu

Gregory M. Rose
Washington State University

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Lyytinen, Kalle and Rose, Gregory M., " How Agile is Agile Enough? Towards A Theory of Agility in Software Development" (2008).
All Sprouts Content. 66.
http://aisel.aisnet.org/sprouts_all/66

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/66?utm_source=aisel.aisnet.org%2Fsprouts_all%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

How Agile is Agile Enough? Towards A Theory of Agility in
Software Development

Kalle Lyytinen
Case Western Reserve University, USA

Gregory M. Rose
Washington State University, USA

Abstract
One poorly investigated issue in organizational agility is the question how organizations
change their speed while adopting and exploiting new IT capability. In this paper we outline
a theory of software development agility that draws upon a model of IT innovations by
Swanson and on Marchâ��s learning theory and in particular on his concepts of exploration
and exploitation. We explore how both exploration and exploitation as organizational
learning modes can software development agility. We propose a sequential model of
organizational learning in which agility is driven by different factors during different stages
â�� exploration vs. exploitation- of organizational learning. We show that software
development agility is influenced by the external demands, the diffusion level and rate of the
IT innovation, its radicalness, and the organizationsâ�� needs to balance multiple conflicting
process goals including speed, quality, cost, risk and innovative content. We illustrate the
value of the model by exploring how seven software organizations controlled the demands
for increased agility i.e. their development speed or over a period of five years (1999-2004),
and how they balanced the need for the increased agility with other critical development
criteria like cost, risk, quality and innovative content. In conclusion, we discuss the
implications of our findings for future research on agility and related management practices.

Keywords: Agility, IT innovation, Radical nature, Exploration, Exploitation, Ambidexterity,
Process features

Permanent URL: http://sprouts.aisnet.org/4-10

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Lyytinen, K., Rose, G.M. (2004). "How Agile is Agile Enough? Towards A
Theory of Agility in Software Development," Case Western Reserve University, USA .
Sprouts: Working Papers on Information Systems, 4(10). http://sprouts.aisnet.org/4-10

 Sprouts - http://sprouts.aisnet.org/4-10

http://creativecommons.org/licenses/by-nc-nd/3.0/

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

How Agile is Agile Enough?
 Towards A Theory of Agility in Software Development

Introduction

 Agility can be defined as the quality of being quick-moving and nimble. In software
development agility can be defined as the ability of a system developer to sense and respond
to new technical and business opportunities in order to stay innovative and competitive in a
turbulent and quickly changing business environment. An agile software development
organization (one that demonstrates agility) has thus the capabilities and processes in place to
respond to unexpected environmental changes both in the technology and in the business
environment.
 In the past the software and system development literature has mainly sought to
control and explain the outcome quality / reliability of software processes. The main driver in
this endeavor was to submit to virtues of good system engineering: the final technical system
must be flawless, user friendly, scalable or portable. This logic pervaded debates around
“software crisis” in the early 70’s and has since then motivated the development of rigorous
software development approaches including structured programming, and structured
methodologies (Lyytinen 1987). The downside of these approaches is that they incur high
coordination, documentation and learning costs. The same logic motivated later on much of
the process improvement research in which the low level of errors and process repeatability
were the driving goals (Humphrey 1989, Curtis et al 1992). Most researchers in these camps
approached development speed with an assumption that it was relatively constant while the
outcome quality mattered. Therefore, agility was not a goal to aspire in software
development.1

This model faced significant challenge when the rebels of the new economy and
skunk works of web development in the 90’s changed the idea of “good” system
development: software had to be developed in markets and for the markets with extremely
fast pace. “Internet speed” became mot dú jour (see .e.g., Cusumano and Yoffie 1999,
Lyytinen and Rose 2003a, 2003b, Baskerville et al. 2001, Pressman 1998, Carstensen and
Vogelsang 1999). For the first time the focus in software development was on agility- speed
truly mattered. This was viewed to be a necessity in order to harness the disruptive potential
of Internet computing (Lyytinen and Rose 2003a). A great portion of process research in
software development during the last five years assumes that speed is desirable (see e.g.
Cusumano and Yoffie D. 1999, Turk et al 2004, Henderson-Sellars and Serour 2004): the key
to competitiveness as it enables to compete in time. Moreover, such focus on agility echoes
well with pivotal research in strategy on hyper-competition and dynamic capability (Cohen
and Levinthal 1990, Eisenhardt and Martin 2000, Eisenhardt and Tabrizi 1995, D'aveni 1994)
as well as studies in rapid product development (Menon et al 2002, Kessler and Bierly 2002,
Kessler and Chakrabarti 1999, Kessler and Chakrabarti 1996).

Though the connection of increased speed to stronger competitiveness appears to be
clear during hyper-competition (D’Aveni 1994) it is not clear what agility in software
development truly means: is it the speed at which some type of running system is available
for evaluation?; or is it the change in ratio between delivered functionality (in LOC, function
points etc) and the elapsed time?, or is it the increased velocity of the client to adopt the
software? It is clear that all these speeds are distinct aspects of “agility” in relation to

1 At the same time the research on programmer productivity and even team productivity showed significant
variation in individual and team productivity that was due to individual differences and team organization.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

170

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

software. They also have quite different ramifications for how to increase agility. Another set
of research issues relate to the organizational and technological antecedents of agility, and to
what extent the organization can truly manipulate them. For example, there is a huge
difference in changing the speed in doing X faster when compared to changing the speed in
which the organization moves from doing X to doing Z. Researchers and managers alike
must also understand how agility (if and when being manipulated) relates to process
outcomes like innovative content, risk, quality and cost (e.g. Baskerville et al 2001). Finally,
there is a dearth of knowledge how agility varies during technology diffusion and maturation.
For example, much of the hype around internet speed was explained by the revolutionary
technological capability- increased agility followed as the new technology enabled to do
things faster. Yet, it remains unclear are such relative changes in speed sustainable, or will
our perception of agility change just when the technology capability changes dramatically
(Lambe and Spekman 1997).

In this paper our goal is to address some of these issues. We will develop a model that
seeks to explain differences in types of agility that software organizations seek to achieve at
different stages of technology diffusion. We show that the need to agility must be balanced in
relation to other desirable process features like innovative content, risk, quality and cost. We
will seek to validate the developed model by analyzing a longitudinal data set (5 year period)
describing software development practices and outcomes in seven software development
organizations that adopted Internet computing2. Findings show that studied organizations
changed their perceptions of agility and their need for it as they sought to balance agility in
relation to innovative content, cost, quality and risk. The remainder of the paper is organized
as follows. Section 2 formulates the development agility model and reviews the related
literature in software agility research and organizational learning. Section 3 describes the
field study, while section 4 reports main findings of the longitudinal field study. The paper
will conclude by noting remaining research challenges and discussing managerial
implications.

Related Literature and Software Development Agility Model

The goal of the software development agility model is to detect dependencies between

specific environmental, organizational and market factors that affect how agility relates to
other process factors and how it can be manipulated by software organizations. The model
draws on Swanson’s model of IT innovation (Swanson 1994, Lyytinen and Rose 2003b) and
March’s exploration / exploitation dichotomy (March 1991) According to the model software
organizations engage both in exploration and exploitation while innovating with IT. During
periods of fast technological transition (e.g. shift to Internet computing) the exploration speed
(absorptive capability of technical potential) and development speed (fast exploitation) must
be combined to harness the new technology. Yet, exploration and exploitation set up
contradicting demands for agility. Before embarking to develop the model we will shortly
review the current state of the art in agile software development.

