
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

12-6-2010

On the Developer Adoption of Scrum: A New
Acceptance Model for Agile Methodologies
Sven Overhage
University of Augsburg, sven.overhage@wiwi.uni-augsburg.de

Sebastian Schlauderer
University of Augsburg, sebastian.schlauderer@uni-bamberg.de

Dominik Birkmeier
University of Augsburg, dominik.birkmeier@wiwi.uni-augsburg.de

Jonas Miller
University of Augsburg, jonas.miller@gmx.de

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Overhage, Sven; Schlauderer, Sebastian; Birkmeier, Dominik; and Miller, Jonas, " On the Developer Adoption of Scrum: A New
Acceptance Model for Agile Methodologies" (2010). All Sprouts Content. 368.
http://aisel.aisnet.org/sprouts_all/368

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301360433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/368?utm_source=aisel.aisnet.org%2Fsprouts_all%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

On the Developer Adoption of Scrum: A New Acceptance
Model for Agile Methodologies

Sven Overhage
University of Augsburg, Germany

Sebastian Schlauderer
University of Augsburg, Germany

Dominik Birkmeier
University of Augsburg, Germany

Jonas Miller
University of Augsburg, Germany

Abstract
In recent years, the agile Scrum methodology has become a popular software development
approach. It significantly differs from traditional approaches as it promotes communication,
self-organization, flexibility, and innovation instead of extensive planning and codified
processes. While such a paradigm shift promises to better support the timely delivery of
high-quality software in turbulent business environments, its success considerably depends
on the willingness of developers to adopt the agile methodology. In this paper, we present a
framework with drivers and inhibitors to the developer acceptance of Scrum. It combines
analytical with empirical findings and can be used as a theoretical basis to empirically
evaluate the actual support of Scrum in concrete scenarios. The introduced framework is
based on the extended Technology Acceptance Model (TAM), which has been proven to be
also applicable to describe the intention of developers to use a methodology. Building upon
results from qualitative in-depth interviews with six experienced Scrum experts of a German
DAX-30 company, we refine the general determinants of adoption contained in the TAM
with several observed factors that influence the willingness of developers to use Scrum in
practice.

Keywords: Agile methodologies, Scrum, developer acceptance, Technology Acceptance
Model

Permanent URL: http://sprouts.aisnet.org/10-76

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Overhage, S., Schlauderer, S., Birkmeier, D., Miller, J. (2010). "On the
Developer Adoption of Scrum: A New Acceptance Model for Agile Methodologies,"
Proceedings > Proceedings of JAIS Theory Development Workshop . Sprouts: Working
Papers on Information Systems, 10(76). http://sprouts.aisnet.org/10-76

 Sprouts - http://sprouts.aisnet.org/10-76

http://creativecommons.org/licenses/by-nc-nd/3.0/

 2

INTRODUCTION

As the persisting software crisis demonstrates, the question of how software development

should be organized to support the production of high-quality results in a cost-efficient, flexible,

and fast way continues to pose research challenges. Over the last years, agile methodologies have

been proposed, which promote communication, self-organization, flexibility, and innovation

instead of extensive planning and codified processes. As a reaction to heavyweight plan-based

approaches, agile software development since then attracted a rapidly increasing attention in

practice. A recent industry survey with 2252 participants in North America and Europe revealed

that 26 percent of the companies were already using agile methodologies and an additional 42

percent were aware of them (Forrester Research, 2007). Among the various agile approaches,

Scrum plays a particularly important role as it has become the most widespread agile

methodology to date. A global industry survey on agile development in 88 countries e.g.

documented that „Scrum or a [customized] variant were by far the most common Agile

Methodologies employed” (VersionOne Inc., 2009).

Agile methodologies like Extreme Programming (XP) and Scrum introduce a whole new

approach to manage development processes in a flexible fashion. With the fundamental changes

compared to traditional development, the need to create theories on how agile methodologies

impact IT personnel, development practice, and the resulting IT artifacts becomes obvious.

Nevertheless, a survey of scientific evaluations published in 2008 revealed „a clear need for

more empirical studies of agile development” (Dyba and Dingsoyr, 2008). Not only found the

authors the number of scientific evaluations of agile methodologies to be very limited. They

 Sprouts - http://sprouts.aisnet.org/10-76

 3

furthermore criticized that the majority of studies concentrated on less widespread approaches

like XP. Scrum as the most widespread approach instead was hardly in the focus. Accordingly,

they considered Scrum (together with its customizations) to be „clearly the most under-

researched compared to their popularity in practice” (Dyba and Dingsoyr, 2008). The few

published examinations of Scrum mostly evaluate its effect in terms of increased productivity,

product quality, or customer satisfaction (Dyba and Dingsoyr, 2008, Ilieva et al., 2004, Layman

et al., 2004, Macias et al., 2003, Mann and Maurer, Rising and Janoff, 2000). Such studies

document the potential gains resulting from a successful introduction of Scrum. However, they

do not immediately contribute to the building of the above-mentioned theories.

As Scrum postulates self-organizing team structures and flexible collaborations in a flat

hierarchy, its successful introduction especially depends on the willingness of the developers to

adopt the agile methodology. Only consequently were the ability to adjust organizational culture,

resistance to change, and lacking of the necessary agile experience in teams identified as major

barriers to the successful introduction of agile methodologies (VersionOne Inc., 2008). It is

hence important to focus on the building of theories „on human and social factors in order to

succeed” (Dyba and Dingsoyr, 2008). However, the current state of research regarding the

influence of such factors on the success of agile methodologies is still nascent. We therefore

contribute to the building of such theories by introducing a framework with drivers and inhibitors

to the developer acceptance of Scrum. In particular, we examine the following research

questions: Which observable human and social factors positively or negatively impact the

developer acceptance of Scrum? How can these factors be combined with existing theories on

 Sprouts - http://sprouts.aisnet.org/10-76

 4

the developer acceptance of methodologies to provide an explanative model for the adoption of

Scrum?

