
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

1-10-2013

Software Development Life Cycles and
Methodologies:Fixing the old and adopting the
new
Sue Conger
University of Dallas, sconger@gsm.udallas.edu

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Conger, Sue, " Software Development Life Cycles and Methodologies:Fixing the old and adopting the new" (2013). All Sprouts
Content. 428.
http://aisel.aisnet.org/sprouts_all/428

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/428?utm_source=aisel.aisnet.org%2Fsprouts_all%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

Software Development Life Cycles and Methodologies:
Fixing the old and adopting the new

Sue Conger
University of Dallas, USA

Abstract
Information Systems as a discipline has generated thousands of research papers yet practice
still suffers from poor-quality applications. This research evaluates the current state of
application development, finding practice wanting in a number of areas. Changes
recommended to fix historical shortcomings include improved management attention to risk
management, testing, and detailed work practices. In addition, for industry's move to services
orientation, recommended changes include development of usable interfaces and a view of
applications as embedded in the larger business services in which they function. These
business services relate to both services provided to parent-organization customers as well as
services provided by the information technology organization to its constituents. Because of
this shift toward service orientation, more emphasis on usability, applications, testing, and
improvement of underlying process quality are needed. The shift to services can be facilitated
by adopting tenets of IT service management and user-centered design and by attending to
service delivery during application development.

Keywords: Software development life cycle, methodology, IT service management, user
centered design, usability, user satisfaction

Permanent URL: http://sprouts.aisnet.org/10-172

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Conger, S. (2010). "Software Development Life Cycles and Methodologies:
Fixing the old and adopting the new ," . Sprouts: Working Papers on Information Systems,
10(172). http://sprouts.aisnet.org/10-172

 Sprouts - http://sprouts.aisnet.org/10-172

http://creativecommons.org/licenses/by-nc-nd/3.0/

Page 1

Software Development Life Cycles and Methodologies:
 Fixing the old and adopting the new

Sue Conger
University of Dallas

ABSTRACT

Information Systems as a discipline has generated thousands of research papers yet
practice still suffers from poor-quality applications. This research evaluates the current
state of application development, finding practice wanting in a number of areas.
Changes recommended to fix historical shortcomings include improved management
attention to risk management, testing, and detailed work practices. In addition, for
industry's move to services orientation, recommended changes include development of
usable interfaces and a view of applications as embedded in the larger business services
in which they function. These business services relate to both services provided to parent-
organization customers as well as services provided by the information technology
organization to its constituents. Because of this shift toward service orientation, more
emphasis on usability, applications, testing, and improvement of underlying process
quality are needed. The shift to services can be facilitated by adopting tenets of IT service
management and user-centered design and by attending to service delivery during
application development.

Keywords: Software development life cycle, methodology, IT service management,
user centered design, usability, user satisfaction

INTRODUCTION
Information Systems as a discipline is over 60 years old. Over that time, practices

have been created and forgotten almost as fast as the technology has changed. An

enormous amount of research has produced thousands of research papers relating to

information systems development, with many seminal breakthroughs by luminaries such

as Avison, Bjorn-Anderson, Boehm, Booch, Brooks, Checkland, Codd, Date, De Marco,

Dijkstra, Fitzgerald, Gregor, Hoare, Jackson, Lyytinen, Martin, Mumford, Osterweil,

Parnas, Rumbaugh, Schneiderman, Weber, Yourdon and many others.

Even with the thousands of research projects, the track record of information

technology (IT) in organizations is dismal. The “IT Department is a source of tremendous

frustration, missed opportunity, and inefficiency in companies" (Baschob and Piott, 2007,

 Sprouts - http://sprouts.aisnet.org/10-172

Page 2

p. 11). By one report in 1994, 53% of projects overran original schedules by an average

of 222% (Baschob and Piott, 2007). In addition, 31% of projects were cancelled.

Completion of projects on time and within budget in large companies was 9% and only

42% or all projects delivered planned benefits (Baschob and Piott, 2007). The situation is

such that the IT-business relationship is characterized as hostile in many situations (Agar,

et al., 2007; Cuyler and Schatzberg, 2003).

Even with the huge body of research, some IT failures are due to goals that

outstrip the techniques and technology of the time. The desire for greater software

integration across enterprises, use of leading-edge technologies, and increasing

complexity of IT operations technology all have contributed to project failures (Boehm,

2006).

Accompanying the technological aspects of applications that continuously change

and get more complex, business too is changing. The current changes business is

undergoing are to servitize business operations such that physical products are

accompanied by, or embedded in, revenue-generating services. The move to services in

the U.S. economy alone is such that over 85% of the economy is involved in service

delivery of some type (Gallagher, et al. 2005). As a result, IT that supports business

service delivery has become desirable.

At the same time that service orientation is becoming important in business, IT

Departments are under pressure to demonstrate their value to their organizations.

Statements like, ‘do more with less,’ ‘learn to run IT like a business,’ and ‘join the rest of

the company’ demonstrate the pressures on IT organizations (Conger and Schultze, 2008;

Cuyler and Schatzberg, 2003). This confluence of pressures, change of emphasis, and

history of failures is useful to force self-reflection on the profession to determine its next

steps to develop a better rapport with its customers, improve the quality of its offerings,

and demonstrate its value to its parent organization.

This paper reflects on the history of software development and its role in the

present state of IT in organizations. The discussion focuses on software development life

cycles (SDLC) and methodologies and their roles and outcomes as contributing to the

pervasive failing state of IT. Key successes and failings are identified to establish a

baseline for discussion of how to remedy past weaknesses and improve to address current

 Sprouts - http://sprouts.aisnet.org/10-172

Page 3

needs. Then, tenets of design science are adapted to application development issues to

discuss needs for changes in practice to adapt to the business shift to services. The

outcome is a series of recommendations for academics and professionals to reinvent IT to

develop holistic IT services to align more closely to the business services they support.

SDLCs and Methodologies
The most common way of thinking of the SDLC is the waterfall model within

which phases of activity are defined based on the thought processes required to conduct

the activities (see Figure 1) (Royce, 1972). Output of each phase is input to the next

phase. Phases historically included the following with the key focus in parentheses:

feasibility (readiness), analysis (what), design (how), detailed design (how), coding and

unit testing (technology), testing (correctness), and implementation (transition to

operation). On-going maintenance accounts for about 80% of an application’s life cycle

cost and follows each phase but with a narrower scope than the whole application. In this

model, application development ceases at implementation with little attention to use of

the application in its various contexts.

Figure 1. Waterfall software development phases (Adapted from Royce, 1970)

The traditional waterfall outcome is an entire application. Waterfall alternatives

are iterative, non-sequential ways of performing the work such as spiral, prototype, and

agile (Boehm, 1998; Beck, et al., 2001). Waterfall alternatives are non-sequential

 Sprouts - http://sprouts.aisnet.org/10-172

Page 4

development sequences, by which waterfall steps are done on partial functionality with

iterations until all functionality is automated. Both of these views of application

development focus on application functionality, as opposed to other aspects of the

application such as its operational environment, its usability, or its social context. Some

authors consider SDLC and prototyping as methodologies (e.g., Avison and Fitzgerald,

2006), while others view them as skeletal guidelines within which methodologies operate

(Conger, 1994). The latter view is taken by this research.

A methodology is the tenets, tools, philosophy, and so on about how to approach

problem analysis and design. Within a life cycle stage, a methodology guides the work

via tools and techniques, focusing analysis on a specific aspect of the work (See Figure 2).

Commonly used methodologies foci include process (DeMarco, 1978; Yourdon and

Constantine, 1975), data (Jackson, 1975; Martin, 1991), objects (Jacobson, et al., 1999),

or stakeholders and the social context (Checkland, 1981).

Criticisms of all of these life cycles and methodologies abound. The most

condemning statement is that they appear to make no difference to the resulting quality of

an application (Avison and Fitzgerald, 2006). Another is that every focus on one aspect

of an application results in ignoring, constraining, or assuming other aspects of the

application (Boehm, 2006; Suchman, 1983).

Research on application and software development, methodologies, and SDLC,

has led to many discussions of what is wrong with life cycles and methods and invariably,

what is next (Avison and Fitzgerald, 2006; Fitzgerald and Fitzgerald, 1999). One answer

to that issue is the addition of service perspective to parallel the economic changes to

service orientation. Yet, to add new requirements on top of failing work is illogical.

Therefore, further assessment of the successes and failures of SDLCs and methodologies

is needed to determine what is needed to improve application quality.

Figure 2 summarizes the SDLCs and methodologies to identify their focus and

perspective as these constrain how the problem is perceived and, therefore, how the

problem is automated. Followers of the waterfall life cycle develop whole applications,

decomposing the problem into phases that reflect the thinking for each phase. In contrast,

iterative SDLCs focus on chunks of an application and the current period's functionality.