Research on Development Speed and Agility

During the current years we have seen the advent of a significant stream of research
on agile software development methods advocated under such acronyms as Extreme

2 The concept of Internet computing involves a relatively broad and evolving set of distributed computing
models and solutions that rely on open, ubiquitous networks and associated sets of protocols and services. It
draws upon models of computing that operate within open, heterogeneous, and distributed computing
environments. (see Lyytinen and Rose 2003a, 2003b)

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

171

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Programming, SCRUM, adaptive software development, or Agile Unified process among
others (Turk et al 2004, Henderson-Sellars 2004). These methods assume that software
processes can be organized for faster and more economic delivery of high quality software
that meets the needs of the customer. The main focus here is on adopting process and
organizational changes that improve communication, decrease administrative overhead, and
submit to early and consistent focus on developing code by a team of software developers
often organized in pairs (Agile alliance 2002). Empirical studies show that software
processes gain agility in two ways: 1) developers shorten times between systems releases and
get the running system up fast (e.g. Extreme programming Turk et al. 2004), and 2) they
deliver faster the same functionality (Baskerville et al. 2001; Lyytinen and Rose 2003a).
There are however, few studies which explore how faster product releases and faster
development times affect, or are influenced by other types of agility in software development
organizations created by dynamic capability (see Lyytinen et al 2004).

Though agile method studies offer useful guidelines how to increase software
development speeds and increase its economic impact (i.e. the software meets better
customers needs) these analyses are limited in explicating how increased process speed and
changes in organizational and technological environments are related. In most studies this
relationship looks like a form technological determinism: because we have better and more
flexible technology this will automatically result in faster development (Carsten and
Vogelsang 1999). Sometimes claims are made that new markets demand faster development
irrespective of the technological environment (Cusumano and Yoffie 1999). As a result we
currently have poor theoretical explanations how software agility has changed over time, and
how varying speeds in different processes relate to technological / environmental change. For
example to what extent observed changes are strategic choices made by the management to
adapt to a market niche / competitive ecology? To what extent the speed is an outcome of
better technological capability? In order to analyze these issues we need to carefully analyze
how IT drives innovation in software development and how such innovation relates to agility.
To this end we will next formulate fragments of a theory of software development agility. It
draws on the concept of IT innovation and March’s model of organizational learning.

Model of IS Innovation

In the IS field, the concept of IT innovation is poorly developed despite a huge
literature on IT based innovation (Swanson 1994. Lyytinen and Rose 2003b). One reason
for this is the inherent difficulty IS scholars face in addressing what innovation means in the
IS field. Currently, it means many things to many men. IT innovation has multiple sources
and a such broad scope that covers a broad range of activities in the IT value chain (Swanson
1994). As a consequence, innovation within system development (like agility) is not a
singular event, but subsumes a causal chain of events along the value chain which portray
significant departures from existing practices. An IS innovation must often traverse through a
complex ecology of multiple types of innovative events (Figure 1) (Swanson 1994, Grover
et al 1997, Lyytinen and Rose 2003a,b).

Figure 1 shows three primary value adding activities in the IT domain: 1) creation of
IT base technologies like operating systems, middleware, databases systems etc. by vendors
and manufacturers (e.g. Intel, Microsoft, IBM). This is called here base innovation (Type 0
innovation), 2) development of processes, technologies and organizational arrangements by
software developers that enable better or more reliable delivery of software systems in
organizational contexts (called type I innovation), and 3) and development and adoption of
new types of IT solutions by IT deploying companies (e.g. Amazon.com). This is called type
II innovation. Arrows in Figure 1 show thus how downstream organizations adopt

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

172

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

innovations produced and innovated by companies in the upstream as to increase their overall
scope and quality of IT deployment.

VENDORS AND
MANUFACTURERS

Produce Type 0

Innovation

IS DEVELOPMENT
ORGANIZATIONS

Adopt Type 0 Innovation
Produce and Adopt Type I

Innovation
Produce Type II Innovation

IS DEPLOYING
ORGANIZATIONS

Adopt Type II Innovation
Adopt Type 0 Innovation

Supply/Push

Demand/Pull

Supply/Push

Demand/Pull

Supply/Push

Demand/Pull

Figure 1. IT value chain and realms of IS innovation

IT innovation in light of this model means multiple things (Lyytinen and Rose 2003):
breakthroughs in computing capability and architectures (Type 0 innovation), departures in
current ways to develop and design computing applications (Type I innovation), or novel
applications and/or ways of applying them (Type II innovation). For example, most of the
past software agility research has focused on formulating and adopting type I innovations as
a result of demand for increased speed from IS deploying organizations (pull) and availability
of new technological capability (type 0 innovations) (push). This connection is not causal in
a sense that many innovation in type II do not necessarily affect other parts of the value
chain. The case for such type 0 innovations is much rarer but still possible. The value chain
model also suggests that innovations can take place in any part of the value chain and by
doing so they can affect other innovations upstream or downstream3.

 Due to the technology dependent nature of IS innovation, software organizations
adopting significant Type 0 and I innovations together can often produce radically new
applications (Type II). In situations like this, software organizations take part in disruptive IS
innovation (Lyytinen and Rose 2003a) where change both in processes and development
outcomes is pervasive and radical. These disruptions are by necessity outcomes of radical
breaks in the IT base, when components in the computing base are re-assembled in novel
ways (Henderson and Clark 1990). As identified in Lyytinen and Rose (2003a, 2003b),
Internet computing was an example of a disruptive innovation created by (Type 0)
architectural change (TCP/IP-based tools and n-tier computing) which was made radical with
the addition of browsers, data formatting standards and software platforms (J2EE, .Net, etc.).
This enabled the development of radically new services (type II) which were demanded in
faster speed (Type I).

This model helps investigate the extent to which changes in computing capability
(Type 0) can and will lead to innovations in the development activities (Type I) like agile
development, and the consequent fast adoption of novel applications (Type II
innovation/agility). We conjecture that the innovation capability in and for agility is
produced by two combined capabilities: 1) the capability of software organizations to adopt
Type 0 innovations, and 2) their capability to successfully transform and hone these new
capabilities into Type I innovations like agile development. This transformation is dependent

3 Swanson (1994) calls these strong and weak order effects.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

173

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

on the mobilization of two capacities. The first capability -- technology absorbtion -- reflects
an organization’s ability to efficiently sense, acquire and absorb new base technologies and to
deploy them effectively (Srinivasan et al. 2002) through exploration. The second capability
of process trransformation is reflected in a software organization’s: (1) ability to use
occasions of new IT deployment for process improvement; and (2) to effectively learn from
such occasions as to standardize and formalize process knowledge into complementary assets
that can be mobilized for fast development. This latter process we call exploitation. In other
words, succesful software process innovators need to effectively and continuously identify
and match the strategic opportunities for their process improvement with the emerging
computing capabilities.4

Exploration and Exploitation

In the management literature, the concepts of exploration and exploitation have been
established as two fundamental modes organizational response to environmental challenge
(March 1991). These archetypes of organizational learning help managers and scholars alike
to distinguish two modes in which organizations compete and adapt, and which draw upon
very distinct logics of how to organize, strategize or execute. Through exploitation
organizations garner and refine in trial and error learning their competencies through repeated
actions over extended periods of time (Eisenhardt and Martin 2000, Nelson and Winter 1982,
Nonaka and Takeuchi 1995, March and Levinthal 1993). Exploitation is thus about
harnessing “old certainties” and implies behaviors that are labeled as refinement,
implementation, efficiency, production and selection. Exploration, in contrast, is about
discovering new opportunities whereby organizations search and create new competences by
engaging in second loop learning (Christensen 1997, Eisenhardt and Tabrizi 1995, Henderson
and Clark 1990, March 1991, Tushman and Anderson 1986, Winter and Szulanski 2001).
Exploration involves behaviors labeled as search, discovery, experimentation, risk taking and
innovation. Exploration and exploitation are like water and fire (Brown and Eisenhardt 1998,
Tushman and Anderson 1986): they require substantially different structures, processes,
strategies, capabilities and culture. Exploration leans towards organic structures, loose
couplings, improvisation, chaos and emergence. Exploitation deals with mechanistic
structures, tight coupling, routinization, bureaucracy and stability. Returns with exploration
are uncertain, highly variable and distant in time, while exploitation yields returns that are
short term, have higher certainty and lower variance (March 1991, Levinthal and March
1993).

