
Association for Information Systems
AIS Electronic Library (AISeL)

All Sprouts Content Sprouts

8-4-2008

Managing Requirements Engineering Risks: an
Analysis and Synthesis of the Literature
Lars Mathiassen
Georgia State University, lmathiassen@gsu.edu

Timo Saarinen
Helsinki School of Economics, timo.saarinen@hse.fi

Tuure Tuunanen
University of Auckland, tuure@tuunanen.fi

Matti Rossi
Helsinki School of Economics, matti.rossi@aalto.fi

Follow this and additional works at: http://aisel.aisnet.org/sprouts_all

This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an
authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Mathiassen, Lars; Saarinen, Timo; Tuunanen, Tuure; and Rossi, Matti, " Managing Requirements Engineering Risks: an Analysis and
Synthesis of the Literature" (2008). All Sprouts Content. 82.
http://aisel.aisnet.org/sprouts_all/82

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301360406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fsprouts_all%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts?utm_source=aisel.aisnet.org%2Fsprouts_all%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all?utm_source=aisel.aisnet.org%2Fsprouts_all%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sprouts_all/82?utm_source=aisel.aisnet.org%2Fsprouts_all%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Working Papers on Information Systems ISSN 1535-6078

Managing Requirements Engineering Risks: an Analysis and
Synthesis of the Literature

Lars Mathiassen
Georgia State University, USA

Timo Saarinen
Helsinki School of Economics, Finland

Tuure Tuunanen
University of Auckland, New Zealand

Matti Rossi
Helsinki School of Economics, Finland

Abstract
Requirements engineering is recognized as a key discipline in developing business software.
Practitioners are, however, facing a steady stream of new techniques and an increasingly
differentiated portfolio of requirements engineering risks. The purpose of this paper is to
propose a model that links the available repertoire of techniques to the situations in which
practitioners find themselves. To this end, the paper reviews the software development and
requirements engineering literature to understand the risks that characterize requirement
engineering situations, to classify available techniques to resolve these risks, and to identify
key principles by which tactics can be applied to resolve requirements risks. The paper
synthesizes the findings from the analysis into a contingency model for managing
requirements engineering risks. The model sets the scene for future research and practitioners
can use it to navigate the requirements engineering landscape.

Keywords: Business Software, Requirements Engineering, Risk Management, Contingency
Model

Permanent URL: http://sprouts.aisnet.org/4-26

Copyright: Creative Commons Attribution-Noncommercial-No Derivative Works License

Reference: Mathiassen, L., Saarinen, T., Tuunanen, T., Rossi, M. (2004). "Managing
Requirements Engineering Risks: an Analysis and Synthesis of the Literature," Helsinki
School of Economics, Finland . Sprouts: Working Papers on Information Systems, 4(26).
http://sprouts.aisnet.org/4-26

 Sprouts - http://sprouts.aisnet.org/4-26

http://creativecommons.org/licenses/by-nc-nd/3.0/

HELSINKI SCHOOL OF ECONOMICS

WORKING PAPERS

W-379

Lars Mathiassen – Timo Saarinen – Tuure Tuunanen – Matti Rossi

MANAGING REQUIREMENTS ENGINEERING RISKS:
AN ANALYSIS AND SYNTHESIS OF THE LITERATURE

W-379
ISSN 1795-1828

ISBN 951-791-895-X (Electronic working paper)
2004

 Sprouts - http://sprouts.aisnet.org/4-26

Lars Mathiassen* – Timo Saarinen** – Tuure Tuunanen** – Matti Rossi**

MANAGING REQUIREMENTS ENGINEERING RISKS:

AN ANALYSIS AND SYNTHESIS OF THE LITERATURE

*Center for Process Innovation,
Georgia State University

**Helsinki School Economics,
Department of Management, Information Systems Science

November
2004

HELSINGIN KAUPPAKORKEAKOULU
HELSINKI SCHOOL OF ECONOMICS

WORKING PAPERS
W-379

 Sprouts - http://sprouts.aisnet.org/4-26

© Lars Mathiassen, Timo Saarinen, Tuure Tuunanen, Matti Rossi and
Helsinki School of Economics