By taking a piecemeal view of applications, the iterative SDLCs often result in partially

 Sprouts - http://sprouts.aisnet.org/10-172

Page 5

built software that experiences difficulty with integration of later-developed functionality

(Abrahamsson, et al., 2002; Boehm, 2006).

Soft Systems methods originate from Checkland (1981) and are expanded by

Wood-Harper and others (Doyle, et al., 1993). The focus of Soft Systems is the social

system as a basis for change that results in an application. The Soft Systems approach

views application development as a cultural activity inclusive of as many stakeholders as

can be accommodated, and therefore, can drag on without progress for long periods.

Contradictions arise when different groups air their priorities and the contradictions can

be difficult to resolve (Mathiassen and Nielsen. 1989). Once complete, Soft Systems

applications result in high levels of user satisfaction (Checkland, 1981). Soft Systems

highlights the importance of situated work that requires attention by IT of both the

automated and non-automated aspects of the work (Suchman, 1983).

 Life Cycles Methodologies
Charact-
eristic

Sequential
SDLC

Iterative
SDLC-- -
Prototype,
Agile

Soft Systems
Methods –

Process,
Data, Object
Method –

Purpose Design and
implementation
of work support
systems

Focus on
functionality
and/or timing of
delivery

Focus on
contexts and
stakeholder
rights

Focus on area
of interest

Goal Complete
functionality

On time, short-
term delivery of
partial
functionality

Contextualized
design

Focus on area
of complexity
to ensure its
correctness

Perspective Design thought
processes

This period’s
functionality

Organization,
information,
technology, and
socio-technical
aspects of the
problem

Functional
quality of the
most complex
aspect

Figure 2. Perspectives from Life Cycles and Methodologies

Process, data and object methods are grouped because they all focus attention on a

key area of complexity in the application as functionality, data, or objects, respectively.

Object methods have matured somewhat and morphed into service oriented architectures

(SOA) but object concepts and focus do not change in SOA. As a focusing mechanism,

these methodologies function as intended. However, these methodologies constrain

 Sprouts - http://sprouts.aisnet.org/10-172

Page 6

thinking in the same way as the SDLCs and other methods through the very focus they

seek. By focusing on functionality, the social system, interface design, or other aspects of

an application may be ignored.

All of the SDLCs and methodologies in Table 2 have shortcomings as a group in

that they provide tools and techniques without providing an overall checklist of what

should be evaluated and considered within the context of applications development.

Moreover, the SDLCs and methodologies alone do not give clues about how to fix the

failures of application development let alone how to improve it to deal with today's

application needs. The next section looks at successes and failures in application

development practice to determine the characteristics most needed in successful

applications.

APPLICATION DEVELOPMENT
With all of the failures of information systems, we sometimes forget that there are

also impressive successes. The aerospace and defense industries have sent and returned

people to the moon and kept bombs from exploding before their time. Virtually every

home device has imbedded computer chips, which run appliances and simplify our lives.

These successes have many characteristics in common. These characteristics may vary by

type of application but some characteristics cross application types.

Successes in Application Development
Systems success is best summarized by the DeLone and McLean success model

(1992; 2003; and Petter, et al., 2008), which found the following constructs of

importance:

Key Driver Sub-Characteristics
Systems quality

Adaptability
Availability
Reliability
Response time
Usability

Information quality

Completeness
Ease of understanding
Personalization
Relevance
Security

Service quality

Assurance
Empathy
Responsiveness

 Sprouts - http://sprouts.aisnet.org/10-172

Page 7

Use

Nature of use
Navigation patterns
Number of site visits
Number of transactions executed

User satisfaction

Repeat purchases
Repeat visits
User surveys

Net benefits

Cost savings
Expanded markets
Incremental additional sales
Reduced search costs
Time savings

Figure 3. Key Drivers of Successful Information Systems (DeLone and McLean, 2003, p.26)

DeLone and McLean built on hundreds of other research projects to develop both

a parsimonious list of critical factors that generally fits all applications. The details of

each characteristic is beyond the scope of this paper, but the key drivers are of interest

because they span applications types in some form with many sub-factors seeming to be

universal, as well. Three types of quality are expected of successful applications: System,

information and service. Systems quality refers to the application in its operational

environment and the extent to which it performs at the time needed and in the manner

expected. System quality is important because inattention to system quality early in the

development cycle can easily result in poor quality upon implementation.

Information quality refers to the suitability and usefulness of the data provided to

the user. Information quality in any transactional system needs to be complete and

accurate. Similarly, relevant, secure data seem to be universal in their appropriateness

across application types.

Service quality also may be appropriate for all applications but in a different sense

than expressed by the sub-factors provided here. The sub-factors in the De Lone and

McLean list are from SERVQUAL, a well researched model of service quality in an

online environment (Parasuraman, et al., 1988). SERQUAL needs additional research to

determine characteristics that fit other arenas of IT support. For instance, extensions to

SERVQUAL to adapt measures of quality from the total quality movement might be

appropriate. In a broad services context, service quality refers to overall quality provided

by the 'system' and can include the application, help desk, maintenance staff, and others

in the IT Department who might interact with users for some reason. Specifics of services

 Sprouts - http://sprouts.aisnet.org/10-172

Page 8

are not yet incorporated into service quality research or measures. Thus, a more general

view of services, which is consistent with servitizing tenets (Van Bon, 2007) indicates a

need for expansion of SERVQUAL for IT services management quality. Gap analysis to

evaluate expectations versus attributes of objective product, specific characteristics of

service quality (e.g., help desk resolves problem during first contact), definition of

customer benefits, and usefulness are other potential additions to SERVQUAL that may

improve its applicability to information systems (Chen and Sorenson, 2007). Further,

contextualizing service concepts may lead to more accurate measures of service. For

instance, in e-commerce, service and system quality are interwoven and no known

research has teased out the nuances of their differences.

User satisfaction also is a well-researched area but it has little research relating

user satisfaction across application types. The complexity of attitudes and the nature of

the application types, designs, and possibly other factors may impact user satisfaction

(Melone, 1990). Therefore, while the concept seems relevant across all applications, the

details of its measurement as presently operationalized need further contextualization.

The final component of applications success, net benefits, also seems to apply

across the board to all applications. The concept of net benefits in terms of evaluating

business outcomes is not new but has been elusive and difficult to quantify (Brynolffson

and Hitt, 2003). Research on how individual IT efforts relate to, support, and ultimately

contribute to business outcomes is critical as IT struggles to remain relevant to its parent

organization (c.f., Cuyler and Schatzberg, 2003).

Thus, even though De Lone and McLean's success model and SERVQUAL

measures appear to have significant carryover across application types, more research is

needed to contextualize their constructs (Petter, et al., 2008).

 Sprouts - http://sprouts.aisnet.org/10-172

Page 9

Failures in Application Development

Figure 4. Software development frameworks c. 2000 (Doran, 2000, p. 3)

By examining SDLC and methodological failures, we can back into a definition

of what leads to successful implementations. The shortcomings are not simple however,

as SDLCs and methodologies are not the only issues. This section examines failings of IT

development and acquisition organizations, and thereby, determine what aspects, if done

some other way, could contribute to success. In addition, research on information systems

risks also is relevant to failure discussions because risks not attended to are likely to lead

to failures of the resulting information systems.

Confusion about SDLCs and Methodologies

From a standards perspective, there are simply too many standards relating to

SDLCs and methodologies. By one count, there are over 1,000 methodologies alone

(Avison and Fitzgerald, 2006). This quagmire of differing descriptions of essentially the

same things, all with different breadth, depth, and focus, is a source of significant

confusion. Figure 4 shows just standards of the International Standards Organization

(ISO), the Institute of Electrical and Electronics Engineers (IEEE), and U.S. Department

of Defense and their intellectual linkages.

Figure 5 shows one description of the full extent to which whole bodies of

knowledge relating to many hundreds of methodologies and life cycles proliferate

 Sprouts - http://sprouts.aisnet.org/10-172

Page 10

(Boehm, 2006). It also shows the development of information systems as a profession

that has adapted and changed to deal with the overriding complexity of each decade. For

instance, the craft of programming gave way to structured methods, which morphed into

productivity-oriented frameworks, that then needed to deal with concurrency, increased

pressures for productivity, and eventually, global connectivity.

Figure 5. Progressive development of methodologies and life cycles (Adapted from

Boehm, 2006, p. 16)

As these figures depict, the linkages and profusion of frameworks foster

confusion more than understanding. Companies trying to determine which, if any,

method or SDLC is right for a single project often abandon the search when faced with

the variety of available choices. Some authors recommend evaluating the suite of

alternatives to develop the set of techniques, tools, life cycle, and methods that best fit the

problem (Brinkkemper, 1996). But, as a result of confusion relating to the plethora of

tools, techniques, methods, and so on, companies that do use methodologies often select

one, using it as the guiding outline for all project work. This practice leads to the second

major shortcoming: Practice failings.