We use the constructs of the extended Technology Acceptance Model (Davis, 1989) as a

theoretical basis to explain the developer acceptance of Scrum. This model has been proven to

also describe the developer acceptance of methodologies in general (Riemenschneider et al.,

2002). To specifically explain the developer acceptance of Scrum, we refine the general

determinants contained in the Technology Acceptance Model (TAM) with antecedents that were

observed as influencing factors in practical projects. Aiming at identifying such factors, we

firstly compared Scrum with traditional, plan-based methodologies and analyzed its particular

strengths and weaknesses. Based on these results, we conducted an exploratory study in which

we performed semi-structured, qualitative in-depth interviews with six Scrum experts from a

German DAX-30 company. The goal of these interviews was to gain insights into the social

factors that influenced the adoption of Scrum in positive or negative ways during their projects.

We therefore selected participants that (i) had different roles in the Scrum development process

and (ii) already had mature experiences with the introduction and usage of Scrum. The findings

were analyzed, aligned with the results gained during the analytical comparison, and related to

the constructs of the TAM.

The remaining presentation is organized as follows: after discussing related work to

confirm the research gap (section 2), we summarize differences between Scrum and traditional

development approaches in section 3. In section 4, we introduce the TAM and describe adoptions

necessary to explain the acceptance of methodologies. Section 5 presents details about the

conducted interviews and the influencing factors which were identified out of the gathered

 Sprouts - http://sprouts.aisnet.org/10-76

 5

information. The framework of drivers and inhibitors is presented in section 6. We conclude by

discussing implications of our work and by highlighting future research directions.

RELATED WORK

Generally, empirical studies of the social factors affected by the introduction of agile

methodologies are still rare (Dyba and Dingsoyr, 2008). From the few available studies, most are

inappropriate to explain the developer acceptance of Scrum for several reasons: first of all, these

studies usually examine in what respect the introduction of agile methodologies changes the way

of development (Chong, 2005, Ilieva et al., 2004, Mann and Maurer, 2005, Mannaro et al., 2004,

Robinson and Sharp, 2005). While such research helps clarifying how the implementation of an

agile methodology affects development practices, it does not immediately give information about

the factors that lead to an acceptance or resistance. Secondly, nearly all studies focus on

examining the less widespread XP methodology and do not take Scrum into account at all (Dyba

and Dingsoyr, 2008, Hossain et al., 2009). Even worse, the majority of studies has serious

limitations as they were not following a sound research strategy and/or did not focus on

examining IT personnel with mature experiences in agile development (Dyba and Dingsoyr,

2008). In 2008, a survey on empirical studies of agile development e.g. revealed that only one

research group had examined teams with mature agile experience (Dyba and Dingsoyr, 2008).

Examinations of the human and social factors that determine the acceptance of Scrum by

developers – to the best of our knowledge – do not exist yet. Among the very few closely related

studies, Bahli et al. show that technology acceptance models can basically be used to explain the

 Sprouts - http://sprouts.aisnet.org/10-76

 6

developer acceptance of agile methodologies (Bahli and Zeid, 2005): they built upon the TAM to

explain the impact of knowledge creation on the acceptance of XP. However, technology

acceptance models cannot arbitrarily be reused to explain the acceptance of development

methodologies. Riemenschneider et al. (2002) have examined under which conditions such

models are applicable as an appropriate kernel theory. In our approach, we therefore build upon

their findings to choose a suitable acceptance model as kernel theory. Our strategy of using

qualitative in-depth interviews to get insights into the factors that influenced the acceptance of

Scrum in practice furthermore follows recommendations of Dyba et al. (2008). They identified a

need for exploratory studies as the state of theories on agile software development

methodologies „is clearly nascent” (Dyba and Dingsoyr, 2008). To better understand the human

and social factors that particularly influence developer acceptance, we accordingly start by

identifying key differences between Scrum and traditional development methodologies.

SCRUM AND TRADITIONAL APPROACHES

Compared to traditional plan-based approaches, agile methodologies such as Scrum

introduce fundamental changes to the software development process. To show the resulting

implications for the IT personnel, we briefly discuss the major differences between traditional

development approaches and the Scrum methodology (Table 1 summarizes the results). In

contrast to traditional approaches, Scrum is defined as „a management and control process that

cuts through complexity to focus on building software that meets business needs“ (Schwaber and

Beedle, 2002). It emphasizes practical applicability, incremental development, and flexibility.

Traditional development methodologies instead focus on rigorous process management. As a

 Sprouts - http://sprouts.aisnet.org/10-76

 7

consequence, they are said to be predictable, repeatable, and to allow processes to be optimized

(Boehm, 2002).

Table 1. Identified differences between Scrum and traditional methodologies

The different ways of approaching software development first of all lead to different

strategies for the planning and controlling of development processes. Scrum uses a so-called

empirical process control which is based on the assumption that the analysis, design, and

implementation of software is generally unpredictable and hence difficult to be planned ahead

(Schwaber, 1995). As a consequence, Scrum manages the development process from iteration to

iteration and uses different levels of planning: Release Planning, Sprint Planning, and Daily

 Sprouts - http://sprouts.aisnet.org/10-76

 8

Scrum. During the Release Planning, basic strategic aspects to govern the whole development

process are determined. Such aspects only describe the overall functionality or maximum costs

of a release, however. Operational details are to be determined separately for each iteration of the

development process. In Scrum, such iterations are called Sprints. The according Sprint Planning

provides the relevant details: it defines the requirements for the iteration as well as the resulting

tasks in the Sprint Backlog. The time for a meeting to plan a one month Sprint is suggested to

take eight hours and has to be adjusted proportionally to the Sprint's length (Schwaber and

Sutherland, 2010). The third and most detailed level of planning is the Daily Scrum meeting:

during daily 15-minute meetings, each team member explains what (s)he accomplished since the

last meeting and what (s)he aspires to achieve before the next meeting.