ISSN 1795-1828
ISBN 951-791-895-X (Electronic working paper)

Helsinki School of Economics -
HeSE print 2004

HELSINGIN KAUPPAKORKEAKOULU
HELSINKI SCHOOL OF ECONOMICS
PL 1210
FIN-00101 HELSINKI
FINLAND

 Sprouts - http://sprouts.aisnet.org/4-26

Managing Requirements Engineering Risks:

An Analysis and Synthesis of the Literature

Lars Mathiassen (lmathiassen@gsu.edu)

Center for Process Innovation, Georgia State University

P. O. Box 4015, Atlanta, GA 30303-4015, USA

Phone: +1-404-651-0933, Fax: +1-404-463-9292

Timo Saarinen (timo.saarinen@hkkk.fi)

Helsinki School Economics, Department of Management, Information Systems Science

P. O. Box 1210, FIN-00101 Helsinki, Finland

Phone: +358-9-431-38272, Fax: Fax: +358-9-431-38700

Tuure Tuunanen (tuure.tuunanen@hkkk.fi)

Helsinki School Economics, Department of Management, Information Systems Science

P. O. Box 1210, FIN-00101 Helsinki, Finland

Phone: +358-40-544-5591, Fax: +358-9-431-38700

http://www.tuunanen.fi

Matti Rossi (matti.rossi@hkkk.fi)

Helsinki School Economics, Department of Management, Information Systems Science

P. O. Box 1210, FIN-00101 Helsinki, Finland

Phone: +358-9-431-38997, Fax: Fax: +358-9-431-38700

[4]
 Sprouts - http://sprouts.aisnet.org/4-26

Managing Requirements Engineering Risks:

An Analysis and Synthesis of the Literature

Abstract

Requirements engineering is recognized as a key discipline in developing business

software. Practitioners are, however, facing a steady stream of new techniques and an

increasingly differentiated portfolio of requirements engineering risks. The purpose of

this paper is to propose a model that links the available repertoire of techniques to the

situations in which practitioners find themselves. To this end, the paper reviews the

software development and requirements engineering literature to understand the risks that

characterize requirement engineering situations, to classify available techniques to

resolve these risks, and to identify key principles by which tactics can be applied to

resolve requirements risks. The paper synthesizes the findings from the analysis into a

contingency model for managing requirements engineering risks. The model sets the

scene for future research and practitioners can use it to navigate the requirements

engineering landscape.

Keywords: Business software; requirements engineering; risk management; contingency

model.

[5]
 Sprouts - http://sprouts.aisnet.org/4-26

Managing Requirements Engineering Risks:

An Analysis and Synthesis of the Literature

1. INTRODUCTION

The requirements for the first software applications were often easy to identify since most

applications were developed by scientists to support their own needs and purposes.

However, as programmers began to develop business software for end-users different

from themselves, it soon became important to systematically gather, explicate, and

understand user needs. This has resulted in a considerable variety of techniques (Byrd et

al. 1992; Davis 1982; Keil et al. 1995; Nuseibeh et al. 2000) to support requirements

engineering in business contexts. Some would argue that the constant stream of

techniques has developed into a methodology jungle (Jayaratna 1994).

Researchers have responded by developing frameworks that practitioners can use to

navigate the requirements engineering landscape. The idea is to help practitioners design

approaches that fit the situations they face. Such contingency frameworks offer three

elements: an understanding of the situations involved, an understanding of the portfolio

of available techniques, and a set of heuristics that link available techniques to types of

situations (Iivari 1992; Kickert 1983). Many contingency frameworks are based on risk

management ideas: the profile of the situation is analyzed in terms of risks, approaches

are seen as risk resolution tactics, and these tactics are linked to situations based on their

capacity to resolve certain types of risks (Lyytinen et al. 1998). As a first attempt to

[6]
 Sprouts - http://sprouts.aisnet.org/4-26

systematically apply requirements engineering techniques, Alter et al. (1978) introduced

a contingency framework to help develop software for decision support. McFarlan (1981;

1982) made an effort to help organize development of business software by achieving

appropriate integration internally amongst developers and externally between developers

and end-users. Davis (1982) focused on the challenges in determining requirements for

business software and developed a contingency framework to reduce the uncertainty of

the development task.