Practice Failings
Several practice failings are discussed in this section. First, the use of a single

methodology to guide all project work is a failing because there is ‘no silver bullet’ and

 Sprouts - http://sprouts.aisnet.org/10-172

Page 11

no one SDLC or methodology can usefully guide the variety of work done in a typical IT

development department (Brooks, 1975, 1987).

Second, practitioners do not do a good job of practicing what is taught or

researched. As many as 50% of programmers have less than four years of college, are

overwhelmed by their work, and do not use good software or design practices (Boehm,

2006). The same applies to newer disciplines, such as user-centered design (Høegh,

2006; Mai, 2005)

Third, many risks attendant on development projects are ignored. Major project

practice risks relate to realism of schedule and budgets (Boehm, 1981; insufficient user

involvement (Dodd and Carr, 1994); insufficient attention to functional complexity

(Boehm, 2006; Ewusi-Mensah, 2003); inability to learn from past failures (Lyytinen and

Robey, 1999); insufficient attention to user interface (Keil and Carmel, 1995); problem

avoidance (Keil, 1995; Sherman, et al., 2006); inability to control project scope (Boehm,

1991; Ewusi-Mensah, 2003; Markus and Keil, 1994); and lack of adequate technical

skills (Boehm, 2006; Ewusi-Mensah, 2003; Sumner, 2000).

Development practices and failure to manage risks are not the only failing. Most

companies do not follow any methodology or life cycle. They simply use the same tools

and practices they have used in the past, much like using a hammer to fit a screw because

it is the tool that is known. Such uses of methods that do not fit the problem are known to

contribute to project failures (Boehm, 2006; Brinkkemper, 1996; Mai, et al., 2005).

Agile has recently been touted as a life cycle that provides productivity with less

formality than past methods and life cycles. It provides a useful example of the

shortcomings that are present to greater or lesser degrees in other methods and life cycles.

Many practitioners of the current fad Agile do little or no requirements definition before

beginning to code (Abrahamsson, et al., 2002). In addition, there are several different

methods within the 'agile' life cycle and each is limited in some way. For instance, agile

spreadsheet development (ASD) focuses on concepts and culture rather than on

functionality and correctness; extreme programming (XP) develops no overall view,

making integration of final products difficult; rational unified process (RUP) does not

provide details on how to obtain requirements or how to tailor its methods for a given

project type; and Scrum details 30-day release cycles but provides no integration or

 Sprouts - http://sprouts.aisnet.org/10-172

Page 12

acceptance testing in its methodology descriptions (Abrahamsson, et al., 2002). In

addition, many practitioners of agile methods select simple, easily implemented

functionality as the early project work to provide fast turnaround and build rapport with

their clients (Boehm, 2006). However, they then miss the complexity of later

functionality and experience difficulty integrating complex functions after-the-fact

(Boehm, 2006). When this functionality affects the user interface, projects are more

likely to be cancelled (Markus and Keil, 1994).

Application Development Management Issues
Developers are not alone in their application development failings. Managers also

are less attentive to application development than needed to ensure their success (Sumner,

2000). The role of a project manager traditionally has been as the most senior technical

person who also has managerial duties for the project (Conger, 1994). For instance, the

project manager and key technical staff decide the methodology, the life cycle, the tools,

and the resources needed for the project. In addition, the project manager, with key staff,

develops the work breakdown, project plan, and skills desired for each task. The project

manager is the main client liaison. In this role, the project manager attends the

requirements elicitation meetings, sometimes as the analyst, gaining the understanding of

the required functionality. In addition, the project manager is the official communicator

of project status, problems, and work. Thus, the role has many gate-keeping functions

that provide for filtering information (Keil, 1995), gaining commitment of other

managers and user management (Sumner, 2000), and hiring or firing employees from a

project (Conger, 1994; Sumner, 2000).

Risks associated with the managerial roles include scheduling, budgeting,

assignment of personnel, management of personnel, acquisition of sufficient IT resources,

dealing with training needs of assigned staff, ensuring sufficient user involvement dealing

with problems as they arise, and controlling scope creep (Boehm, 2006; Ewusi-Mensah,

2003; Markus and Keil, 1994; Sherman, et al., 2006; Sumner, 2000). To the extent that

these risks are not attended to, project success becomes less likely.

Thus, from analysis of failures, if the wrong people do the wrong things, use the

wrong methods and techniques, and do not attend to the necessary variety of complexity,

application success is unlikely. Fixing these problems sounds like a simple matter of

 Sprouts - http://sprouts.aisnet.org/10-172

Page 13

attention to details but there is an elusive 'sweet spot' of project contextualizing that needs

further research to become fully articulated (Conger, 2010c).

KEY ISSUES IN FUTURE APPLICATION DEVELOPMENT
This section takes a design science perspective of the future needs in IT systems

design to address the shortcomings and incorporate the positive aspects of application

development from the previous section (Hevner et al., 2004). By adapting the seven

guidelines from Hevner, et al. (2004) all aspects of future systems design are evaluated to

identify repetitive themes of application development. The themes are used to develop

the key issues for future systems design.

Systems Artifacts
Application systems are the key artifacts that derive from the development

process (Guideline #1, Hevner, et al., 2004). However, contrary to what is taught in most

systems analysis and design (SAD) texts, the system should not be the sole focus of

development.

The perspective needs to shift from application-as-end to application-as-imbedded

component within work service systems (see Alter, 2010). The two work systems of

interest are the one that serves the main business purpose and the one that supports the

operational application within IT. One way of altering the SDLC is to review each area of

operational support needs during each phase of the chosen life cycle to determine the

applicability of the various services activities (Gupta, 2008). In particular, during

requirements elicitation, the non-functional requirements should be defined for security,

reliability, accessibility, application support, and capacity, to name a few. The purpose of

application development then shifts to become the delivery of IT-based work support

capabilities that provide measurable business value within a services delivery context.

ISO/IEC 15288:2002 for application development is appropriate to initiate this

shift (ISO/IEC, 2002). The standard identifies not only the functional application

requirements for its focus but also advocates consideration of key operational aspects of

applications during development. For instance, the phases in the standard include concept,

 Sprouts - http://sprouts.aisnet.org/10-172

Page 14

development, production, utilization, and support (ISO/IEC, 2002). Each phase contains

activities that look forward to the ability to operate the application as shown in Figure 6.

Phase Application Activities Operational Activities
Concept “The preparation and baselining of

stakeholder requirements and preliminary
systems requirements
(technical specifications for the selected
system concept and usability
specifications for the envisaged human-
system interactions)” (p. 44)

Initial specification of
infrastructure (p. 44)

Development Technical data package, including as
appropriate: 1) hardware diagrams,
simulations; 2) software design
documentation; 3) production plans
training manuals for operators; and 6)
maintenance procedures (p. 45)

Refined objectives for the
production, utilization, support,
and retirement (p. 45)

Production It is presumed that the organization has
available the production infrastructure,
consisting of production equipment, tools,
procedures and competent human
resource (p. 45) to operate the application

Outcome packaged product
transfer to distribution channels or
customers (p. 46)

Utilization The application is "installed and used at
the intended operational sites" (p.46).

The application is "installed and
used at the intended operational
sites" (p. 46).

Support "The Support Stage begins with providing
maintenance, logistics and other support
for the system operations and use" (p. 47)

Support includes " Maintained
system product and services and
the provision of all related support
services " and " logistics, to the
operational sites" (p. 47)

Figure 6. Application and Operations Activities (ISO/IEC, 2002)

The ISO/IEC 15288 standard is too generic to guide all activities but it does

provide a checklist of major items for consideration during each phase of development. If

coupled with ISO/IEC 20000-1, the standard for IT service management, anticipating the

needs of the operational environment at each stage makes application compatibility with

the service in which it is imbedded more likely (ISO/IEC, 2005).

Problem Relevance
In this discussion, relevance (Guideline #2, Hevner, et al., 2004) relates to the

business need for the application and the extent to which the need is met. This broad

definition moves focus from the application artifact to its situated operational context and

includes all aspects of support for applications use in addition to its development quality.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 15

Financial Relevance

A cost-benefit analysis of the application that includes risk assessment and

mitigation strategies, work breakdown and project plan, and an analysis of the expected

financial payback are assumed. As many as 80% of projects are conceived and begun

without any planning beyond what is due in a given time frame (Eberlein and Sampaio do

Prado Leite, 2002). Without expected benefits, application relevance can easily be

sidetracked.

In addition to developing application expectations, post-implementation audits

and performance measures should be conducted to determine that the payback is, in fact,

gained. However, 80% of U.S. companies have no post-implementation audit (Levinson,

2003) and 84% of U.S. companies do not report metrics on financial performance. One

study of seven countries found that at least 67% of companies did not measure IT value

of any kind (Infosecurity.com, 2009).