Due to their fundamental differences (March 1991, Mezias and Glynn 1993),
exploration and exploitation pose a continuous tension for management (Gibson and
Birkshaw 2004, He and Wong 2004). On one hand, exploitation fosters inertia and reduces
capacity to adapt and seize new opportunities. On the other hand, exploration slows down the
speed in which existing competencies can be improved (March 1991). These tensions create
often dysfunctional learning outcomes when either exploration or exploitation is one-sidedly
preferred (March 1991, Levinthal and March 1993). Trial and error learning and successful
adaptation through exploitation can bias management to focus too much on current
capabilities- at the expense of new opportunities- thus causing current capacities to become
core “rigidities”. Such constant search for short term efficiencies leads to learning myopias
and competency traps (Levitt and March 1988). In contrast, when organizations engage in
excessive exploration continued “failure leads to search and change, which lead failure which

4 Note that Figure 2 emphasizes that radical innovation is not a product of one-way communication from ISD
organizations to their clients. Our model recognizes that there is a combination of supply/push and demand/pull
mechanisms and that ISD organizations engaged in radical innovation can be effective at either or both active
pushing or reactive sensing of client demands and environmental pressures.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

174

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

lead to even more search and so on” (Levinthal and March 1993). In such situations
organizations’ learning becomes random and chaotic: managers love to explore and but fail to
allocate resources to exploit their new competencies.

Due to the threat of competency traps an increased attention has been paid in
understanding how organizations learn to tack effectively between exploration and
exploitation by changing their resource bases through acquisition, integration, re-
combination, and the removal of capabilities (Eisenhardt and Martin 2000, Lant and Mezias
1992). In doing so (software) organizations must relentlessly integrate, reconfigure, gain and
release resources in order to respond to swift changes (D'aveni 1994, Eisenhardt and Martin
2000, Teece et al. 1997). A (software) organization’s dynamic capability thus embodies a
learning related meta-capability by which this organization learns to effectively blend
exploration and exploitation across different stages of technology innovation. In other word,
software organizations must learn to both explore and exploit with multiple IT innovations
across the IT innovation value chain. These distinct moments of innovation have differential
impacts how agility is perceived and defined.

Exploration and Exploitation in Software Development Organizations

In the context of IT innovation software organizations’ agility is determined by their
capability to both explore and imagine emerging needs and match them with the observed
technology potential, and then to exploit these product innovations by improving their
product delivery capability. The general logic of exploration and exploitation during IT
innovation stages is depicted in figure 2. Exploration processes result in adopting new type 0
base innovations that enable organizations to produce both type II and type I innovations. An
example of type II innovations would be the organizations’ capability to create a capability to
produce totally new types of applications, while the innovation of type I would be adopting
new process technologies that help deliver the same software functionality in half of the time,
or to integrate the customers better into the process.

Innovation
Base adoption

(Type 0)

Process
Innovation
(Type I)

Product
Innovation
(Type II)

Exploitation capability

Technology potential
Market Pull

Product/Process
Outcomes:

innovative content;
speed; quality;

risk; cost

Exploration capability

Figure 2. A general model of IT innovation as exploration and exploitation

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

175

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

During exploration agility means two things which both must be managed well: 1) the
software organization must adopt new type 0 and I technologies faster than its peers, and 2)
the organization must use these technologies to develop faster type II innovations, if such
need arises in the market (explorative process innovation). The organizations’ capability to
address these needs is clearly dependent on the firm’s absorptive capacity (Cohen and
Levinthal 1991). If the organization is successful in the exploration this will lead to changes
in the organizations’ innovation base in that both its product (the type of applications, type II
innovations) and the process (the way in which it develops these type II innovations) will
change. The more the former deviates from the current product mix, the more innovative in
content is the change- one can say that organizations is agile in its product innovation. The
more the latter deviates from the current process the more innovative process is instantiated
for software delivery- one can say that the software organization is agile in its process
improvement. Normally, changing the process in itself is not a goal per se but it is evaluated
in terms of how it contributes to improvements in the innovative content, quality, risk or
speed.

Software organizations need also exploit while products and technologies mature by
streamlining, standardizing, automating, scaling up their processes as to gain better control.
They must rely on their exploitation capability, which can be defined as the organizations’
learning capability to improve and change their delivery processes over time as to maximize
desired process outcomes including speed, quality, risk or cost. Clearly, this learning mode
and associated organizing logics are distinct from exploration tasks that focus on innovative
content. Agility can be rather defined as lubricating a well-defined process- not how fast such
processes can be revamped and replaced.

We can now formulate a model how exploration and exploitation are organized
across different phases of IT innovation (figure 3). We will use this model later to
explore how each phase (1-4) affects process features like agility or cost. In this model
Type 0 innovations can be regarded as “technology push” which seeks to improve and
expand both software products and processes. Growth in this innovation base can lead
to radical IT innovations (significant departures of existing behaviors and solutions)
covering both development outcomes (new kinds of systems i.e. product innovations)
and development process (new way of developing systems) that enable new innovative
solutions and processes. Such explorations take place in quite short and intense periods
during which hyper-competition and fast learning are valued5 (Phase 1). When main
features of the new product family have been fixed and become more or less
standardized organizations move to product exploitation by incrementally adding new
features to the developed product platform (Phase 2). When such a stage is achieved
organizations (or sometimes when organizations are doing product explorations) move
to discover significant and radical ways to improve their product delivery processes.
This stage we call process exploration or type I radical innovation (Phase 3). Such
innovations can include investments in better cross-product platforms, or development
of innovative process technologies (CASE tools, software libraries, collaborative tools).
When the radical innovation potential in the process improvements is mostly exhausted
the organizations will move to process exploitation what we call process exploitation or
incremental type I innovation (Phase 4).

5 We call this hyperlearning in Lyytinen et al (2004).

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

176

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Phase 1: Product
exploration (type II
radical innovation)

Type II IT innovation

Phase 2: Product
exploitation (type II

incremental
innovation)

Phase 3: Process
exploration (type I
radical innovation)

Type I IT innovation

Type 0
Adoption

Phase 4: Process
exploitation (type I
incremental
innovation)

Figure 3. Organizing logics for exploration and exploitation across different types of IT
innovations

A Model of Process Features During Exploration and Exploitation

Relationships between desirable process features like innovative content, speed,
cost, quality and risk are complex across innovation phases. Clearly these dependencies
vary across different phases of IT based exploration and exploitation. In general it is
impossible to maximize all of them simultaneously and the relationships between them
are different during exploration phase where new type II innovations are discovered or
incremental type I innovation where additional process steps are proposed. In general,
process features across stages (or organizations) can be modeled as directed graphs
where each process feature is depicted as a separate dimension to be optimized and
where the relative size of the vector shows to what extent this process feature is being
maximized during this stage6. An example of such a graph is shown in figure 4 below
for a situation that is typical for radical product exploration (phase1). It suggests that
during product exploration software organizations seek to maximize innovative content,
they tolerate relatively high risks, expect relatively fast product development and
medium cost, but do not aspire for high quality. In short, the software processes in
which organizations engage maximize innovative content (exploration depth and
breadth) and speed, while tolerating higher risks and costs by sacrificing quality.

6 In van Kleijnen (1980) these are called Kiwiat graphs.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

177

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Innovative
content

Speed

Risk

Quality

Cost

Figure 4. Desirable process features for product exploration

The features influence causally one another during each stage- but differently. During

product exploration organizations seek to maximize innovative content and exploration
processes thus suggesting the following relationships:

For Innovative Content7:
(1) + Innovative Content + Risk (i.e. when innovative content increases risk
increases)
(2) + Innovative Content + Cost
(3) + Innovative Content - Quality
(4) + Innovative Content - Speed

Simultaneously, if speed is a requirement, it must come at the expense of other

outcomes giving the following relationships:

For Speed:

(1) + Speed + Risk
(2) + Speed + Cost
(3) + Speed - Quality
(4) + Speed - Innovative Content

As can be seen from these relationships, speed and innovation take precedence over the
other factors. However, both cannot be optimized simultaneously and an increase in
one counteracts the other.