Many changes have, however, occurred in requirements engineering practices and

techniques since the early 1980s. Ubiquitous computing, increased emphasis on inter-

organizational applications, and demand for shorter project life-cycles have introduced

new techniques and changed the risk profile of requirements engineering. Today,

developers often face end-users who are not within organizational reach and development

teams are therefore challenged to establish effective interaction with would-be users to

inform the design process (Duggan et al. 2004; Frolick et al. 1995; Peffers et al. 2003a).

This challenge increases when developers face users who do not know how to describe

their needs (Walz et al. 1993).

The literature provides a rich understanding of the risks related to development of

software in business contexts (Barki et al. 1993; Lyytinen et al. 1998) and it offers an

extensive portfolio of techniques for requirements engineering (Byrd et al. 1992; Keil et

al. 1995; Nuseibeh et al. 2000). There is, however, no up-to-date contingency framework

that links requirements engineering risks to appropriate tactics (Hickey et al. 2004). As a

consequence, it is difficult for practitioners to find guidance in the vast literature on

requirements engineering and design approaches tailored to the situations they face.

[7]
 Sprouts - http://sprouts.aisnet.org/4-26

Questions like how to link the current portfolio of techniques to requirements risks, how

to prioritize techniques over the project life-cycle, or how to combine different techniques

remain open. Classical contingency frameworks for designing requirements engineering

tactics (Alter et al. 1978; Davis 1982; McFarlan 1981; McFarlan 1982) are still useful,

but they provide limited support to answer these questions. Moreover, they do not address

the risks involved in connecting effectively to end-users that are outside organizational

reach. Also, they do not take into account new techniques for requirements engineering

that have been developed since the early 1980’s.

This paper attempts to fill this gap by providing an up-to-date analysis and synthesis of

what we know about requirements engineering risks and techniques. Based on the

literature, we analyze why, when, and how requirement engineering techniques should be

used in development projects and we synthesize the findings by proposing a contingency

model that sets the scene for future research. Practitioners can use the model to navigate

the requirements engineering landscape in business contexts.

The paper is structured as follows. Initially, we present our method for reviewing the

software development and requirements engineering literature (Webster et al. 2002). We

then analyze the literature to understand the risk profile of requirements engineering

situations, to classify available requirements engineering techniques, and to identify key

principles by which techniques apply to resolve requirements engineering risks.

Subsequently, we synthesize insights from this body of knowledge into a contingency

model for managing requirements engineering risks. We present the resulting model and

show how it can be used to manage requirements risks as a project evolves. We conclude

[8]
 Sprouts - http://sprouts.aisnet.org/4-26

by discussing implications of the proposed model for requirements engineering research

and practice.

2. REVIEW METHODOLOGY

A quality review is complete and focuses on concepts. Two of the key issues in designing

rigorous reviews of the literature are therefore how to identify the relevant literature and

how to structure the analysis and presentation of the included literature (Webster and

Watson, 2002).

2.1. Identifying the Literature

Our methodology for identifying literature seeks to include a clearly defined, complete,

and relevant set of research articles. Webster & Watson (2002) emphasize the importance

of a rigorous approach to identification of relevant literature recommending to: 1)

identify relevant articles in leading journals, 2) go backward by reviewing the citations

used by the articles in step 1, and 3) go forward by identifying articles citing the key

articles identified in the previous steps. Our six step method implements this

recommendation and is summarized in Table 1.

In the first step, we used the Web of Science–service with access to scientific literature

from 1990 and onwards to identify software development and software engineering

research that would help us understand the profile of risks and the portfolio of techniques

in requirements engineering. In this process, we used broad key words to include as many

potentially relevant papers as possible. On that basis, Web of Science helped us identify

the 500 most relevant articles within software development as well as the 500 most

relevant within requirements engineering. The keyword search was done May 15th 2004.