Business Process Relevance

The relationship between business processes and automation that supports them is

not a well researched area. By focusing on application artifact development and ignoring

its operational context, the solution is likely sub-optimal (Conger, 2010b; Checkland,

1981). In addition, automation without process management is likely to yield no payback

to the parent organization while process design preceding automation can yield a 20%

return (Dorgan and Dowdy, 2004).

Processes are the heart of services; they are "interface between the strategy and its

execution" (Goldenstern, 2010, p. 6). With this crucial role, Goldenstern recommends

that software should conform to an optimized process, interfaces should be simple and

managed, reliance on time and resolution in support actions, task training, and service

training all should be developed. Outcomes of these efforts are rewarded with an average

18% reduction in incident resolution times and a focus on providing customers the 'best'

service (Reichheld, 2003), improved customer satisfaction and loyalty, and sales

(Goldenstern, 2010). In addition, process "standardization truly enables leverage,"

leading to reduced cost of creating applications by 50% to 80% while boosting

companies' ability to bring new products to market faster (King, 2009, p. 1). Process

standardization can generate repeatable outcomes at a defined level of quality. Processes

 Sprouts - http://sprouts.aisnet.org/10-172

Page 16

need to be viewed, not as stand-alone any more than an application is stand-alone, but as

embedded within a service context that delivers value to the organization's customers.

The notion of process as embedded in a service is discussed in the section on contribution.

A focus only on the business process of an application means ignoring the support

processes needed by IT staff. Some authors argue for addition of user interaction analysis,

non-functional requirements, and change management to improve software quality

(Conger, 2010b; Eberlein and Sampaio do Prado Leite, 2002; Gupta, 2008; Pollard and

Cater-Steel, 2009). For example, standardized messages that identify failings in an

application should be designed and used across applications to simplify help desk outage

resolution (Gupta, 2008). This implies design of two types of error messages -- those for

business users and those for IT users. In addition to these simple changes, definition of

standard processes for the IT function that incorporate services perspectives should lead

to improved application quality both for the business function and for IT operations

support functions.

Development Rigor
Rigor in Hevner, et al. (Guideline #5, 2004) refers to research rigor while herein

the rigor is directed at application development and its operational instantiation. System

quality is the focus of this discussion.

System quality has been viewed from several perspectives relating to the overall

system, application, and its information. System quality in terms of operations refers to

reliability, availability, accessibility, security, and compliance (Gorla and Lin, 2010; Van

Bon, 2007). Application quality relates to effective development and deployment of

applications (Arnott and Pervan, 2008); reliability, ease of use, and usefulness (Gorla and

Lin, 2010); and completeness, consistency, simplicity of learning, flexibility,

sophistication, reliability, customizability, and functionality (Guimaraes, et al., 2009;

Petter, et al., 2008). Information quality characteristics relate to accuracy, completeness,

currency and format (Nelson, et al., 2005).

System quality research is an expansion of application quality that includes

characteristics of operational, information, and service quality as contributing to overall

quality perceptions (Arnott and Pervan, 2008; Gorla and Lin, 2010; Petter, et al, 2008).

Key facets of application context are omitted by failing to evaluate the human-computer

 Sprouts - http://sprouts.aisnet.org/10-172

Page 17

interface or the variety of users from business users to IT operations users and Help Desk

staff (cf., Guimaraes, et al., 2009). Yet, no comprehensive definition of system quality in

all of its contexts has emerged. Operational quality present in, for instance, the IT

Infrastructure Library (ITIL) (Van Bon, 2007), is not discussed in texts on systems

analysis and design. Nor do the frameworks and standards that include operational

quality describe how best to design applications for operational or service quality. These

are areas for future research. As a result, system quality needs careful definition for each

application context to ensure that the development activities address all requirements.

Systems as Search Process
Thinking of a system as a search process (Guideline #6, Hevner, et al., 2004)

leads to discussion of innovation and improvisation in the application development

activity.

Innovation

Innovation relates to the introduction of processes, artifacts, tools, techniques, or

technology that is new to an organizational setting (Prescott and Conger, 1995).

Innovation is a key CIO priority (CIO, 2009). Innovation is viewed as integral to

information systems since the IT function is generally tasked with bringing new

technologies into the organization. Innovation research relating to IT usually refers to the

adoption of technology. Most studies relate to organizational adoption that omits or

minimizes the role of IT organizations in the adoption process (Prescott and Conger,

1995).

Innovations in IT units can be either technology or process related. Of six such

studies, five relate to individual adoption of a technology and one relates to general

database machine innovation (Prescott and Conger, 1995). One shortcoming of research

on IT innovation is that research on adoption and use of new techniques, methods, design

ideas, frameworks and other process-related innovations is lacking. As a result,

innovation impacts on the IT organization remain largely unknown.

Changes to life cycles for innovation are also mostly missing with the exception

of environmental innovations. Environmentally sustainable innovations are the "IS-

enabled organizational practices and processes that improve environmental and economic

performance" (Melville, 2010, p. 1). Evaluation of outsourcing, co-production, and

 Sprouts - http://sprouts.aisnet.org/10-172

Page 18

environmentally improved technology for any new application can reduce its

environmental impacts (Conger, 2010b). Altering application development to include a

life cycle analysis of the application's environmental impacts and mitigating or negating

the impacts to the extent possible is also suggested (Melville, 2010). Such altering of the

life cycle might be done for any innovation, but the environmental innovation

recommendations demonstrate opportunities to develop innovation adoption research and

practice for IT applications beyond its present state.

Improvisation

Improvisation is comprised of extemporaneous processes based on expertise that

serve as coping mechanisms (Ciborra, 1996, 1998). Improvisation is important in

information systems development because regardless of how standardized a process is,

unexpected events, outcomes from prior decisions, and actions by project members

require constant evaluation of impacts and adjustment of schedule, outcome definition, or

budget, as needed.

While improvisation is needed, the result still needs the requisite discipline of any

planned activity (Ciborra, 1998). The balance between improvisation and standardization

is precarious but the outcomes of both require knowledge and discipline to develop

purposefully designed artifacts (Hevner, et al., 2004). More research on the nature,

idiosyncrasy, and manageability of improvisation is needed to understand how it works in

IT applications sourcing.

Design Evaluation
This section discusses design evaluation for application systems in terms testing

and walkthroughs (Guideline #3, Hevner, et al., 2004)

Walkthroughs are structured meetings for finding errors in requirements, designs,

code, test plans, or other system artifacts (conger, 1994). Walkthroughs are successful at

finding significant errors and, by having the errors corrected during the development

process, walkthroughs significantly reduce the cost of the application. The estimated

annual cost of software defects is $59 billion, of which $22 billion could be avoided

through walkthroughs (Rombach, et al., 2008). Only about 35% of companies practice

 Sprouts - http://sprouts.aisnet.org/10-172

Page 19

any type of walkthrough, providing a significant opportunity for its adoption (Rombach,

et al., 2008).

Testing is the art of finding problems in code (Myers, 1979). Testing as an area of

application activity can focus on everything from individual code modules to stress

testing to find limits of an application's use. Problems can relate to functionality,

formatting, lack of relationship to requirements, limits or constraints, security, usability,

and performance, to name a few (Myers, 1979; Kaner, 2001, 2003). Many organizations

have a quality assurance function that develops acceptance tests as a gate keeping

function for the client organizations.

Testing failures are well known and some of those failures lead to tragedy.

Between 2008 and 2010, "system vendors reported 260 system malfunctions that caused

44 injuries and six deaths" in a single application (Brewin, 2010, p. 1). Most applications

enter their production state with known errors and many applications experience errors

throughout their productive lives (Baschob and Piott, 2007).

There is little agreement on many issues in testing, including the following. What

constitutes testing? Are there testing 'best practices'? Is all testing contextual and unique?

Should waterfall or agile be used as the overall model for when testing should be done?

Should testing focus on functionality or usability or something else? Are scripts the best

method for testing (Kaner, 2001, 2003)? The ultimate goal of testing research is fully

automated testing but that remains an elusive dream at present (Bertolino, 2007). In

addition to needing more research, testing is a subject often left out of programming

classes beyond getting syntax and logic of simple programs to work. As a result, while

testing sophistication has increased measurably in the last ten years, most practitioners do

not know about that progress (Bertolino, 2007).

Organizational Contribution
While Hevner, et al. (Guideline #4, 2004) address research contribution, in the

context of application quality, thinking of organizational contribution is more appropriate.

Completing an application is insufficient to develop a contribution. Rather, the

application in use, must comply with all of its needs. The irony of the prior statement is

that application developers tend to think of 'needs' as only functional requirements.

Rather functional and non-functional requirements are necessary, as are requirements for

 Sprouts - http://sprouts.aisnet.org/10-172

Page 20

more ephemeral aspects of contribution such as simplicity, learnability, and so on

(Nielsen, 2000). To determine value added to an organization, IT must measure and

manage its activities, particularly those that determine organizational success. Current

thinking on these operational activities is that taking a services orientation that mirrors

the services orientation the organization seeks to perfect, will lead to value-adding

outcomes for IT. This section develops the concepts of service orientation and discusses

it in the context of the IT operations environment.