To phrase these observations in other way: during product exploration organizations
must be willing to face higher risks and cost. They must also speed up their exploration speed
but despite this improvement their capability to deliver any workable solution may be slowed
down. If they want to be more nimble they will also incur higher cost, face higher risks and
may have to sacrifice their innovativeness.

7 These causal dependencies were derived through content analysis from our interview data which will be
discussed in more detail in the next section.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

178

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

We can in a similar fashion model the desirable process features for incremental
process innovation (pure focus on exploitation, phase 4)8. Its goal graph is shown in Figure 5.
The graph shows that organizations in this stage seek to maximize quality and speed while
minimizing their cost and risk. They do so by fixing most of their product and process
features. Such process goal combination is typical for relatively mature and well-defined
software markets. This goal structure has been assumed in a majority of the process
improvement research (see e.g. Humphrey 1989). In this situation cost reduction, increased
quality, risk avoidance, and increased speed dominate at the expense of innovation. We
observe the following causal dependencies as a result:

(1) - Innovative Content - Risk (i.e. when innovative content decreases risk decreases)
(2) - Innovative Content - Cost
(3) - Innovative Content + Quality
(4) - Innovative Content + Speed

Risk

Quality

Cost

Innovative
content

Speed

Figure 5. Process features in type I incremental innovation

In general software delivery speed in exploitation is faster than in exploration as time
is not wasted to explore product features or architectural solutions. Instead, the focus is on
incremental innovations that can deliver significant improvements through economies of
scale and scope.

Some Implications for The Study of Agility and Process Improvement

Per March’s theory, if an organization engages in radical type II innovation, it will
decrease its opportunity for incremental process innovations (exploitation) due to their
contradicting logics. Likewise increases in organizations’ exploration efforts will decrease
their current exploitation capability. From this follows that organizations focusing primarily
either on exploration or exploitation- though both view agility as a desirable feature – have
quite different mindsets about agility.

During exploration an organization’s desire is to explore fast and build up new
products that are shown to work, while during the exploitation their main focus is to remove
friction from their well-defined processes and to utilize current process capabilities to the

8 We could mode similarly the two other phases but for the brevity they are omitted here as they are not as
distinct as the two extreme cases.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

179

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

fullest. It is important to note, however (as shown in figure 3) that the new technology
potential (type 0) per se can dramatically increase the speed of development by offering
tasks with higher granularity (e.g. ERP parametrization vs. implementing code to meet
specific requirements), using powerful abstraction mechanisms (e.g. Web services), utilizing
highly standardized functionalities (e.g. relational databases systems or browser based user
interface), standardizing architectural integration mechanisms (E.g. solution and architectural
patterns). Improvements through such mechanisms can be dramatic and be as important as
radical innovations in products. Yet, in the early stages of exploration the process
improvement potential is never exhausted and the fast product innovations take place with the
additional cost of decreased quality and higher cost/risk.

When an organization shifts its focus from radical IT innovation it must increase its
exploitation effort. It will rather emphasize fixing the product qualities and later on the
process qualities. This requires it to change key process measures as its main focus will now
be on efficiency, economies of scale, and standardized development outcomes (quality
control). Hence organizations’ interest changes over time from innovative content and
exploration speed to process cost, speed and quality. This shift will lead to increased reliance
on trial and error learning in contrast to generative learning that enables to establish causally
effective routines to utilize technology potential (March and Levinthal 1993).

As shown in figure 3, due to the structural and time disjuncture between exploration
and exploitation and due to their contrasting logics (the left hand side vs. the right hand side
of figure 3) software organizations innovate with IT in lumpy manner. They need to
continually balance tradeoffs between innovative content, cost, speed, quality, and risk and
arrange accordingly in contradicting ways how they exploit technologies, organize processes
and control outcomes. The IT innovations are moreover influenced by different learning
outcomes at each phase, and they are “pulled” by diverse market signals. Therefore, each
innovation in the IT base will be “appropriated” through multiple “different” innovation paths
as shown in figure 3. During these processes the organizations will adapt their strategies and
goals while the technology changes leading to diverse product innovations and different
market environments, which gradually shift their focus from exploration to exploitation.
Because the contrast between early exploration and late exploitation is deep and stark
software organizations must transform themselves while innovating in a stepwise manner.
They can only entertain only a certain amount of transformations over a time period (if they
want to do so). As a result organizations normally follow staggered adoption and learning
patterns: they continue to increase their innovative agility first by adopting radically new
technologies (type 0), but later on shift their focus on exploitation by stabilizing product
features and then seeking to stabilize process features. At the same time they may engage
already in other exploration / exploitation cycle thus organizing their capabilities in
ambidextrous manner (Tushman and Anderson 1986).

The impact of organizational transformation on critical process features- innovative
content, quality, risk and cost- is significant. The concern for agility is not the same at all
times. Agility in absorbing technologies dominates in the early exploration as a result of
radical innovation, and later on it is about introducing incremental changes in the product
delivery process. Overall software organizations need to locate themselves into alternative
exploration / exploitation regions during the diffusion. Each region offers a different concept
of agility. The main positions of alternative regions are outlined in table 1 depending on
whether the software organization places its efforts on the left or right side of the figure 3
(exploration vs. exploitation focus).

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

180

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Exploration focus/
Exploitation focus

Low

High

Low

Normally natural monopoly; Little
impact on any process features

Pre-competitive product development:
Innovative content dominates, other
features tangential
Internet computing around 1993-1997

High

Process Competition in
established markets:
Incremental changes in speed,
efficiency focus in reducing risk,
quality
Internet computing 2001-

Hypercompetition: Fluid technology
and markets Speed dominates, necessary
to meet minimal process / product
features

Internet computing 1996-2001

 Table 1. Contingencies for organizational learning in software development

The first contingency where both types of learning is low is rare and can be mostly
observed in state controlled and bureaucratic software development environments. When
only exploration focus is high this can be considered typical R & D software development
(pre-competitive phase) where the development speed for the final product does not count
much (most academic software development). When both exploration and exploitation is high
(i.e. organizations are fast oscillating between two phases of product innovation in figure 3)
this can be regarded a case of hyper-competition. This was typically observed in new
economy software development organizations between1997-2000 and the related learning
condition is defined as hyper-learning in Lyytinen et al (2004). The simultaneous push to
both high exploration and high product exploitation arose from huge unexplored technology
potential and its potentially disruptive nature. It was expected to change businesses based on
new software products and processes. The push towards higher levels of exploitation comes
normally from heightened competitive demands created by the growing market size stiffer
competition, alternative economies of scope, and new value propositions. When this happens
the organizations focus tilts towards process improvements and organizations start compete
based on their process integration and management capability. In general, we can observe
that agility in software organizations relates either to organizations’ capability to be fast
explorers and innovators or to be effective process integrators i.e. to improve their capability
to integrate and manage delivery processes within expected cost and quality. The shift
between these positions happens when software organizations recognize that the so-far
“emerging” technology potential has become mainstream, and its impacts on the market
structure is significant. In this situation they must decide whether they will shift their focus
on specific new markets that value exploration (increase innovative content) or whether they
need to specialize on exploitation, where they need to control process features like reliability
and cost efficient delivery.

In light of this model we wanted to explore the following questions: 1) do perceptions
of and need for agility change during different phases of IT innovation?; 2) how software
organizations manage contradicting demands of exploration and organize their innovation for
agility? 3) does the IT innovation model help to predict how agility is perceived in relations
to other process features?

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

181

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Research Method and Research Sites

Research Goals and Design

We conducted a five-year longitudinal field study (Yin 1994) in a theoretical sample
of Web development software companies (March et al 2001) to address the above questions.
We chose multi-site case study as it allowed a replication logic by which we could test
emerging theoretical insights in different contexts and triangulate both theory and data
(Eisenhardt 1989, Strauss and Corbin 1990)9.