[9]
 Sprouts - http://sprouts.aisnet.org/4-26

In the second step, we selected those of the papers from step one that were published in

leading software engineering and information systems journals. Several papers identify

leading journals (Gillenson et al. 1991; Hardgrave et al. 1997; Holsapple et al. 1994;

Mylonopoulos et al. 2001; Whitman et al. 1999). We chose two recent lists published in

2003. One focuses on information systems journals (Peffers et al. 2003b), and the other

on computer science and software engineering journals (Katerattanakul et al. 2003). By

combining these lists, we arrived at leading journals that are relevant for our study, see

Appendix 1. We then used the aggregate list to select articles from leading journals.

The sets of papers generated by the two first steps still contained a total of 135 articles.

Many of these turned out to be of little or peripheral relevance to our study because of the

broad key word search adopted in the first step. We therefore conducted a third step in

which we manually filtered each of the two sets of articles based on specific criteria of

relevance, see Table 1. The criteria were decided through rounds of discussions between

the authors until a consensus was reached.

The first three steps do not include articles written before 1990 because of the Web of

Science indexing limitations. As a fourth step, we therefore followed the advice of

Webster and Watson (2002) and went backward through the reference lists of all articles

included by step three. Within both steams of literature, we compiled an aggregate

reference list sorted according to first author and included those articles that had two or

more citations in the newer articles in leading journals, i.e. we included those older

papers that had most impact in the newer literature.

The two lists of older literature were then in a fifth step filtered manually according to the

rules of step three. In the final sixth step, we combined the lists of steps three and five to

[10]
 Sprouts - http://sprouts.aisnet.org/4-26

generate the total lists of relevant papers to be included in the review. The resulting

selection of literature for the review is listed in Appendix 2 with information about which

journals the sample is drawn from.

Table 1 Literature selection

Step Software Development Requirements Engineering

Step 1: Broad
search in Web of

Science (May
15th 2004)

- Keywords: ‘software
development methods’,
‘software engineering
management’, ‘software
process management’,
‘software life cycle’.

- 4,320 of 18,684,867.
- Search limited to 500

most relevant.

- Keywords: ‘requirements
and determination’ or
‘requirements and
elicitation’.

- 2,633 of 18,860,525.
- Search limited to 500

most relevant.

Step 2: Selecting
articles in ranked

journals1

- Result: 97 articles. - Result: 40 articles.

Step 3: Selecting
most relevant

articles

- Criteria: 1) should
theorize about either
software development
process or product over
the whole life-cycle or 2)
Should take a holistic
approach to
understanding and
addressing software
development problems
and their solutions.

- Result: 24 articles.

- Criteria: 1) Should
evaluate tactics and
techniques for
requirements engineering
in software and systems
development.

- Result: 32 articles.

Step 4:
Identifying pre-
1990 papers

- Result: list containing 62
articles with two or more
citations.

- Result: list containing 56
articles with two or more
citations.

Step 5: Selecting
most relevant

articles

- Result: 21 new articles
out of the 62 with two or
more citations.

- Result: 14 new articles
out of the 56 articles with
two or more citations.

Step 6:
Combining

results from step
3 and 5

- Result: 45 articles. - Result 46: articles.

Number of reviewed articles: 91 articles (see Appendix 2 for details).

1 See Appendix 1 for the list of journals

[11]
 Sprouts - http://sprouts.aisnet.org/4-26

2.2. Structuring the Review

The objective of our literature review is to analyze why, when, and how requirements

engineering techniques should be used in development projects and to synthesize the

findings into a model for tailoring available techniques to the situations in which

practitioners find themselves. We have consequently chosen contingency thinking (Iivari

1992; Kickert 1983) to help make sense of the selected literature within software

development and requirements engineering. This choice is supported by Hickey and

Davis’s unified model of requirements elicitation (2004) in which they suggest to use

situational characteristics as a basis for selection of elicitation techniques. Hickey and

Davis argue that their model leads to important new research directions including (2004):

1. Taxonomy of situational characteristics in requirements elicitation.

2. Taxonomy of requirements elicitation techniques.

3. Development of ways to select appropriate techniques.

Compared to Hickey and Davis, our focus is more broadly on requirements engineering.