A 'service orientation' is one in which the organization provides intangible service

thus, generating value to its customers. Value includes many characteristics for instance,

need satisfaction, prompt and friendly interactions, and minimal clicks on a web site

(Conger, 2010c; Deloitte, 2002). A service design takes a defined process and situates it

in a governance and management structure, defines number and nature of work for

multiple locations, defines software, data, and IT resource support for the functions and

roles, and defines service levels for customer delivery including response time, service

desk response time, and so on (Conger, 2010a). This differs from typical application

design by defining the application plus its customer context, plus its IT contexts for on-

going operation. Services are composed of key components for utility and warranty.

Utility addresses the traditional functional aspects of applications and conduct of work

(Conger, 2010a). Warranty addresses the non-functional, but increasingly important

aspects of IT work. Examples of warranty include computing availability and reliability,

response time for a service request, response time for simple outages, etc. Services have a

life cycle that parallels the business product life cycle, beginning with business strategy,

progressing to initiatives, tactics, processes and products, and production. ITSM life

cycle mirrors this business life cycle and should be fully integrated and part of each step

of the business service life cycle, from strategy formulation through retirement (Conger,

2010a).

Moving to a service orientation is not without cost. Some of the key costs relate to

training, travel, and communications for project team members involved in design and

implementation of the services efforts. Understanding and communicating semantic

nuances of terminology and getting to an understanding of what it means to deliver a

service is an early challenge (Winniford, et al., 2009). Training and communications

 Sprouts - http://sprouts.aisnet.org/10-172

Page 21

costs extend to anyone touched by or managing services changes. Changing culture to a

service-orientation is a difficult aspect of services adoption and also adds to service

adoption costs (Conger and Picus, 2009).

ITSM innovation requires management of tradeoffs – development of an ITIL

bureaucracy versus standardizing but remaining Spartan, blind adoption of all of ITIL or

ISO/IEC 20000 versus adoption of selected processes and services based on need and

value-adding potential, and rote versus contextualized adoption of processes and service

(Cater-Steel, et al., 2008, Conger and Schultze, 2008; Marrone and Kolbe, 2010a, 2010b).

Many benefits have accrued to companies that successfully implement services.

Examples of benefits include missed service level agreement target penalty reductions of

as much as 80% in two years (Conger and Picus, 2009), increases in service quality,

global process standardization and resulting reduced expenses and increased customer

satisfaction, reduced outages and related downtime of operations, improved staff mobility,

improved financial control, and improved IT morale (Cater-Steel, et al., 2008; Conger

and Picus, 2009; Conger and Schultze, 2008; Dubie, 2002; Hochstein, et al., 2005; Lynch,

2006; Marrone and Kolbe, 2010a, 2010b; Pollard and Cater-Steel, 2009; Potgeiter, et al.,

2005).

Though services provide significant benefits upon adoption and maturation of

practice, issues with ITSM adoption exist. Challenges of adopting ITIL include the need

for executive sponsorship, the need but business understanding of ITIL objectives,

adequate resources, time, people with ITIL and change management knowledge and

skills, funding for training, travel, certification if needed, and implementation activities,

maintenance of momentum toward changes (Marrone and Kolbe, 2010). The

demonstration of results after a short period of ITIL use is important to silencing change

critics (Hochstein et al. (2005). Yet, virtually every project reports resistance even with

quick results that must be successfully countered to ensure project success (Cater-Steel,

et al., 2008; Conger and Schultze, 2008; Conger and Picus, 2009; (Marrone and Kolbe,

2010).

The risk-reward payoff is significantly weighed in favor of rewards for successful

ITSM projects (Cater-Steel, et al., 2008; Conger and Picus, 2009; Conger and Schultze,

2008; Potgeiter, et al., 2005). However, two aspects of services are important to consider

 Sprouts - http://sprouts.aisnet.org/10-172

Page 22

for organizational contribution. First, is the application as imbedded in its business

service function and the value that accrues to the organization as a result of the

application. There is little research on this area but it is a crucial aspect of an application

that determines its importance to the business. Second, is the application's operational

environment and how process-driven and smoothly it operates in both normal and outage

situations. There is also little research on this area beyond case studies. Thus, both areas

need further research to describe how best to accomplish service embeddedness and its

contribution to the business.

Systems as Communication
The concept of systems as communication, adapting from Hevner, et al. Guideline

#7 (2004), is not well articulated. One conception is that of how information accessibility

is a form of communication between the application and the user (Culnan, 2007). From

this perspective, communication occurs from physical access to the source, the interface

to the source, and the ability to physically retrieve potentially relevant information

(Culnan, 2007).

A different perspective is that the human interface is a form of communication

between the developers (and management) to the application users (Nielsen, 2000). From

this perspective, application usability and user experience are key outcomes of the

communication.

In both senses of the term communication, application usability refers to

incorporation of both needed functionality to accomplish a goal and characteristics such

as effortless learning and remembering, usage efficiency, eliciting few errors, and

subjectively pleasing use (Nielsen, 2000). Usability is an application feature that has a

long history in terms of human-computer interaction (HCI) research with seminal works

by, for instance, Ben Shneiderman (1997). Low usability relates to non-use of

applications (Markus and Keil, 1994). However, usability is measured as a component of

information quality, implying that the only usability is for data generated by an

application (Petter, et al., 2008). Usability should also be a feature of application quality

to develop measures of the extent to which the interface engages and is useful to its users

(Nielsen, 2000, 2005).

 Sprouts - http://sprouts.aisnet.org/10-172

Page 23

User experience refers to the feelings and attitudes developed by users of an

application and embodied in the application characteristic usability. The term user

experience is more general than many related, constituent predecessor terms such as user

satisfaction, information system effectiveness, performance, and so on (Melone, 1990).

Product usability and user experience are related because they evaluate different

aspects of the same phenomena. The phenomenon under study ultimately is the user

experience. The assumption is that the more enjoyable and satisfying the experience, the

more likely the user is to use a system. Melone (1990) analyzes outcomes while the

research conducted by Nielsen (2000) analyzes characteristics that lead to the outcomes.

Nielsen articulates characteristics to be designed into an IT artifact, which ultimately is

the goal of application development and the approach that will be discussed here.

Key components of usability are ease of learning, ease of remembering, usage

efficiency, minimal error elicitation, and usage esthetics (Nielsen, 2000). Note that

functionality is still important in terms of practical acceptability but that usability focuses

on user perceptions and ability to actually use the application. Learnability and

memorability both have aspects of design for experts and novices in either the knowledge

domain or in use of computer interfaces. Learnability refers to the length of time and

amount of effort required to learn the software. Memorability refers to the extent to

which the software is easily memorized. At best, a usable interface is intuitive, requiring

little or no learning and little effort. One problem with usability is that the user is defined

as the end user, who will be the daily user of the interface. However, little attention is

given to the Help Desk staff that must also interface with the application whenever it

exhibits problems. Similarly, there is little thought given to error messages. For instance,

"Bad data" often seen as an error message, however, the name of the data field, its

location in the program, the exact error, and guidelines on how to fix the error all are

missing. If provided, the time to locate and remedy bugs can be cut by orders of

magnitude (Gupta, 2008).

Efficiency relates to user development of a consistent, steady-state of

performance over time that does not require extraneous, non-value adding activities.

Efficiency, too, is viewed from the perspective of the business end user. If Help Desk

efficiency were also considered during design, resolution time user and system problem

 Sprouts - http://sprouts.aisnet.org/10-172

Page 24

would be reduced (Gupta, 2008). With poor error messages, no learning can take place

beyond how to locate a problem in this program, and therefore, no efficiencies can be

gained.

Satisfaction relates to game-like qualities that allow a user to develop a state of

flow such that they become engaged in the application and derive satisfaction from its use.

Most applications ignore this aspect of design for all users, not just IT support. While

there is high quality research on interface design and usability, there is no known

research that links all of the characteristics to user experience (e.g., Norman, 2002;

Shneiderman, 2004). Most application research links usability characteristics to

application usage or generic user satisfaction. There are few best practices that identify

all aspects of all of the components in a single publication or that are universally

applicable across application areas, cultural contexts, or user types (Nielsen, 2000). As a

result the application developer must read a significant body of work (c.f., Jokela, et al.,

2003; Jones, 1992; Kaikkonen, et al., 2005; Lewis, 1995; Nielsen, 2000, 2005; Norman,

1998; Park, 1997; Shneiderman, 2000, 2004) to develop even an inkling of the global

thought on usability and the parent field of research on human computer interaction

(HCI) (Zhang, et al., 2007).