FIRM Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 Firm 6 Firm 7

Division Focus

Custom
software
development.
Primarily e-
business
applications

B2B e-
Business
consulting
solutions

Small spin-
off of
parent. Is
Web-based
ASP for
parent
company’s
customers

E-Business
consulting
specializes in
mobile
computing

Systems
integrators to
upgrade
legacy
systems to
include Web
and mobile
solutions

E-Business
solutions
Specializes in
mobile
computing
Need-based
assembling of
components and
applications

Management
consulting,
development
IS products,
networking
and hosting
services

History

15 year old
firm- had been
mainframe and
client server
shop with 500
employees in 4
locations

Part of a
large,
multinationa
l business
consulting
company

Part of a
large
financial
company
with several
thousand
employees

Multinational
e-Business
consulting firm
founded in
1995 with
several
thousand
employees

e-Commerce
development
firm founded
in 1996
starting with
6 employees

Large
multinational e-
Business
consulting and
software
development
firm

Mature, large,
multinational
development
and IT service
firm

Employees in
Division

Several hundred Several
hundred

70 100+ 200+ 700+ Several
hundred

Typical work
week

40 hours 50 hours 50 hours 60 hours 37.5 hours Varies 37.5 hours

Employee
turnover / year

18-30% 15-30% < 10% 3% 3% Uncertain Uncertain

Organizational
Structure

-President
-Branch
manager
-Field manager
-Project
manager

-Partner
-Director
-Project and
technical
managers

CIO, then
flat

-Client
manager
-Project
manager

Entirely flat
except for
salary issues.

Rigid vertical
hierarchy with
formalized
methodologies
for all aspects
of business

Company is
divided into
autonomous
units based on
market sector
of client

Project Team
Characteristics

15-20 people
including:
business
analysts,
architects, lead
developer, other
developers, QA
person

Architects,
analysts,
expert
developers,
rookie
developers

Informal Flat with the
following roles:
project
assistant,
technical lead,
designer,
information
architect

Informal Rigid vertical
hierarchy

Broken down
by customers
(approximately
50/customer)
and
subsequently
by teams (of
10 each)

Table 2. Firm characteristics

9 The “Web- development” refers to computing applications that utilize Internet browsers, such as Netscape or

Microsoft Internet Explorer, and a set of open standards and protocols that include XML, HTML, http,
URL, TCP/IP, combined with the extensive use of middleware architectures in leveraging the computing
service.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

182

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

We identified seven companies that met the following criteria: (1) they were
developing Web-based systems; (2) they were recognized by their peers as fast adopters of
the most advanced technologies available; and (3) they worked mostly for outside and
leading edge clients through contractual relationships. To minimize bias we sought to
maximize the variations in our sample that would improve external validity (Yin 1994).
Companies had different sizes and operated in different industry sectors in terms of the
services provided (ranging from manufacturing, financial services and public administration
to retail and transportation). They had experience using Web-based technologies in several
application domains (back office, front office, and inter-organizational applications). The
geographical scope of their operations varied largely as some were local software firms while
others were part of large global companies. The firms also had large variations in their
software development experience, ranging from as few as four years to 40+ years. A
summary of the firms’ characteristics is included in Table 2.

Data Collection and Analysis

The data was gathered primarily between June 2000 and April 2003 at four different
time points (2000, 2001, 2003-2004) from seven companies. The exact times and periods of
data collection are shown in table 3. For all seven companies the data is not complete due to
mortality (some of the companies went out of the business or were bought or sold). For some
data sets we had problems with the poor quality of the tapes and could not transcribe them
verbatim but instead just collect main facts. We organized the interview data into three
different temporal periods: pre 2000 (Time 1), 2000-2001 (Time 2), and 2002-2004 (Time 3)
that align well with the different stages of the dot-com boom. Here pre 2000 stands for
market growth and period of fast innovation driven by the ideas of new economy, period 200-
2001 stands for the recession and crisis, and 2002-2004 stands for the new recovery and
modest growth of the markets.

The data was obtained through semi-structured tape-recorded interviews with senior
management and senior developers who made decisions about technology investments and
were in charge of business strategy. The interviewees managed the organizational knowledge
bases and skills needed to execute a chosen technology and business strategy. We also
examined the archives of the company documents, including systems development
documentations and technology strategies and made notes during the visits concerning their
physical sites, personnel age, general atmosphere etc. A range of one to six individuals from
each company participated in the study. A total of 19 interviews were conducted with a
typical interview time of approximately two hours each. The transcribed data covers currently
c.a. 2000 pages of interviews. The interviews reviewed the applications and solution
portfolios provided by these companies to their clients and examined how they delivered
these applications. We probed for changes taking place in the business and the technology
domains of their operations as a result of Internet computing. Specifically, we asked the firms
to clarify the extent, scope, depth and speed of changes in their software development
practices when compared with their situation prior to the Web development and during
different stages of its deployment. We further examined how these firms coped with changes
in technology and markets. The interviews were transcribed and the summaries of these
transcripts were sent to the companies for correction and validation.

Data analysis was done using inductive method (Boyatzis 1998, Glasser and Strauss
1967, Strauss and Corbin 1990). The transcripts of each company for each time period was
subject to a within-case analysis that involved repeatedly reading the transcript and taking
thorough notes about firms’ perceptions of the competitive environments and their reactions
to the environmental changes and their perceptions of agility and process features. After each
individual case had been analyzed, we began cross-case comparisons that involved listing the

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

183

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

similarities and differences among the firms in process outcomes at each period of time. The
results of the cross-case and cross-period comparisons provide a vivid picture of the ways in
which companies tacked between exploration and exploitation and accordingly changed their
process features. Furthermore, the results provide a consistent picture of how these
organizations controlled agility in order to speed up either exploitation or exploration and
how they configured accordingly their processes.

FIRM Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 Firm 6 Firm 7
Interview
Date 1

Jun. 2000 Jun. 2000 Jun. 2000 Oct. 2000 Sep. 2000 Nov. 2000 Sep. 2000

Time 1

Six senior
employees
including an
executive,
managers, and
software
architects

A senior
manager of
an IS
development
group and
one of his key
developers

The CIO, and the
five key senior
technologists who
were responsible for
the creation of the
spin-off

Five senior
employees
including ISD
project
managers,
developers,
and the senior
technology
architect

One of the
founding
executives
who was
responsible
for
development
of business
processes

Four senior
employees
including a
systems
architect,
manager,
and
software
engineer

One senior
manager of IT
development
services

Interview
Date 2

October 2001 October 2001 October 2001 August 2001 August 2001 August
2001

August 2001

Time 2

One software
architect from
first interview

A senior
manager of
an IS
development
group and
one of his key
developers
from first
interview

Two technologists
from first interview

Two
employees
from first
interview

Same
interviewee
from first
interview

One
manager
from first
interview

Manager who
replaced
manager in
first interview

Interview
Date 3

March 2003 March 2003 No interview No interview March 2003 April 2003 April 2003

Time 3

An architect
from Time 1,
the replacement
of executive in
Time 1, and a
developer not in
Time 1
interview

Developer
from Time 1

Firm absorbed by
parent company and
IT employees
reassigned.
Interviewees not
available. Time 3
information gathered
via email with one
of the original
interviewees and
review of online
documentation of
parent firm in March
2003.

Finnish office
closed.
Interviewees
not available.

Same
interviewee
from first
interview

One
manager
from first
interview

Manager who
replaced
manager in
first interview

Table 3. Data collection summary

Research Findings

Changes in Agility During Exploration and Exploitation

Table 1 and Figure 3 suggest a movement from a product exploration to process
exploitation among software organizations as they adopt a new technological base. A
summary of the changes in focus in exploration v.s. exploitation in our firms through three
observation points is given in Tables 4a and b. As indicated therein, each of the firms in the

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

184

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

early stages of Internet computing (e.g., the periods between 1995 and the first interview
[noted as Time 0 and Time 1]) were engaged in radical innovation product when compared to
period 2.