Traditional development methodologies instead rely on predefined process models with

phases to capture the whole progress of a project in advance. The planning typically is based on a

work breakdown structure with work packages and milestones. On that basis, the project

manager assigns the activities to specific team members. Scrum instead postulates a self-

organizing team where the assignment of tasks is not discussed before the Daily Scrum meeting.

Such an organization requires a higher commitment and sense of responsibility from each team

member, however. While it makes Scrum more flexible, transparent, and adoptable to changing

requirements, such an organization furthermore makes detailed cost planning and controlling

difficult. Last but not least, it burdens the IT personnel with additional effort to be spent for the

various kinds of meetings.

 Sprouts - http://sprouts.aisnet.org/10-76

 9

With its agile philosophy, Scrum also impacts the collaboration within the team and with

the customer. To stay focused on direct and frequent collaboration, Scrum teams should only

consist of five to nine developers (Schwaber and Sutherland, 2010). The customer, who is

represented by the role of the Product Owner in Scrum teams, furthermore plays a key role and is

to be integrated into several process stages. The Product Owner permanently has to be aware of

the current development state and, consequently, is participating in all Sprint Planning and

review meetings. When following traditional methodologies, developers usually collaborate with

the customer during the requirements definition and not again until the product is handed over.

On the one hand, Scrum thus demands considerably more time and involvement from the

customer. On the other hand, Scrum teams are able to evaluate development steps with the

customer early. They can hence better ensure that actual needs are met. Furthermore, Scrum

promotes a self-organizing team structure, in which the so-called Scrum Master only coaches and

guides the team. In contrast to traditional methodologies, the team itself decides how to

implement requirements (Schwaber and Sutherland, 2010).

With Scrum, project controlling is done using so-called Burndown Charts, while

traditional methodologies use milestones and status reports to control the process status. To

report the progress of a Sprint, a Burndown Chart shows a daily updated summary of all

remaining tasks during the iteration. Additionally, the Product Owner is able to attend the Daily

Scrum meetings to get a direct feedback on individual tasks. Scrum furthermore aims at

delivering a working piece of software to the Product Owner at the end of each Sprint. For the

customer, the delivered software gives insights into the implementation and allows for an

immediate reaction to possible misunderstandings. In traditional approaches, it is common that

 Sprouts - http://sprouts.aisnet.org/10-76

 10

team members only return a percentage of completion to the project manager at the end of each

phase. Working software usually is delivered late in the process.

Another major difference between Scrum and traditional methodologies is the

identification, analysis, and management of requirements. Scrum requires the IT personnel to

work together with the customer to discuss, identify, and add all requirements to a priority list

(the so-called Product Backlog). During the project, the Product Owner can add new

requirements into the Product Backlog and change priorities, whereas in traditional

methodologies the initial requirements are usually fixed in a contract-like document. If new

requirements occur during later phases of the development, they have to be included using a

change-management process. With Scrum, potentially releasable software is presented to the

Product Owner at the end of each iteration. During the discussion of these releases, new

requirements are likely to be identified in a timely manner and can be implemented during the

next iteration(s). While Scrum therefore is more flexible with respect to new requirements, its

agile methodology requires more communication within the Scrum team and with the Product

Owner.

Traditional methodologies emphasize the general importance of documentation as they

consider it to be an integral part of the development process. Unlike these, agile methods do not

instruct explicit documentation since the agile manifesto values „working software over

comprehensive documentation“ (Beck et al., 2001). As a consequence, Scrum preferably relies

on tacit team knowledge that originates from the various team meetings, whereas traditional

methodologies build upon explicit knowledge elicited from the development teams in the form of

 Sprouts - http://sprouts.aisnet.org/10-76

 11

documentation (Boehm, 2002). While Scrum facilitates the transfer of knowledge due to the

intensified collaboration, it also bears a risk of losing knowledge if, for instance, meetings are

not taken seriously or if members leave the team. Yet compared to traditional methodologies,

time and effort for documentation are clearly reduced.

Finally, the handling of retrospectives is different between both methodologies. Scrum

not only foresees so-called Sprint Reviews in which the results of a Sprint are discussed. It

additionally prescribes retrospective meetings after each Sprint. In these meetings, the team

should discuss improvements learned during the last Sprint. Compared to the so-called Lessons

Learned in traditional methodologies, which are usually only discussed once at the end of a

project, Scrum retrospectives facilitate the learning process as well as the transfer of knowledge

right after the first Sprint. As the Scrum Guide recommends a four hour meeting for the Sprint

Review and another three hours for the retrospective meeting of a one month Sprint, the effort

required from the IT personnel is further increased, however.

METHODOLOGY ACCEPTANCE MODEL

As can be seen from the comparative discussion of Scrum and traditional development

approaches, a successful implementation of agile methodologies largely depends on the

acceptance of their development philosophy by the IT personnel. To explain why individuals

accept or resist information technologies, IS researchers make use of so-called acceptance

models that were derived from general theories of motivated human behavior. Among these

models, specifically the (extended) Technology Acceptance Model, the Theory of Planned

 Sprouts - http://sprouts.aisnet.org/10-76

 12

Behavior, the Perceived Characteristics of Innovating, and the Model of Personal Computer

Utilization have become accepted and confirmed theories to explain why individual users accept

or resist technologies. Building upon the fact that these models stem from general theories of

social science, Riemenschneider et al. (2002) have examined if they can also be applied to

explain the adoption of development methodologies such as Scrum.