Early ISO standards relate to usability – ISO/IEC 13407 and ISO/IEC 9241-11

(ISO/IEC, 1999; Jokela, et al., 2003). ISO 13407 defines user-centered design as the

"level of principles, planning, and activities" while ISO 9241-11 approaches usability

from a goal-oriented perspective to achieve "effectiveness, efficiency, and satisfaction"

(Jokela, et al., 2003, p.54). Both are replaced by ISO 9241-210:2010, part of a

comprehensive standard that includes 28 sub-standards relating to every area of human

interaction (ISO 9241-210:2010, 2010). However, all of the standards are generic, non-

specific, and oriented toward a process for involving users in the development of

interfaces. This approach, while useful, ignores the characteristics of usability and, as a

result, is too abstract to guarantee any usability outcomes.

User-centered design methods, based on the ISO standards developed to deal with

usability issues and ensure that user needs are included in interface design (Mao, et al.,

2005; Thayer and Dugan, 2009). User-centered design has grown in practice but its

practice is has no standard method for its conduct (Alonso-Rios, et al., 2010; Mai, et al.,

 Sprouts - http://sprouts.aisnet.org/10-172

Page 25

2005; Thayer and Dugan, 2009). Even with all of the standards and methods, user-

centered design has not found its way into mainstream industry practice and is used by

under 40% of projects (Mai, et al., 2005; Thayer and Dugan, 2009).

Finally, much usability research is nonspecific, fragmented, not linked to user

experience and not universally applicable. Usability has no agreed on definition and is

studied with many interpretations (Alonso-Rios, et al., 2010). In addition, systems

analysis and design texts generally cover interface design in chapters that provide

information at the level of the ISO standards (cf. Valacich, et al., 2009). Few

programmers learn anything beyond rudimentary rules of thumb for interface design and,

as a result, user satisfaction with custom-developed software because of poor interface

design tends to be very low (Norman, 2002).

To summarize, this section has evaluated the state of application development

from the perspective of design research. Practice has narrowed over the years to focus on

only the aspects of applications that are articulated in SDLCs and methodologies. As a

result, key aspects of applications are missing or insufficient for their purpose. These

aspects include usability, quality, operatability, and attention to all user communities.

Each area discussed in this section provides many opportunities for future research and

improved integration in pedagogy and practice.

LIMITATIONS AND FUTURE RESEARCH
This paper provides a necessarily abbreviated discussion of the history, state, and

issues with SDLC and software analysis and design methodologies to determine future

needs to improve quality and usefulness throughout the organization.

Future research was identified and discussed in the following areas: A need to

define the relative importance of key drivers of successful applications, specific

techniques and processes for developing usable interfaces, best practices in servitizing

applications development, SERVQUAL modifications to include IT services evaluation

and to tease out the nuances between system and service in web sites, application use and

satisfaction relationship elaboration, common methodological checklists of items for

application development consideration, methods to move new techniques into industry

practice, checklists for managerial roles in applications development, usability and user

 Sprouts - http://sprouts.aisnet.org/10-172

Page 26

experience, testing and system characteristics such as ease of use, the role of process in

application development, the extent to which process standardization can contribute to a

higher quality IT product, innovation driven by IT, innovation within IT, the extent to

which improvisation can be institutionalized, uses of improvisation, measurement of

application business value, and communication aspects of applications.

CONCLUSION
This paper evaluates application of methodologies to design systems artifacts and

the challenges of the process. Through this analysis a series of changes to current practice

and needs for future research and practical adaptation are identified. When these changes,

additions, and future needs are examined, they do not differ substantively from

recommendations of many research projects in the related areas. As a profession, we

seem to forget our roots by omitting traditional activities that have led to past successes.

Some of these activities include interface usability design, testing, product quality, and

risk management. If collective forgetting continues, we are forever doomed to repeat past

failings in a never-ending redevelopment of basic tenets. However, if we return to our

roots and begin to identify and hone enduring practices, we improve the probability of

future success in application design and development processes and as a result we also

improve the potential for organizational contribution and relevance. More complex life

cycles or methodologies do not necessarily result. Rather, checklists of issues to be

considered and factored into application development, as needed, are required.

A move toward development of usable applications embedded within

organizational services requires some changes. A services orientation requires

understanding that no application is an end of itself. Rather the application is embedded

in an organizational setting, is used by humans in the course of their work, and should

add value to that work. The 'application user' includes all users, not just those in the non-

IT community. The value adding aspects of applications include their ability to decrease

cycle times, increase quality of services supported, and improve the work life of the

application user. Remedying problems of application development and attending more to

needs for usable services and should reduce costs of in-house development, increase user

satisfaction, and provide clearer value contribution to business success.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 27

REFERENCES

Abrahamson, P., Salo, O., Ronkainen, J. and Wartsa, J. (2002). Agile Software

Development Methods: Review and analysis. Oulu, Finland: VTT Electronics.
Agar, M., Ali, F., Bhasin, S., Kota, N., Landa, R., Linares, G.L., Conger, S. and Landry,

B.J.L. (2007). IT Assessment: Final Report. University of Dallas Capstone
Consulting Report to Pattonair U.S.

Alonso-Ríos, D., Vázquez-García, A., Mosqueira-Rey, E., & Moret-Bonillo, V. (2010).
Usability: A Critical Analysis and a Taxonomy. International Journal of Human -
Computer Interaction, 26(1), 53-63.

Alter, S. (2010). Viewing Systems as Services: A Fresh Approach in the IS Field.
Communications of the Association for Information Systems: 26, Article 11.
Downloaded June 23, 2010 from http://aisel.aisnet.org/cais/vol26/iss1/11

Arnott, D. and Pervan, G. (2008). Eight key issues for the decision support system
discipline. Decision Support Systems, 44(3), pp. 657-672.

Avison, D.E. and G. Fitzgerald (1988, October) Information systems development:
Current themes and future directions Information and Software Technology, 30(8),
pp. 458-466.

Avison, D.E. and Fitzgerald, G., (2003). Where now for Development Methodologies?
Communications of the ACM, 46(1), pp. 79-82.

Avison, D.E. and Fitzgerald, G., (2006). Developing and Implementing Systems. W.
Currie, and R. Galliers, Editors. Rethinking MIS. Oxford, England: Oxford
University Press, pp. 250-278.

Avison D.E. and Gregor, S. (2009). An exploration of the real or imagined consequences
of information systems research for practice. In Proceedings of the 17th European
Conference on Information Systems S. Newell, E. Whitley, N. Pouloudi, J.
Wareham, L. Mathiassen, eds., pp. 1780-1792, Verona, Italy.

Baschab, J. and Piott, J. (2007) The Executive’s Guide to Information Technology, 2nd
Edition, NY: Wiley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland J., and Thomas, D. (2001). The Agile
Manifesto. Downloaded on May 1, 2010 from http://agilemanifesto.org/

Bertolino, A. (2007, May 23 - 25). Software Testing Research: Achievements,
Challenges, Dreams. In 2007 Future of Software Engineering -- International
Conference on Software Engineering. IEEE Computer Society, Washington, DC,
85-103.

Boehm, B. (1981). Software Engineering Economics, NJ: Prentice Hall.
Boehm, B., (1988, May) A Spiral Model for Software Development and Enhancement.

Computer, 21(5), pp. 61-72.
Boehm, B. (2006, May, 20-28). A View of 20th and 21st Century Software Engineering.

ACM Proceedings of the International Conferences on Software Engineering '06,
Shanghai, China, pp. 12-30.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 28

Booch, G., Rumbaugh, J. and Jacobson, L. (1999). The Unified Modeling Language User
Guide. Addison-Wesley Longman Inc.

Brewin, B. (2010, March 4) Glitch prompts VA to Shut Down e-health data exchange
with Defense. NextGov.com. Downloaded on April 27, 2010. URL=
http://www.nextgov.com/site_services/print_article.php?StoryID=ng_20100304_
9977

Brinkkemper, S. (1996). Method Engineering: Engineering of information systems
development methods and tools. Information and Software Technology, 38, pp.
275-280.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4), pp. 10-19.

Brooks, Jr., F.P. (1975) The Mythical Man-Month. Reading, MA: Addison-Wesley.
Brynjolfsson, E. and Hitt, L. (2003) Computing Productivity: Firm-level Evidence,

Review of Economics and Statistics, Vol. 84, No. 4.
Cater-Steel, A. and Toleman, M. (2007). Education for IT service management

standards," International Journal of IT Standards and Standardization Research,
5, 27-41.

Checkland, P. (1981) Systems Thinking, Systems Practice. London: Wiley.
Chen, X. and Sorenson, P. (2007, November). Toward TQM in IT Services. Proceedings

of the ASE Workshop on Automating Service Quality. Atlanta, Georgia, USA. pp.
42-48.

Ciborra, C. (1998). Notes on Improvization and time in Organizations. Journal of
Accounting, Management and Information Technology, 9, pp. 77-94.

Ciborra, C. (1996, Mar/Apr). The Platform Organization: Recombining Strategies,
Structures, and Surprises. Organization Science. 7(2), pp. 103-118.