FIRM Firm 1 Firm 2 Firm 3
Time 0 Phase 1: Product Exploration Phase

Phase 1: Product Exploration Phase Phase 1: Product Exploration Phase

Time 1

Phase 2: Product Exploitation Phase

Speed increase; risk increase; costs
increase. Base technology is inherently
faster in internet frame.
Certain amount of freezing product
innovation had already begun and allowed
time reduction via reuse.

Projected in Time 2 that they would focus
on more reuse to increase time and
decrease risk. Indication was that they
planned to freeze product innovation to
allow this process innovation to occur.

Phase 2: Product Exploitation Phase

No rigid methodologies. Have
faster development than before
Internet development but deemed to
be with poor quality.

Phase 2: Product Exploitation Phase

Spun off by parent company that focuses on
methodologies and process exploitation.
Recognized they were in a new environment
and required radical product innovation.

Quality required. Speed faster than in the
parent firm, but at 24 months to get a working
product, it was considered unacceptably slow
in “new economy.” No formal process used.
Lots of experimentation with product. Product
innovation was high, risks were high, quality
was lower than the parent company standards.

Just at that time planning on freezing product
innovation and beginning radical process
innovation. Goal was to increase speed and
quality. Did so at high cost by buying outside
help (grafting). Goal is to stabilize and get
speed up/quality up/risk down.

Time 2

Phase 3 Process Exploration Phase and
then
Phase 4: Circumstantial Process
Exploitation Phase

Speed not a problem because project
scopes were smaller as client demand for
product innovation stopped.
Business dropped off significantly and
required elimination of many programmers.

Fired all slowest programmers and kept
those with tacit understanding of effective
methods (a Darwinian model).
Combination of things allowed for rapid
development, but not by design. They had
methods as a result of market requirements
and a natural selection of developers, not
because they looked to have methods.

Phase 3: Process Exploration Phase

Compared to Time 1- faster still;
costs lower; quality higher. Fast
learning stopped. Process
innovation occurred in Type I as a
result of stability in Base IT and
incremental innovation in base.

Phase 3: Process Exploration Phase

Product innovation frozen. Process innovation
slowing down to almost frozen as well.
Development speed was way up. Quality was
better than in Time 1. Stable base technology.
Stabilized product. Stabilized process. Goal to
shore up process methods to maintain high
quality and increased speed for future rollouts.

Time 3

Phase 1: New Product Exploration Phase

Speed for ISD still an issue but urgency
around it gone. Looking into exploration in
radical new Base and product innovations.
Inherent in their mission statement (a single
sentence about meeting client needs with
leading-edge IT innovations).

Phase 4: Process Exploitation Phase

Technology Base, processes and
product solutions have matured and
stabilized since Time 1 and Time 2.
Speed up still as a result of: new
Type I innovations; stability of
solutions and knowledge sets; and
reuse (stable base tools and
incremental innovation in base).

Phase 4: Process Exploitation Phase

Innovation frozen entirely. Quality very high,
risks in ISD and costs in ISD approach zero.
ISD firm is swallowed up by the parent
company and leadership given to marketing
team instead of it team. Originally spun out of
parent to innovate rapidly and radically. Team
disbanded in 2003 and frozen products and
processes (methods) swallowed up.

Table 4a. Innovation summary (USA firms)

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

185

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Six of the seven firms were responsible for their own product innovations and began

period 0 (before the first interview time) as radical product innovators (Phase 1). They then
moved sequentially to Phase 4 during our observation period. One firm (Firm 6) in our data
set did not conduct their own product innovation though it engaged in Internet computing
explorations. Instead it formed alliances with other radical product innovators (thus
outsourcing that activity) and focused all the time on process innovations. They sought to
deploy the existing product bases as quickly as possible and thus were already in Phase 3 at
Time 0. This they did at the cost of radical product innovation and they emphasized the need
to control that activity. Not surprisingly, by period 1, Firm 6 was already engaged in process
exploitation (Phase 4).

FIRM Firm 4 Firm 5 Firm 6 Firm 7

Time 0

Phase 1: Product Exploration
Phase

Phase 1: Product Exploration
Phase

Phase 3: Process Exploration
Phase

Phase 1: Product Exploration
Phase

Time 1

Phase 2: Product Exploitation
Phase then Phase 3: Process
Exploration Phase

Recognized the need for
speed. Believed a
methodology would get them
there. Began work on
formalization of process at
end of Time 1.

Phase 2: Product Exploitation
Phase

Indicated there is a high risk
associated with speed. Used
light methods with
unknowable outcomes
(because of less quality
testing, less needs analysis) &
limited scope of product
innovations.

Phase 4: Process Exploitation
Phase

First firm of the seven to limit
to a fixed set of product
innovation solutions.
Therefore, had process
innovations possible earliest.
Mostly reuse of components,
affiliation with partners, and
reusable methodologies.
Very high quality, low costs,
and low risks because of fixed
solutions.

Phase 2: Product Exploitation
Phase

Speed increase; risk increase;
costs increase. Base
technology is inherently
faster in internet frame.
Certain amount of freezing
product innovation had
already begun and allowed
time reduction via reuse.

Time 2

Phase 4: Process Exploitation
Phase then a new Phase 1:
Product Exploration Phase

Methodologies implemented
were for projects of Time 1
type. Time 2 projects were
radically different and
methods were wrong for
them. Cost rose and speed
declined as a result of moving
again toward product
exploration phase

Phase 3: Process Exploration
Phase

Moved to incremental product
innovation stage. Coincides
with return of methodologies.

Phase 4: Process Exploitation
Phase

Nothing different from Time
1 except perhaps even more
focused on exploitation of
product and process

Phase 3: Process Exploration
Phase

Moved to incremental
product innovation stage.
Coincides with return of
methodologies.

Time 3

Closed Finnish office.

Phase 4: Process Exploitation
Phase then a new Phase 1:
Product Exploration Phase

Speed slower again as product
innovation becomes more
radical again. Further problem
when encounter changes in
base innovations.
Counteracted with process
innovations.

Phase 4: Process Exploitation
Phase

Nothing different from Time
1 except perhaps even more
focused on exploitation of
product and process.

Phase 4: Process Exploitation
Phase

Focused on more reuse to
increase speed and decrease
risk. Freezing product
innovation allowed this
process innovation to have
occurred.

Table 4b. Innovation summary (Finnish firms)

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

186

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

While each firm moved eventually to Phase 4, some of them moved beyond Phase 4
(or back) to a new Phase 1 by starting to seek new technology and solutions thus
demonstrating the need for ambidexterity. Each of the organizations found that they could
not successfully continue to engage solely in process exploitation. In the case of Firms 1 and
5, they found that adopting radical Base innovations and creating radical product innovations
made the process innovations they had developed during the previous cycle less effective.
Notably, these two firms saw their development agility decrease notably and they needed to
evaluate constantly tradeoffs between speed and other features. Likewise, Firm 4 found that
it now incurred higher costs and slower speeds. This firm found this by period 2 and
subsequently went out of business as a result of declined market demand and wrong
capability set. Overall our data set shows that organizations organized their perceptions of
agility and concerns for exploration and exploitation as suggested by the IT innovation
model.

Impact on Process Features and Speed

Figures 4 and 5 highlight critical interrelationships between ISD process features at
different stages of exploration and exploitation. As indicated in the figures, organizations
must continuously control five interrelated and contradictory process features: speed;
innovation; cost; risks; and quality. Of the 19 interviews, we found strong evidence that
these five factors were heeded by the organizations during each of the periods (see Tables 5a
and b, and 6a and b for details).