Perceived
Usefulness

Behavioral
Intention

to Use

Perceived Ease
of Use

Actual Use of
Technology

DriverLegend:

Figure 1. Technology Acceptance Model

Among the models they examined, especially the extended TAM, also called TAM2

(Venkatesh and Davis, 2000), turned out to contain nearly all of the factors that were found to

determine the acceptance of development methodologies (Riemenschneider et al., 2002). For that

reason, we decided to use the extended TAM and its constructs as the basis to explain the

developer acceptance of Scrum. Furthermore, we implemented minor adoptions to the extended

TAM that were recommended by Riemenschneider et al. (2002) to better cover the acceptance of

methodologies.

In its original fashion, the TAM postulates that perceived usefulness and perceived ease

of use determine an individual's behavioral intention to use a technology (see Figure 1). Intention

to use a technology thereby serves as a mediator of actual use (Davis, 1989). Perceived

usefulness describes the extent to which an individual thinks that using a technology will

 Sprouts - http://sprouts.aisnet.org/10-76

 13

enhance his/her performance. Perceived ease of use means the degree to which the use of a

technology is thought of as being free of effort. It not only influences the behavioral intention to

use a technology, but often also impacts the perceived usefulness (Davis, 1989).

To encompass voluntary and mandatory usage situations, the TAM has been extended

with two „correction factors” (Venkatesh and Davis, 2000). In the extended TAM, subjective

norm is defined as the extent to which individuals believe that important other individuals want

them to use a technology. This construct has been proven to be a significant determinant of

behavioral intention to use in mandatory usage scenarios (Venkatesh and Davis, 2000). In

contrast, perceived voluntariness describes the degree to which individuals perceive a decision to

use a technology as non-mandatory. This variable significantly moderates the effect of subjective

norm on the behavioral intention to use (Venkatesh and Davis, 2000).

Regarding the behavioral intention of developers to use a software development

methodology, perceived usefulness was found to be a strong and highly significant determinant

(Riemenschneider et al., 2002). Accordingly, we included it into our adopted acceptance model

to explain the developer acceptance of Scrum (see Figure 2). Perceived ease of use was found to

be nonsignificant, though (Riemenschneider et al., 2002). Instead, compatibility - a more specific

determinant than ease of use - was found to have a significant influence on developer acceptance

(Riemenschneider et al., 2002). This construct describes the extent to which the introduced

methodology is perceived as being consistent with the actual needs and past experiences of the

developers (Moore and Benbasat, 1991). As Scrum postulates its empirical process control to

 Sprouts - http://sprouts.aisnet.org/10-76

 14

better represent the reality in software development, we included this determinant instead of the

more general ease of use construct.

Perceived
Usefulness

Behavioral
Intention

to Use

Compatibility

Subjective
Norm

Voluntariness

Actual Use of
Methodology

Driver

Inhibitor

Legend:

Figure 2. Adopted acceptance model

We also included subjective norm and perceived voluntariness as relevant factors to

describe the acceptance of Scrum, because these factors were proven to have a significant

influence on the usage of development methodologies in general (Riemenschneider et al., 2002).

In this respect, findings regarding the acceptance of methodologies differ from those for the

acceptance of technologies, where subjective norm and perceived voluntariness were oftentimes

found to be nonsignificant. Riemenschneider et al. (2002) accordingly concluded that it seems to

be less important for the acceptance of development methodologies how easy the behavior

prescribed by the methodology is to perform. Instead, the perceived normative pressure and the

compatibility of the required behavior with the current way of performing working steps gain

more importance.

 Sprouts - http://sprouts.aisnet.org/10-76

 15

Figure 2 shows the adopted acceptance model resulting from this discussion along with

its constructs. They are used as the theoretical basis to explain the adoption of Scrum by

developers and will be refined with concrete influencing factors that have been observed in

actual projects.

EXPERTS EVALUATION

To determine such influencing factors, we decided to follow an exploratory qualitative

research strategy. In such a setting, „the qualitative interview is the most common and one of the

most important [...] tools” (Myers and Newman, 2007) to gather information on a topic. In the

following, we describe the design of our interviews and then analyze the obtained results.

Design of interviews

In order to be able to identify relevant factors that influence the constructs of the model

introduced in section 4, in-depth information on the topic had to be gathered. In social sciences,

so-called expert interviews are the most common approach for studies on such a problem

(Bogner et al., 2009, Denzin and Lincoln, 2000). Thereby, the number of interviewed experts can

be rather low, as long as they were selected carefully. An expert, in this setting, is characterized

as someone who bears responsibility for the design, the implementation, or the control of a

problem solution or has privileged knowledge on teams and processes. Usually, such an expert is

not found at the top of an organization, but on slightly lower hierarchy levels, where the most

knowledge on inner structures and events is present (Meuser and Nagel, 2009). Furthermore, as

 Sprouts - http://sprouts.aisnet.org/10-76

 16

the comparison of traditional development approaches and Scrum is in the focus, experts with

profound knowledge in both fields are required.

Additionally, we had to decide on the specific type of qualitative interview. In this case,

to achieve the described goals, unstructured interviews are the most commonly used, as they

„can provide a greater breadth of data than the other types“ (Fontana and Frey, 2000).

Unstructured interviews can either be completely free, or roughly follow a previously defined

interview guideline. The latter ones, which were utilized in our approach, are also known as

semi-structured interviews. Their concrete form corresponds to the conceptual interview as

described by Kvale and Brinkmann (2009).

The interview guideline, which was established to ensure a basically equal structure and

content of all interviews in the study, covers a general information part as well as a specific

section on development methodologies. In each interview, both parts were completed one after

the other. However, there was no strict order of all questions within the sections. In the general

part, the interviewee was asked about his experiences and the roles he has taken during Scrum-

based and traditional software development projects.