Conger, S. (1994). The New Software Engineering, NY: Thomson Publishing.
Conger, S. (2009). Information Technology Service Management and Opportunities for

Information Systems Curricula. International Journal of Information Systems in
the Service Sector (IJISSS) Special Issue on The Engineering, Management, and
Philosophy of Service-Oriented Information Systems, 1(2), pp 58-68.

Conger, S. (2010a). IT Infrastructure Library ITIL v3. The Handbook of Technology
Management Volume I, Hossein Bigdoli, Editor. NY: John Wiley & Sons. pp.
244-256.

Conger, S. (2010b). Process Mapping and Management, NY: Business Expert Press.
Conger, S. (2010c). Finding the Sweet Spot in ITIL Implementation. Accepted for

presentation at Pink Elephant IT Management Conference, Las Vegas, NV,
February 20-23, 2011.

Conger, S. (2011). Finding the sweet spot in IT service management implementation.
Accepted for presentation at Pink Elephant Annual Conference, Las Vegas,
February, 2011.

Conger, S. and Landry, B.L.J. (2009). Problem Analysis: When established techniques
don't work. Proceedings of 2nd Annual Conf-IRM Conference, Al-Ain, UAE,
May 19-24.

Conger, S. and Picus, B. (2009). Sustainable Certification using ISO/IEC 20000,"
American Society for Quality's Quality Management Forum, Spring, pp. 14-19.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 29

Conger, S. and Pollard, C. (2009). Servitizing the Introductory MIS Course. Proceedings
of the AIS Special Interest Group on Services (SIG SVC) Workshop, Phoenix, AZ.
December 14, 2009.

Conger, S. and Schultze, U. (2008). IT Governance and Control: Making sense of
Standards, Guidelines, and Frameworks," Chicago, IL: The Society for
Information Management International, Advanced Practices Council.

Conger, S., Venkataraman, R., Hernandez, A., and Probst, J. (2009). Market Potential for
ITSM Students: A Survey. Information Systems Management, Special Issue on IT
Service Management, Aileen Cater-Steel (Ed.). 26(2), pp.176-181.

Culnan, M.J. (2007). The dimensions of perceived accessibility to information:
Implications for the delivery of information systems and services. Journal of the
American Society for Information Science. 36(5), pp. 302-308.

Cuyler, T. and Schatzberg, L. (2003). Customer service at SWU's Occupational Health
Clinic. Journal of Information Systems Education, 14(3), 241-246

De Marco, T. and Plauger, P. J. (1979). Structured Analysis and System Specification,
Upper Saddle River, New Jersey: Prentice Hall.

Deloitte. (2002). Achieving, Measuring, and Communicating IT Value. Deloitte &
Touche Consulting, referenced through CIO Magazine. URL=
http://www.cio.com/sponsors/041503dt/complete.pdf

DeLone, W. H., and McLean, E.R. (1992, March). Information Systems Success: The
Quest for the Dependent Variable, Information Systems Research 3(1), pp. 60-95.

DeLone, W. H., and McLean, E.R. (2003, Spring). The DeLone and McLean Model of
Information Systems Success: A Ten-Year Update, Journal of Management
Information Systems 19(4), pp. 9-30.

DeMarco, T. (1978) Structured analysis and system specification. Prentice Hall.
Dodd, J. L, & Carr, H. H. (1994). Systems development led by end-users. Journal of

Systems Management, 45(8), 34.
Doran, T. (2000, October 25). Compliance Frameworks: Software Engineering Standards,

Washington, D.C.: NDIA Systems Engineering & Supportability Conference.
URL=http://sce.uhcl.edu/helm/SENG_DOCS/compliance_framework.pdf

Dorgan, S. J. and Dowdy, J. J. (2004, November). When IT lifts productivity. The
McKinsey Quarterly, 4, pp. 13-5.

Doyle, K. G., Wood, J.R.G. and Wood-Harper, A.T. (1993). Soft systems and systems
engineering: on the use of conceptual models in information system development.
Information Systems Journal 3(3), pp.187-198

Dubie, D. (2002, October 1). Procter and Gamble touts IT services model, saves $500
million. ComputerWorld Management.

Eberlein, A. and Sampaio do Prodo Leite, J.C. (2002, September). Agile requirements
definition: A view from requirements engineering. In Proceedings of the
International Workshop on Time-Constrained Requirements Engineering
(TCRE’02).

Ewusi-Mensah, K. (2003). Software development failures: anatomy of abandoned
projects, Boston, MA: MIT Press.

Fitzgerald, B. and Fitzgerald, G. (1999). Categories and Contexts of Information Systems
Development: Making Sense of the Mess. In Proceedings of the Seventh
European Conference on Information Systems (Pries-Heje J, Ciborra CU, Kautz K,

 Sprouts - http://sprouts.aisnet.org/10-172

Page 30

Valor J, Christiaanse E, Avison D, Heje C eds.), Copenhagen Business School,
Copenhagen, June 23-25, pp. 194-211.

Gallagher, M., Link, A., and Petrusa, J. (2005). Measuring Service Sector Research and
Development. Washington, D.C.: National Institute for Science and Technology,
March. Downloaded May 1, 2010 from http://www.nist.gov/director/prog-
ofc/report05-1.pdf

Galup, S., Dattero, R., Quan, J. and Conger,S. (2009). An Overview of IT Service
Management," Communications of the ACM, 52(5), pp 124-128.

Goldenstern, C. (2010). Closing the 21st Century Service Capability Gap. Kepner-Tregoe,
p. 4. Downloaded on April 28, 2010.
URL=http://www.tsia.com/secure/whitepapers/Closing_the_21st_Century_Servic
e_Capability_Gap.pdf

Gorla,N. and Lin, S.-C. (2010). Determinants of software quality: A survey of
information systems project managers. Information and Software Technology.
Amsterdam, 52(6), p. 602.

Guimaraes, T., Armstrong, C.P., and Jones, B.M. (2009). A New Approach to Measuring
Information Systems Quality. The Quality Management Journal. Milwaukee,
16(1), pp. 42-55.

Gupta, D. (2008, September 14-16) Servitizing Applications. Presentation at the 3rd
Academic Forum at the itSMF-USA Conference, San Francisco, CA.

Hevner, A.R., March, S.T., Park, J. and Ram, S. (2004). Design Science in Information
Systems Research, Management Information Systems Quarterly, 28(1), pp. 75-
105.

Høegh, R. T. (2006, November 20 – 24). Usability problems: do software developers
already know? In Proceedings of the 18th Australia Conference on Computer-
Human interaction: Design: Activities, Artifacts and Environments (OZCHI '06),
J. Kjeldskov and J. Paay, Eds. Sydney, Australia. 206, pp. 425-428.

Hochstein, A., Tamm, G., and Brenner, W. (2005, May 26-28) Service-Oriented IT
Management: Benefit, Cost and Success Factors. In Proceedings of the Thirteenth
European Conference on Information Systems (Bartmann D, Rajola F, Kallinikos
J, Avison D, Winter R, Ein-Dor P, Becker J, Bodendorf F, Weinhardt C eds.), pp.
911-921, Regensburg, Germany.

InfoSecurity.com. (2009). Companies Invest in IT but Do Not Measure It.
Infosecurity.com. Downloaded on May 1, 2010 from http://www.infosecurity-
us.com/view/3046/companies-invest-in-it-but-do-not-measure-it-value/

ISO/IEC (1995) ISO/IEC 12207:1995 Standard for Information Systems Life Cycle
Processes. International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC). Washington, D.C.

ISO/IEC (2002) ISO/IEC 15288:2002. Standard for Systems Engineering. International
Organization for Standardization and International Electrotechnical Commission,
(ISO/IEC). Washington, D.C.

ISO/IEC (2005) ISO/IEC 20000-1: 2005 Standard for Information Technology – Service
Management, Part 1: Specification. International Organization for
Standardization and International Electrotechnical Commission, (ISO/IEC).
Washington, D.C.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 31

ISO/IEC (2008) ISO/IEC 12207:2008 Systems and software engineering -- Software life
cycle processes. International Organization for Standardization and International
Electrotechnical Commission, (ISO/IEC). Washington, D.C.

ISO/IEC (2010) ISO/CD 9241-210:2010 (2010) Ergonomics of human- Part 210:
Human-centred interactive systems International Organization for Standardization
and International Electrotechnical Commission, (ISO/IEC). Washington, D.C.

Jackson M. A. (1975). Principle of Program Design. NY: Academic. Press.
Jacobson, I., Booch, G. and Rumbaugh, J. (1999). Unified Software Development Process,

Reading, MA: Addison-Wesley.
Jokela, T., Iivari, N., Matero, J., and Karukka, M. (2003.) The standard of user-centered

design and the standard definition of usability: analyzing ISO 13407 against ISO
9241-11. In Proceedings of the Latin American Conference on Human-Computer
interaction (Rio de Janeiro, Brazil, August 17 - 20, 2003). CLIHC '03, vol. 46.
ACM, New York, NY, pp. 53-60. Downloaded on May 1, 2010 from
http://portal.acm.org/citation.cfm?id=944519.944525

Jones, J. C. (1992). Design Methods, Second Edition. NY: John Wiley & Sons.
Kaikkonen, A., Kallio, T., Kekäläinen, A., Kankainen, A., and Cankar, A. (2005).