FIRM Firm 1 Firm 2 Firm 3

Time 1

Evidence of tradeoffs between
speed and quality, costs, and risks

Evidence of increases in speed and
decline in quality
Evidence of tradeoffs between speed
and quality, costs, and risks

Evidence of tradeoffs
between speed and quality,
costs, and risks

Time 2 Evidence of tradeoffs between
speed and quality, costs, and risks

Evidence of tradeoffs between speed
and quality, costs, and risks

Evidence of tradeoffs
between speed and quality,
costs, and risks

Time 3 Evidence of tradeoffs between
speed and quality, costs, and risks

Evidence of tradeoffs between speed
and quality, costs, and risks

Table 5a. Tradeoffs between speed vs. quality, costs, and risks summary (USA firms)

FIRM Firm 4 Firm 5 Firm 6 Firm 7

Time 1

Evidence of tradeoffs
between speed and
quality, costs, and risks

Evidence of tradeoffs
between speed and
quality, costs, and risks

Evidence of
tradeoffs between
speed and quality,
costs, and risks

Evidence of tradeoffs
between speed and quality,
costs, and risks

Time 2

Evidence of tradeoffs
between speed and
quality, costs, and risks

 Evidence of tradeoffs
between speed and quality,
costs, and risks

Time 3

 Evidence that slowing
down development
reduces costs and
improves quality

 Evidence of tradeoffs
between speed and quality,
costs, and risks

Table 5b. Tradeoffs between speed vs. quality, costs, and risks summary (Finnish firms)

Within the data set, we also found strong evidence for the types of interrelationships

between the five goals as noted in Figures 4 and 5. Specifically, we evinced that when
organizations wanted to increase speed in innovation, they faced a tradeoff of increased risk,

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

187

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

increased cost, and decreased quality (see Tables 5a and b). In 16 of the 19 interview
transcripts, these tradeoffs were clearly observed by as the price for increased speed. For
example, a developer in Firm 1 indicated “because you(are) moving so fast through the whole
thing, if you mess up somewhere it impacts you a whole lot more than it would have impacted
you in a slower process.” Likewise, a participant from Firm 7 noted, “you have less time to
think and you don't have the time to think of everything.” The dominating desirable process
feature in period 1 is innovation and we also observed that speed and innovation are inversely
related. Again, in 16 of the 19 interviews, evidence was found for the negative relationship
between speed and innovation (as can be seen in bold in Tables 6a and b). For example,
Firm 3 finished their proof in concept stage of development and subsequently stopped radical
product innovation. As a result of moving to incremental innovation in Time 1, they were
going to be able to formalize a methodology to enable the “rapid software development and
rapid implementations that we have to do.” Similarly, Firm 2 attributed increased speed in
period 3 to the shift to incremental innovation in all three innovation types in Figure 1.
Specifically, increased speed was a function of stabilization in “methodology [PROCESS], a
function of increased skill sets [BASE], and a function of using packaged product type
solutions [PRODUCT].”

Likewise, the remaining relationships between innovation and the features of risks,
cost, and quality were observed (as noted in the non-bolded data summaries in Tables 6a and
b). For example, in period 1, a member of Firm 7 referred to the period before the radical
innovations associated with Internet development as “the good old days” and noted that
lower risks were “old fashioned.” Similarly, Firm 5 noted when it began adopting radical
base innovations for creating radical innovations in period 3 (and thus entered a new phase 1
period), development was slower, more resources needed to be allocated, and quality
declined:

“I already did miss the deadline and the resource allocation [target]…

when there [have been] only just a couple of experts in certain [new base
technology] and we needed to share the knowledge by allocating the people
that were not in so big in that technology, it meant that also the amount of
time and the amount of work used were exceeded but also the qualities
probably not the best possible one when looking back at the acts or work.”

FIRM Firm 1 Firm 2 Firm 3

Time 1

Evidence that more
radical innovation
increases risk

Evidence that more radical
innovation increases risk

Evidence that if you freeze innovation,
speed increases
Evidence that more radical innovation
increases risk

Time 2

Evidence that if you
freeze innovation,
speed increases

Evidence that if you freeze
innovation, speed increases

Evidence that if you freeze innovation,
speed increases
Evidence that if you freeze innovation,
cost decreases
Evidence that stopping radical innovation
allows improved quality deliverables

Time 3

Evidence that if you
freeze innovation,
speed increases

Evidence that if you freeze
innovation, speed increases
Evidence that stopping radical
innovation allows improved quality
deliverables

Table 6a. Tradeoffs of innovation vs. speed, quality, risk, or cost summary (USA firms)

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

188

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

FIRM Firm 4 Firm 5 Firm 6 Firm 7

Time 1

Evidence that if
you freeze
innovation, speed
increases
Evidence that more
radical innovation
increases risk

Evidence that if you freeze
innovation, speed increases
Evidence that more radical
innovation increases risk

Evidence that if you freeze
innovation, speed increases
Evidence that moving to
incremental innovation
improves quality
Evidence that incremental
innovation decreases risk

Evidence that if you
freeze innovation,
speed increases
Evidence that more
radical innovation
increases risk

Time 2

Evidence that if you freeze
innovation, speed increases
Evidence that stopping radical
innovation allows improved
quality deliverables

Evidence that if you freeze
innovation, speed increases
Evidence that moving to
incremental innovation
improves quality

Evidence that if you
freeze innovation,
speed increases

Time 3

 Evidence that if you freeze
innovation, speed increases
Evidence that if you freeze
innovation, costs decrease
Evidence that moving to
incremental innovation
improves quality

Evidence that if you freeze
innovation, speed increases
Evidence that moving to
incremental innovation
improves quality

Evidence that if you
freeze innovation,
speed increases

Table 6b. Tradeoff of innovation vs. speed, quality, risk, or cost summary (Finnish firms)

Collectively, the directional interrelationships of the five factors shown in Figures 4

and 5 are supported. With regards to phases, the primary relationships shown in Figures 4
and 5 are also supported. Figure 4 represents the desired tradeoffs made by a firm in product
exploration (phase 1) and Figure 5 the desired tradeoffs made in the process exploitation
phase (phase 4). As can be seen in the data in Tables 4a and b, in earlier phases quality was
lower, risks were higher, and costs were higher. In later phases the opposite was true (note in
all phases, speed was deemed as important and as such it does not show a differences
between the figures, but the type of speed in some sense was different).

The tradeoffs between innovation and the other factors are most evident when period
1 is considered across the firms. In period 1, Firm 6 was already in phase 3 (product
exploitation). They were already reaping the rewards of this phase and noted that quality was
higher, costs were lower, and risks were lower because they had purposefully frozen
innovation and were primarily engaged in assembly of “ready made components” and they
had “a set of solutions that [they knew] how to give and [could] give them quickly.” In
contrast, the other firms were basically beginning phase 2 and all saw increased risks and
costs, with decreased quality.

As time moved on, and each of the firms moved into later phases their market needs
matured (in terms of Type II innovations and Type 0 innovations). Likewise their
methodologies became more refined and they were implemented, while the risks, costs, and
quality moved to the pattern of tradeoffs as shown in Figure 5. For example, Firm 2 entered
phase 4 in during period 3. The interviewee noted in that interview that their “methodologies
and strategies are now mature” and that quality was greatly improved as “a function of
better trained people, a methodology,…and less innovation.”

Discussion and Conclusions

In this paper we have developed a model of IT innovation which views it as an

extended process of both exploration and exploitation across IT value chain. The model

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

189

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

predicts that software development speed/agility is not a universal goal within all phases of
IT innovation. In contrast it is affected by the scope and depth of innovative activity in base
technologies that offer new radical products and new types of software processes as well as in
process innovations when complementary assets are garnered. To address the issue of
development agility more thoroughly we conducted a multi-site longitudinal field study in
seven software development organizations to address the following questions: 1) do
perceptions of and need for agility and the type of agility change during different stages of IT
innovation?; 2) how do software organizations manage contradicting demands of exploration
and exploitation and how they organize their innovation for agility accordingly?; 3) does the
model of exploration and exploitation help to predict how agility is perceived in the context
of other process features?. We observed within our study: 1) concern for both exploration
speed and process development speed changed significantly over the period of study; 2)
software development organizations tended to organize themselves differently during the
study period and they changed from fast explorers to process integrators as technologies
matured. Some organizations also positioned themselves as general explorers (agility in
exploration) or generic process integrators (agility in integrating new technological solutions
into existing generic development routines); and 3) the variance in agility in relation to
process features varied across innovation phases and also between companies due to their
differentiated focus on exploration or exploitation.