The second part of each interview covered several questions on possible advantages and

disadvantages of Scrum in general and in specific project management areas. Furthermore, the

interviewees were asked to report their experiences with Scrum in different projects, expected

benefits of Scrum in new projects, and possibilities to measure the change in organizational

culture associated with a swap to Scrum. All interviews were audio recorded in the first place to

 Sprouts - http://sprouts.aisnet.org/10-76

 17

avoid distraction of the interviewer and the subject. Immediately afterwards, a transcript of the

interview was created by the interviewer. Overall, our interviews closely followed the suggested

guidelines for interviewers in IS research as proposed by Myers and Newman (2007).

Analysis of interviews

The study was performed at a large German DAX-30 company, which recently has

adopted the Scrum methodology for a considerable portion of their in-house software

development projects. The company belongs to the world-wide leading insurance firms and, until

a few years ago, has developed all of its projects with traditional methodologies only. Since then,

the proportion of Scrum projects is constantly increasing and large parts of the IT personnel have

gained mature knowledge in agile development.

All interviews were held within one week in late 2009 and have taken place in the

subjects' own offices. Due to their open form, interviews varied between 40 and 60 minutes.

Overall, six experts have been included in the study. Three of them performed the role of a

Scrum Coach and two took on the role of a Scrum Master or Product Owner. The last expert was

an executive from the higher management who was strongly involved in the company's turn to

Scrum. All of them had profound experience in Scrum and traditional project management. On

average, they had been working with Scrum for 4.1 years and stated their experience in

traditional development with 20.3 years. On a scale from one (marginal knowledge) to four

(profound expert knowledge) they rated their own knowledge in Scrum with 3.7 and in

traditional methodologies with 3.2.

 Sprouts - http://sprouts.aisnet.org/10-76

 18

For the identification of possible factors influencing the constructs of the adopted TAM

(cf. Figure 2), the recorded interviews were examined for consistencies and distinctive features.

Furthermore, correlations to the differences between Scrum and traditional development

approaches as deduced in section 3 were determined.

One of the major differences between Scrum and traditional methodologies are the

frequent meetings and the opportunity to promptly react to changing requirements. During the

interviews, the experts described several advantages for the development teams due to these

characteristics. They emphasized better information about the development progress and the

ongoing planning for everyone involved. In all previous projects, the „development teams and

customers reported the increased transparency as a major advantage“, as „unpleasant topics and

problems are discussed” in a timely manner. In general, the planning and scheduling in Scrum

projects was judged to form another advantage over conventional methodologies. Especially the

fact that it takes place on different levels has shown to be profitable in practice since it

presumably resembles the reality in projects more closely.

In the experts' previous projects the self-organization of teams, which enables an

„improvement of team performance through more communication”, was also identified as an

advantage of Scrum. Furthermore, „teams are better organized with Scrum” as the team members

themselves are responsible for the detailed planning. Together with the short Sprints and the

reduction of communication bottlenecks, the self-organization of teams furthermore leads to a

higher flexibility in Scrum projects compared to traditional methodologies. Additionally, the

experts reported the simple inclusion of customer requests through prioritization into the Product

 Sprouts - http://sprouts.aisnet.org/10-76

 19

Backlog as well as fast reactions of customers during the short cycles, to increase flexibility. As

revealed during the interviews, the higher flexibility of Scrum not only benefits the management

and customers, however, but also „allows the developers more freedom in their activities” than

conventional methodologies.

The empirical process control of Scrum is another characteristic that was presumed to

benefit all involved parties. According to the experts, such a process control is „more suitable

[than] defining almost everything in the beginning” and moreover satisfies the desired flexibility

of work as well. The regular short meetings and the close collaboration between all developers

were judged to improve the knowledge transfer and to enable learning effects between team

members. Furthermore, through the permanent involvement of the customer, the interviewees

reported that Scrum „increases business knowledge on the IT side.”

The experts, however, also described several possible disadvantages and problems

inherent with a swap to Scrum. Among these is the neglecting of documentation as they

experienced it in Scrum projects. Overall, they judged that the Scrum-specific and comparably

abstract „User Stories do not suffice documentation requirements” in general and, further, that

the documentation handling in Scrum especially hindered the fulfillment of legal documentation

requirements. The fulfillment of documentation requirements and the increased responsibilities

of all team members in planning and self-organization, therefore, “requires a particularly mature

team discipline in Scrum projects“.

 Sprouts - http://sprouts.aisnet.org/10-76

 20

Factor Expert Statements

Team Morale

Planning and
Scheduling

Neglecting of
Documen‐

tation

Teamwork

Self‐
organization

Mature Team
Discipline

Resistance to
Change

Transparency

Flexibility

Knowledge
Transfer

Empirical
Process

"Satisfaction increases for most involved parties"
"Team satisfaction is measurable"
"Increased satisfaction through more fun in development"
"Increased team morale if Scrum is done right"

"Knowledge transfer between developers through XP practices and close collaboration"
"Learning effects among team members"
"Increase business knowledge on IT side"

"Unpleasant topics and problems are discussed"
"Current development status is well‐known"
"Velocity enables insights on productivity changes"
"Scrum controls overall progress more closely than traditional methods"
"User stories increase communication among team members and with product owner"

"Large change process for personnel, which needs to consider their growing responsibilities"
"Consequences of changes on psychological aspects are often underestimated"
"Difficulties of Scrum adoption often underestimated"

"Scrum requires a high team discipline"

"Overall team performance instead of single valuation increases collaboration and enhances
teamwork"
"Stronger teamwork reduces pressure on single developers"

"User stories do not suffice documentation requisites"
"Documentation handling hindered"
"Revision requirements need to be fulfilled"

"Long‐ and short‐term planning represent reality"
"Duration of each development step can more quickly be estimated, which enables better planning"
"Long‐term planning requires velocity"
"Beginning of project remains unconsidered"

"Higher flexibility through reduction of communication bottlenecks and self‐organization of teams"
"Requests can easily be included through prioritization"
"Transparency and short cycles enable fast reactions of customers"

"Team decides on course of action, which requires according skills"
"Improvement of team performance through more communication"
"Team is better organized with Scrum… detailed planning is done by team"

"Defining almost everything in the beginning is wrong"
"Empirical processes are more suitable"

Table 2. Identified factors and corresponding expert statements

All interviewees described the inherent change process as a further obstacle for the

adoption of Scrum. In their experience, the „difficulties of Scrum adoption” and the

 Sprouts - http://sprouts.aisnet.org/10-76

 21

„consequences of changes on psychological aspects are often underestimated”. „The large

change process for personnel, which needs to consider their [constantly] growing experiences”,

oftentimes results in an initial resistance to change of many developers. The experts even

recognized this as the major factor that hampered the adoption of Scrum in many projects.