Usability Testing of Mobile Applications: A Comparison between Laboratory and
Field Testing. Journal of Usability studies, 1(1), pp. 4-16.

http://en.wikipedia.org/wiki/Software_testing - cite_ref-34Kaner, C. (2001). NSF grant
proposal to "lay a foundation for significant improvements in the quality of
academic and commercial courses in software testing. Testingeducation.org.
Downloaded on April 27, 2010
URL=http://www.testingeducation.org/general/nsf_grant.pdf.

Kaner, C. (2003). Measuring the Effectiveness of Software Testers. Star East.
Downloaded on April 27, 2010 URL=http://www.testingeducation.org/a/mest.pdf.

Keil, M. and Carmel, E. (1995). Customer-developer links in software development.
Communications of the ACM 38, 5 (May. 1995), 33-44.

Keil, M. (1995). "Pulling the Plug: Software Project Management and the Problem of
Project Escalation," Management Information Systemns Quarterly, 19(4).

King, J. (2009, December 7). IT's top tier: Strong and steady leadership. Computerworld
Downloaded on June 23, 2010 from
https://www.computerworld.com/s/article/print/344381/IT_s_top_tier_Strong_and
_steady_leadership?taxonomyName=Management&taxonomyId=14.

Levinson, M. (2003, October 1). How to Conduct Post-Implementation Audits. CIO
Magazine. Downloaded March 10, 2010 from
http://www.cio.com/article/29817/How_to_Conduct_Post_Implementation_Audit
s

Lewis, J.R. (1995). “IBM Computer Usability Satisfaction Questionnaires: Psychometric
Evaluation and Instructions for Use,” International Journal of Human-Computer
Interaction, 7(1):57–78

Lynch, C. G. (2006, March 6). Most Companies Adopting ITIL® Practices," CIO
Magazine.

Lyytinen, K. and Robey, D. (1999). Learning Failure in Information Systems
Development. Information Systems Journal 9, pp. 85-101.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 32

Mao, J-Y., Vredenburg, K., Smith, P.W., and Carey, T. (2005, March). The state of user-
centered design practice. Communications of the ACM. 48(3), pp. 105-109.

Markus, M.L., and Keil, M. (1994). If We Built It, They Will Come: Designing
Information Systems that People Want to Use. Sloan Management Review. 35(4) ,
pp. 11-25.

Marrone, M. and L. M. Kolbe. (2010a, February 23-25). Providing more than just
operational benefits: An empirical research. in Proceedings of Multikonferenz
Wirtschaftsinformatik 2010, M. Schumann, Ed. Göttingen, Germany, pp. 61-63.

Marrone, M. and L. M. Kolbe. (2010b, June 6-9). ITIL and the creation of benefits: An
empirical study on benefits, challenges and processes. Proceedings of the
European Conference on Information Systems (ECIS), Pretoria, S. Africa.

Martin, J. (1991). Rapid Applications Development. NY: Macmillan.
Mathiassen, L. And Nielsen, P. A. (1989). Soft Systems and Hard Contradictions -

Approaching the Reality of Information Systems in Organizations.: Journal of
Applied Systems Analysis, Vol. 16.

Melone, N.P. (1990). A Theoretical Assessment of the User Satisfaction Construct in
Information Systems Research. Management Science. 36(1), pp. 76-86.

Melville, N.P. (2010). Information Systems Innovation for Environmental Sustainability,
MIS Quarterly, 34(1), pp. 1-21.

Myers, G. J. (1979). The Art of Software Testing. John Wiley and Sons.
Nelson, R.R., Todd, P.A., and Wixom, B.H. (2005). Antecedents of information and

system quality: an empirical examination within the context of data warehousing,
Journal of Management Information Systems. 21 (4), pp. 199–235.

Nielsen, J. (2000). Usability Engineering. San Diego, CA: Kaufmann.
Nielsen, J. (2005). Ten Usability Heuristics. Downloaded on April 27, 2010 from

http://www.useit.com/paper s/ heuristic/heuristic_list.html
Nielsen, J. (1994). Using discount usability engineering to penetrate the intimidation

barrier. Retrieved June 8, 2010 http://www.useit.com/papers/guerrilla_hci.html
Norman, D. A. (1998): The Design of Everyday Things. NY: Basic Books.
Parasuraman, A. Zeithaml, V., and Berry, L.L. (1994). Reassessment of Expectations as a

Comparison Standard in Measuring Service Quality: Implications for Further
Research. Journal of Marketing, 58(1), pp. 111-125.

Parasuraman, A. Zeithaml, V., and Berry, L.L. (1988). SERVQUAL: A Multiple-item
Scale for Measuring Consumer Perceptions of Service Quality. Journal of
Retailing, 64(1), pp. 12-37.

Park, K. S. (1997). Human Error. In Gavriel Salvendy (Ed.), The Handbook of Human
Factors and Ergonomics, (2nd Edition). John Wiley & Sons.

Petter, S., Delone, W. and Mclean, E. (2008). Measuring information systems success:
models, dimensions, measures, and interrelationships. European Journal of
Information Systems. Basingstoke: 17(3), pp. 236-263.

Pollard, C and Cater-Steel, A. (2009). Justifications, Strategies, and Critical Success
Factors in Successful ITIL Implementations in U.S. and Australian Companies:
An Exploratory Study. Information Systems Management, 26(2), pp. 164-172.

Potgieter, B.C., Botha, J.H., and Lew, C. (2005, July 10-13). Evidence that use of the
ITIL framework is effective. Proceedings of the 18th Annual Conference of the
National Advisory Committee on Computing Qualifications, Tauranga, NZ.

 Sprouts - http://sprouts.aisnet.org/10-172

Page 33

Prescott, M. and Conger, S. (1994). Information technology innovations: A Classification
by IT locus of impact and research approach. Database. 26(2-3), pp. 20-42.

Reichheld, F.F. (2003 – December 1). The One Number You Need to Grow. Harvard
Business Review. Downloaded on April 28, 2010 from
http://harvardbusinessonline.hbsp.harvard.edu/b02/en/common/item_detail.jhtml?
id=R0312C&referral=2340.

Rombach, D., Ciolkowski, M., Jeffery, R., Laitenberger, O., McGarry, F., and Shull, F.
(2008, October). Impact of research on practice in the field of inspections,
reviews and walkthroughs: learning from successful industrial uses. SIGSOFT
Software Engineering Notes 33(6). pp. 26-35.

Sherman, D.K., Mann,T., and Updegraff, J.A. (2006). Approach/Avoidance Motivation,
Message Framing, and Health Behavior: Understanding the Congruency Effect.
Motivation and Emotion 30(2), pp. 165–169.

Shneiderman, B. (2004). Designing the User interface: Strategies for Effective Human-
Computer Interaction, 4th Edition. Reading, MA: Addison-Wesley.

Shneiderman, B. (2000, May). Universal Usability. Communication of the ACM (43:5),
pp 84-91.

Suchman, L. A. (1983, October). Office procedure as practical action: models of work
and system design. ACM Transactions on Information Systems 1(4), pp. 320-328.

Sumner, M. (2000). Risk factors in Enterprise Wide Information Management Systems.
Proceedings of the AMC SIG CPR Conference, Evanston, IL. 2000, pp. 180-188.

Thayer, A. and Dugan, T.E. (2009, July 19- 22). Achieving design enlightenment:
Defining a new user experience measurement framework. Proceedings of the
2009 IEEE International Professional Communication Conference, Waikiki, HI.
pp.1-10.

Valecich, J., George, J., and Hoffer, J. (2009). Essentials of Systems Analysis and Design,
Third Edition, Upper Saddle River, NJ: Prentice-Hall.

Van Bon, J. (2007). IT Service Management: An Introduction, London: itSMF
International.

Winniford, M.A., Conger, S., and Erickson-Harris, L. (2009). Confusion in the Ranks: IT
Service Management Practice and Terminology. Information Systems
Management, Special Issue on IT Service Management, Aileen Cater-Steel (Ed.),
26(2), pp. 153 – 163.

Yourdon E. and Constantine, L. L. (1975). Structured Design. NY: Yourdon Press.
Zhang, P., Galletta, D., Li, N., and Sun, H. (2007). Human-Computer Interaction, in

Wayne Huang (ed.), Management Information Systems, Beijing, China: Tsinghua
University Press.

 Sprouts - http://sprouts.aisnet.org/10-172

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	1-10-2013

	Software Development Life Cycles and Methodologies:Fixing the old and adopting the new
	Sue Conger
	Recommended Citation

	htmldoc816.html