In general software organizations control their agility in terms of how good they
become in adopting disruptive technologies during different stages of innovation. They must
constantly trade off agility against other criteria like risk, quality or innovative content. How
these trade-offs are made depend on garnered organizational competencies, shifting
managerial focus and new competitive demands. Over time organizations learned to locate
themselves differently in this space (explorative players: agility primary focus, exploration
main capability; process orchestrators: exploit new technology in large scale fast, use
alliances, source knowledge, focus on process and integration skills). These competitive
niches had quite different business logics and managers interpreted differently what “agility”
meant.

There are several avenues for future research in this fascinating area. First we need to
generalize the findings here with better and more representative sample of organizations.
There is also a need to develop more careful constructs for agility and other process features.
We need to also explore other factors than just the organizations’ learning focus to establish
causal explanations of agility in organizational contexts.

References

Agile Alliance (2002): http://www.agilemanifesto.org/, visited 09/04/04
Attewell, P. (1992) “Technology diffusion and organizational learning: The case of business

computing.” Organization Science, 3, 1, pp. 1-19.
Baskerville R., Levine L., Heje J-P, Balasubramarian R., Slaughter S. (2001), “How Internet

Software Companies Negotiate Quality”, IEEE Software, May, pp. 51-57.
Boyatzis, R. 1998. Transforming Qualitative Information: Thematic Analysis and Code

Development, Sage, Thousand Oaks, CA.
Brown, S. L., K. M. Eisenhardt. 1997. The art of continuous change: Linking complexity

theory and time-paced evolution in relentlessly shifting organizations. Administrative
Science Quaraterly 42 (1-34).

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

190

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Carstensen P, Vogelsang L. (2001), “Design of Web based information systems; new
challenges for system development”, in Proceedings of the 9th ECIS, Bled Slovenia,
27-29-2001, pp. 536-547.

Christensen, C. M. 1997. The innovator's dilemma: When new technologies cause great firms
to fail, Harvard Business School Press, Boston, MA.

Cohen, W. M., D. A. Levinthal. 1990. Absorptive capacity: A new perspective on learning
and innovation. Administrative Science Quarterly 35 128-152.

Curtis, B., M. Kellner & J. Over (1992): Process Modeling. Communications of the ACM,
Vol. 35, No. 9 (75–90).

Cusumano M., Yoffie D. 1999: "Software development onInternet Time", IEEE computer,
32, 10, pp. 60-69.

D'Aveni, R. A. 1994. Hypercompetition: Managing the Dynamics of Strategic Maneuvering,
The Free Press, New York.

Eisenhardt, K. M. 1989. Building theories from case study research. Academy of
Management Review 14 (4) 532-550.

Eisenhardt, K. M., J. A. Martin. 2000. Dynamic capabilities: What are they? Strategic
Management Journal 21 1105-1121.

Eisenhardt, K. M., B. N. Tabrizi. 1995. Accelerating adaptive processes: Product innovation
in the global computer industry. Administrative Science Quaraterly 40 84-110.

Fichman, R.G., and Kemerer, C.F. "The Assimilation of Software Process Innovations: An
Organizational Learning Perspective," Management Science (43:10) 1997, pp 1345-
1363.

Gibson, C. B. and J. Birkinshaw, 2004. The Antecedents, Consequences, and Mediating Role
of Organizational Ambidexterity, Academy of management Journal, 47 (2) 209-226.

Glasser, B. G., A. L. Strauss. 1967. The Discovery of Groupded Theory: Strategies for
Qualitative Research, Aldine Publishing Company, New York, NY.

He, Z., P. Wong. 2004. Exploration and Exploitation: an Empirical Test of the Ambidexterity
Hypothesis, Organization Science, 15 (4) 481-494.

Henderson, R. M., K. B. Clark. 1990. Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative
Science Quaterly 35 (1) 9-30.

Henderson-Sellars B. Serour M. (2004): Creating a dual agility method – the value of
method engineering, forthcoming Journal of Database Management 2004.

Humphrey, W. (1989): Managing the Software Process. Reading, Massachusetts: Addison-
Wesley.

Kessler E., Bierly P. (2002): “Is faster really better: an empirical test of the implications of
the innovation speed”, IEEE Transactions on Engineering Management, 49, 1, pp. 2-
12.

Kessler E., Chakrabarti A. (1996): “Innovation speed: a conceptual model of context,
antecedents and outcomes”, Academy of Management Review, 21, 4, pp. 1143-1191.

Kessler E., Chakrabarti A. (1999): “Speeding up the Pace of New Product Development”,
Journal of Porduct Innovation Management,, 16, pp. 231-247.

Lambe C., Spekman R. (1997): “Alliances, External Technology Acquisition, and
Discontinuous Technological change”, Journal of Product Innovation Management,
14, pp. 102-116.

Lant, T. K., S. J. Mezias. 1992. An Organizational Learning Model of Convergence and
Reorientation. Organization Science 3 (1) 47-71.

Lyytinen K, (1987) "Different Perspectives on Information Systems: Problems and their
Solutions", ACM Computing Surveys, 19, 1, pp. 5-44.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

191

 Sprouts - http://sprouts.aisnet.org/4-10

LYYTINEN &ROSE/ THEORY OF AGILITY IN SOFTWARE DEVELOPMENT

Lyytinen K., Rose G. (2003a), “Disruptive Information System Innovation: the Case of
Internet”, Information Systems Journal, 13, 4, pp. 301-330.

Lyytinen K., Rose G. (2003b), “The Disruptive Nature of Information Technology
Innovations: The Case of Internet Computing in Systems Development Organizations,
MISQ , 27,4, pp. 557-595.

Lyytinen K., Rose G., Yoo Y. (2004): “Exploring and Exploiting in High Gear: Hyper-
learning in Seven Software Firms”, submitted to a special issue on exploration and
exploitation in AMJ.

March, J. G. 1991. Exploration and Exploitation in Organizational Learning. Organization
Science 2 (1) 71-87.

Menon A., Chowdhury J., Lukas B. (2002): “Antecedents and outcomes of new product
development speed: an interdisciplinary conceptual framework”, Industrial Marketing
Management, 31, pp. 317-328.

Mezias S., Glynn M. 1993. The Three faces of corporate renewal: institution, revolution and
evolution, Strategic Management Journal, 14, 1, pp. 77-101.

Nelson, R. R., S. G. Winter. 1982. An Evolutionary Theory of Economic Change, Belknap
Press, Cambridge, MA.

Nonaka, I., H. Takeuchi. 1995. The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation, Oxford University Press, New York.

Pressman, R. 1998. Can internet-based applications be engineered? IEEE Software (Sept-Oct)
104-110.

Swanson, E. B. (1994),"Information Systems Innovation Among Organizations,"
Management Science, 40, 9, pp. 1069-1088.

Teece, D. J., G. Pisano, A. Shuen. 1997. Dynamic capabilities and strategic management.
Strategic Management Journal 18 (7) 509-533.

Turk D, France R., Rumpe B. (2004): “Assumptions Underlying Agile Development
Processes”, forthcoming Journal of Database Management 2004

Tushman, M. L., P. Anderson. 1986. Technological discontinuties and organizational
environments. Administrative Science Quaraterly 31 439-465.

Winter, S. G., G. Szulanski. 2001. Replication as strategy. Organization Science 12 (6) 730-
743.

Van Kleijnen J. (1980): Computer and Profits: Quantifying Financial Benefits of Information
Systems, Prentice-Hall, Englewood Cliff, NJ.

©2005 Sprouts 4(4) pp 169-192 http://sprouts.case.edu/2004/040410.pdf

192

 Sprouts - http://sprouts.aisnet.org/4-10

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	4-11-2008

	How Agile is Agile Enough? Towards A Theory of Agility in Software Development
	Kalle Lyytinen
	Gregory M. Rose
	Recommended Citation

	htmldoc370.html