However, this is not necessarily a Scrum-specific observation, as resistance to change is a well-

known general behavioral phenomenon (Watson, 1971).

Due to its concepts, Scrum „increases collaboration and enhances teamwork” between the

developers more than traditional methodologies. Consequently, a „reduced pressure on single

developers” was observed in many projects utilizing Scrum. Finally, the experts judged Scrum to

„increase the team morale if [it] is done right“. They furthermore observed an „increased

satisfaction for most involved parties” in general and for developers in particular. As one

possible reason for the last observation, they claimed that Scrum projects cause „more fun in

development”.

Overall, several factors influencing the acceptance of Scrum can be derived from the

qualitative interviews. With the derived factors, we were able to confirm indications gathered

during the theoretical comparison between Scrum and traditional methodologies. Table 2

summarizes all factors together with the major supporting expert statements. The identified

factors, however, are not generally disjoint to each other, but might be partly correlated.

 Sprouts - http://sprouts.aisnet.org/10-76

 22

FRAMEWORK OF DRIVERS AND INHIBITORS

The empirical findings gathered during the expert interviews can be used to refine the

theoretically motivated acceptance model with concrete influencing factors that were observed in

practical projects. To that end, we classified influencing factors as antecedents to those

constructs of the acceptance model which they affect. Thereby, we preferably considered

theoretical constructs to be dependent variables. Except for the correction factors, relationships

between identified influencing factors and constructs are hence unidirectional. A construct was

determined as being affected, if its characteristic measures were impacted by corresponding

statements of the interviewed experts. For each construct, we therefore examined the

characteristic measures (see Table 3) as proposed in the according publications

Table 3. Characteristic measures of model constructs (Adams et al., 1992, Davis, 1989, Moore

and Benbasat, 1991, Venkatesh and Davis, 2000).

For developers, the expectation of increasing team morale positively influences the

perceived usefulness of the Scrum methodology. As a higher team morale makes the job of

 Sprouts - http://sprouts.aisnet.org/10-76

 23

developers easier and it is likely to increase the job performance, the perceived usefulness

construct is directly impacted (Adams et al., 1992). Higher team morale is also considered as

being generally helpful (Venkatesh and Davis, 2000) so that it increases the voluntariness of the

decision to accept Scrum in mandatory usage scenarios.

An intensive knowledge transfer between team members has a positive impact on the

perceived usefulness of the Scrum methodology as the productivity (Adams et al., 1992) is

directly increased. The perceived usefulness of Scrum is furthermore positively impacted by the

expected increase in flexibility, which better allows developers to organize their work according

to situational requirements, as well as by the principle of self-organization, which helps teams to

autonomously decide on the most promising course of action. Both factors contribute to

increasing the productivity and making the job of developers easier (Davis, 1989).

The perceived usefulness of Scrum is moderated by expected problems stemming from

the neglecting of documentation throughout the development process, however. As requirements

and architectural specifications are only recorded in a comparatively imprecise manner, it is

oftentimes difficult to verify and report if existing requirements and constraints have been

satisfied during development. Accordingly, productivity and effectiveness are likely to be

compromised (Davis, 1989).

Combining long-term with short-term planning and scheduling in an agile way positively

impacts the compatibility of Scrum with developer needs. As the development of software is a

significantly creative process, the possibility to adjust short-term planning from Sprint to Sprint

 Sprouts - http://sprouts.aisnet.org/10-76

 24

allows developers to flexibly react to unforeseen complexities as they arise. It hence better

represents the reality (Moore and Benbasat, 1991). As a flexible planning of development

iterations simultaneously makes the job easier for developers, it also increases the perceived

usefulness of Scrum (Davis, 1989).

The compatibility of Scrum is furthermore increased by the expected improvement of

transparency and teamwork. As a consequence of Daily Scrum meetings, developers can expect

their information about the current project status to increase. While this does not directly affect

perceived usability, it fulfills the developer's need (Moore and Benbasat, 1991) for information

and increases the communication with other developers working on the same project. Reported

improvements of teamwork, furthermore, seem to not directly affect the perceived usefulness as

well, but rather reduce the pressure on individual team members so that creative tasks can be

carried out more thoroughly. Similar to the improvement of transparency, this enhances the

compatibility of Scrum to the developer's needs (Moore and Benbasat, 1991).

With its empirical process control, Scrum introduces a principle to handle development

activities as a workflow that needs not to be well understood. Accordingly, the actual

development activity is treated as a black box and periodically evaluated in checkpoints, the so-

called Daily Scrum meetings. While such a loose process management was not reported to

directly increase the productivity or job performance, it was judged to be better suited to

represent reality. In fact, software development is often performed as a loosely structured,

creative activity that differs from developer to developer. The empirical process control is hence

better compatible with actual practice (Moore and Benbasat, 1991).

 Sprouts - http://sprouts.aisnet.org/10-76

 25

For loosely managed and self-organized processes, a mature team discipline was reported

to be a critical success factor by the experts, however. As such a team discipline will have to be

actively built first, we classified it to be a moderator for the compatibility of Scrum with actual

practice (Moore and Benbasat, 1991). To some part, it can be raised by executing normative

pressure, though, as the experts attested that developers are willing to accept higher requirements

regarding the discipline in mandatory settings (Venkatesh and Davis, 2000).

The reported resistance to change represents a general behavioral phenomenon during

the introduction of a new methodology. Any subjective resistance to change decreases the

voluntariness of a developer's decision to use Scrum (Venkatesh and Davis, 2000). In part,

however, it can be controlled by increasing the normative pressure so that developers feel they

should adopt the new methodology.

Figure 3. Framework with drivers and inhibitors to the acceptance of Scrum

Figure 3 depicts the resulting framework which combines theoretical and analytical

findings in order to show drivers and inhibitors to the acceptance of Scrum. It presents a

 Sprouts - http://sprouts.aisnet.org/10-76

 26

systematic structuring of human and social factors which influence the acceptance of Scrum

from the developer's point of view. As such, it contributes to the building of a theory of relevant

acceptance factors, which can e.g. be used to evaluate the acceptance of Scrum in concrete

settings. To get to the presented structuring, we followed an exploratory research strategy and

used the results of qualitative in-depth interviews. Relationships between influencing factors and

theoretical constructs accordingly were included into the framework if they were backed with

expert statements. As we did not employ a quantitative approach, the numeric correlations

between influence factors and higher-order constructs were not examined yet. Consequently, we

are not able to supply information about the question which influencing factors are more

dominant than others. Such questions are left as future research directions, instead.

CONCLUSION

In this paper, we have presented a framework of drivers and inhibitors to describe the

developer's acceptance of Scrum. As a theoretical foundation, the presented framework makes

use of the extended TAM and its concepts, which we adopted to explain the acceptance of

methodologies. To refine the theoretical model with influencing factors that can be observed in

practice, we have used results of an exploratory study in which we conducted qualitative in-

depth interviews with Scrum experts from a German DAX-30 company. The interviewed experts

had mature experiences with the introduction and application of the Scrum methodology in

industry projects. They were able to provide profound insights into the social and human factors

which determine the acceptance of agile methods by the IT personnel. With our research, we

hence contribute to satisfy the „need to direct more resources towards investigating the practices

 Sprouts - http://sprouts.aisnet.org/10-76

 27

of mature teams” in order to examine the true potential of agile methods (Dyba and Dingsoyr,

2008).

The results of our research have implications both for practice and academia. For

practice, the presented framework provides a set of influencing factors that can be evaluated to

determine the developer acceptance of Scrum in concrete settings. Thereby, the framework can

be used to predict developer acceptance before introducing Scrum as well as to validate the level

of acceptance afterwards. The conducted expert interviews suggest that it is possible to achieve

improvements regarding the team morale, the transfer of knowledge, the flexibility, and the

transparency of the development progress when introducing Scrum. However, more demanding

requirements with respect to the team discipline and possible resistance to the changes

introduced with the agile philosophy might represent major barriers to a successful integration of

Scrum. Especially, it seems that a high level of individual autonomy needs to be balanced with a

high level of responsibility and interpersonal skills among the team members. As Scrum neglects

documentation compared to traditional development methodologies, our findings furthermore

suggest that its introduction might become difficult in large projects where multiple

interdependencies and higher requirements for the reporting exist. Consistent with the

recommendations by others, we hence recommend that practitioners study the project's

characteristics and examine them for compatibility with the agile management philosophy of

Scrum carefully (Boehm, 2002, Dyba and Dingsoyr, 2008).

As regards academia, our results contribute to the building of theories about the

acceptance of agile development methodologies. In recent time, agile development has had a

 Sprouts - http://sprouts.aisnet.org/10-76

 28

deep impact on the software industry. Researchers therefore need to investigate more closely

what has driven the trend and which effects arise from the changes implemented with the turn to

agile development methodologies. Apart from economic effects, the agile organization of

software development particularly impacts the way in which developers organize their work and

collaborate. Social and human factors that lead to the support or resistance of agile methods

therefore need to be examined in more detail.

The findings presented in this paper are just first steps into this direction, which need to

be complemented with additional qualitative and quantitative research. As regards qualitative

research directions, we will need to conduct additional studies both to confirm the identified

relationships between influence factors and TAM constructs as well as to identify further

correlations which might have remained undiscovered. To provide a more comprehensive view,

non-adopters of Scrum will have to be interviewed for inhibitors that caused a return to

traditional development. To explain how the inhibitors depicted in the current version of the

model can be managed successfully, we will furthermore have to analyze the existing interview

data for critical success factors that served as a solution in the examined projects. To make the

model more parsimonious, we finally plan to examine to what extent its determinants are suited

to also explain the acceptance of other agile methodologies like e.g. Extreme Programming. As

the project management strategies of most agile methodologies in fact are similar, analyzing the

presented acceptance model for generalizability suggests itself (Abrahamsson et al., 2002).

Quantitative research will on the one hand have to investigate into the numeric effects

that the identified influence factors have on the acceptance of Scrum. On the other hand, the

 Sprouts - http://sprouts.aisnet.org/10-76

 29

model can be used as a theoretical foundation to empirically study the impact of Scrum on social

and human aspects of the software development process. For such research activities, structured

models with acceptance factors – such as the one proposed in this paper – can e.g. serve as a

basis to create questionnaires. The mentioned topics describe future directions that should be

addressed in order to get a more complete picture of Scrum and its impact on the developers – a

factor the field cannot do without.

REFERENCES

Abrahamsson, P., O. Salo, J. Ronkainen, and J. Warsta. (2002) Agile Software Development

Methods: Review and Analysis.

Adams, D. A., R. R. Nelson, and P. A. Todd (1992) "Perceived Usefulness, Ease of Use, and

Usage of Information Technology: A Replication," MIS Quarterly (16) 2, pp. 227-247.

Bahli, B. and E. S. A. Zeid. (2005) The role of knowledge creation in adopting extreme

programming model: an empirical study. ITI 3rd International Conference on

Information and Communications Technology: Enabling Technologies for the New

Knowledge Society, 2005.

Beck , K., M. Beedle, A. van Bennekum , A. Cockburn et al. (2001) Manifesto for Agile

Software Development.

Boehm, B. (2002) "Get Ready for Agile Methods, with Care," IEEE Computer (35) 1, pp. 64-69.

Bogner, A., B. Littig, and W. Menz (2009) Interviewing Experts: Palgrave Macmillan.

Chong, J. (2005) Social behaviors on XP and non-XP teams: a comparative study. Proceedings

of the Agile Development Conference, 2005, pp. 39-48.

 Sprouts - http://sprouts.aisnet.org/10-76

 30

Davis, F. D. (1989) "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of

Information Technology," MIS Quarterly (13) 3, pp. 319-340.

Denzin, N. K. and Y. S. Lincoln (2000) Handbook of Qualitative Research: Sage Publications.

Dyba, T. and T. Dingsoyr (2008) "Empirical studies of agile software development: A systematic

review," Information and Software Technology (50) 9-10, pp. 833-859.

Fontana, A. and J. H. Frey (2000) The Interview: From Structured Questions to Negotiated Text,

in N. K. Denzin and Y. S. Lincoln (Eds.) Handbook of Qualitative Research: Sage

Publications, pp. 645-672.

Forrester Research, I. (2007) Enterprise And SMB Software Survey, North America and Europe.

Hossain, E., M. A. Babar, and H.-Y. Paik. (2009) Using Scrum in Global Software

Development: A Systematic Literature Review. Proceedings of the International

Conference on Global Software Engineering, 2009, pp. 175-184.

Ilieva, S., P. Ivanov, and E. Stefanova. (2004) Analyses of an agile methodology

implementation. Proceedings of the 30th Euromicro Conference, 2004, pp. 326-333.

Kvale, S. and S. Brinkmann (2009) InterViews: Learning the Craft of Qualitative Research

Interviewing: Sage Publications.

Layman, L., L. Williams, and L. Cunningham. (2004) Exploring Extreme Programming in

context: an industrial case study. Proceedings of the Agile Development Conference,

2004.

Macias, F., M. Holcombe, and M. Gheorghe. (2003) A formal experiment comparing Extreme

Programming with traditional software construction. Proceedings of the Fourth Mexican

International Conference on Computer Science, 2003.

 Sprouts - http://sprouts.aisnet.org/10-76

 31

Mann, C. and F. Maurer. A Case Study on the Impact of Scrum on Overtime and Customer

Satisfaction. Proceedings of the Agile Development Conference, pp. 70-79.

Mann, C. and F. Maurer. (2005) A case study on the impact of Scrum on overtime and customer

satisfaction. Proceedings of the Agile Development Conference, 2005.

Mannaro, K., M. Melis, and M. Marchesi. (2004) Empirical analysis on the satisfaction of IT

employees comparing XP practices with other software development methodologies.

Extreme Programming and Agile Processes in Software Engineering, 2004, pp. 166-174.

Lecture Notes in Computer Science 3092.

Meuser, M. and U. Nagel (2009) The Expert Interview and Changes in Knowledge Production,

in A. Bogner, B. Littig, and W. Menz (Eds.) Interviewing Experts: Palgrave Macmillan,

pp. 17-42.

Moore, G. and I. Benbasat (1991) "Development of an Instrument to Measure the Perceptions of

Adopting an Information Technology Innovation," Information Systems Research (2) 3,

pp. 192-222.

Myers, M. D. and M. Newman (2007) "The Qualitative Interview in IS Research: Examining the

Craft," Information and Organization (17) 1, pp. 2-26.

Riemenschneider, C. K., B. C. Hardgrave, and F. D. Davis (2002) "Explaining Software

Developer Acceptance of Methodologies: A Comparison of Five Theoretical Models,"

IEEE Transactions on Software Engineering (28) 12, pp. 1135-1145.

Rising, L. and N. S. Janoff (2000) "The Scrum Software Development Process for Small

Teams," IEEE Software (17) 4, pp. 26-32.

 Sprouts - http://sprouts.aisnet.org/10-76

 32

Robinson, H. and H. Sharp. (2005) The social side of technical practices. Extreme Programming

and Agile Processes in Software Engineering, 2005, pp. 100-108. Lecture Notes in

Computer Science 3556.

Schwaber, K. (1995) SCRUM Development Process. Proceedings of the 10th Annual ACM

Conference on Object Oriented Programming Systems, Languages, and Applications,

1995.

Schwaber, K. and M. Beedle (2002) Agile Software Development with SCRUM: Prentice Hall.

Schwaber, K. and J. Sutherland. (2010) Scrum Guide.

Venkatesh, V. and F. D. Davis (2000) "A Theoretical Extension of the Technology Acceptance

Model: Four Longitudinal Field Studies," Management Science (46) 2, pp. 186-204.

VersionOne Inc. (2008) The State of Agile Development, 3rd Annual Survey: 2008. VersionOne

Incorporated.

VersionOne Inc. (2009) The State of Agile Development, 4th Annual Survey: 2009. VersionOne

Incorporated.

Watson, G. (1971) "Resistance to Change," American Behavioral Scientist (14) 5, pp. 745-766.

 Sprouts - http://sprouts.aisnet.org/10-76

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	12-6-2010

	On the Developer Adoption of Scrum: A New Acceptance Model for Agile Methodologies
	Sven Overhage
	Sebastian Schlauderer
	Dominik Birkmeier
	Jonas Miller
	Recommended Citation

	htmldoc856.html