In addition to elicitation of requirements, i.e. learning, uncovering, extracting, surfacing,

or discovering needs of customers, users, and other potential stakeholders (Hickey et al.

2004), we include other requirements engineering activities such as selection, analysis,

specification and validation of the requirements to be addressed in a specific release of

business software. Also, as our goal is to develop a risk management model for

navigating the requirements engineering landscape, we have chosen to analyze the

literature in three specific themes: ad 1) the risk profile of requirements engineering

situations , ad 2) the portfolio of requirements engineering techniques with a risk

[12]
 Sprouts - http://sprouts.aisnet.org/4-26

resolution focus, and ad 3) the principles by which techniques apply to resolving

requirements engineering risks.

Risks denote incidents that endanger a successful development process leading to wrong

or inadequate software solutions, rework, implementation difficulty, delay or uncertainty

(Boehm 1991; Lyytinen et al. 1996). Requirements risks, and software risks in general,

involve the concept of consequence in the form of loss or uncertainty and they require

managerial intervention (Barki et al. 1993; Lyytinen et al. 1996). We use the term

techniques following Hickey and Davis (2004). Techniques must include a description of

what to do, and they can include description of how to do it, including tools and notations

to use while doing it.

Mathiassen & Stage (1992) use contingency thinking to link the profile of situations to

the portfolio of techniques when developing business software. First, to characterize a

given situation they distinguish between complexity, i.e. the amount and structure of the

information available to support development, and uncertainty, i.e. the availability and

reliability of the information needed for development. Second, they distinguish between

techniques that specify requirements and techniques that experiment with requirements.

Techniques based on specification are based on abstraction and textual or graphic

representation of requirements. Experimental techniques are based on prototyping and

iterative process models to gradually evolve software (Boehm 1988) and they involve

end-users to help improve the quality of the resulting software (Davis 1982; Keil et al.

1995; Watson et al. 1993). The user base for requirements engineering has, however,

widened and so has the gap between developers and users (Grudin 1991; Peffers et al.

2003a; Salaway 1987). This trend has created increased concerns for how to make

[13]
 Sprouts - http://sprouts.aisnet.org/4-26

relevant information available to a software development team. If the team cannot

effectively connect to and interact with would-be users it is difficult to discover relevant

information about the software and its practical use. For these reasons, we have refined

Mathiassen & Stage’s original framework (1992) to reflect the increased importance of

effectively connecting to and interacting with would-be-users. We do that by explicitly

distinguishing between two different types of uncertainties, those related to the

availability and those related to the reliability of the information needed to develop the

new software. In this way, we arrive at a general conceptual framework for analyzing

requirements engineering risks and tactics as illustrated in Table 2.

Table 2 Framework for literature analysis

Requirements Engineering Risks Requirements Engineering Tactics

Requirements complexity
Requirements reliability

Requirements availability

Requirements specification
Requirements experimentation

Requirements discovery

3. ANALYSIS OF LITERATURE

In the following, we review the selected literature guided by the conceptual framework in

Table 2 and addressing the following questions:

1. How can we understand and analyze requirements engineering risks?

2. How can we understand and identify available requirements engineering

techniques?

3. What are the key principles by which techniques can be applied to resolve

requirements engineering risks?

[14]
 Sprouts - http://sprouts.aisnet.org/4-26

3.1. Understanding Risks

The reviewed literature emphasizes requirements complexity as a key risk in software

development and requirements engineering. Requirements complexity refers to the

amount and structure of the information that is available to design the new software. The

more information that is available and the more unstructured it is, the higher the

complexity (Mathiassen et al. 1995). Brooks (1987) argue that software is inherently

complex. Digital computers are themselves more complex than most other human

artifacts, and software has order-of-magnitude more states than computers. Technical

issues have therefore been identified by Lyytinen (1988; 1987) as a major reason for

development failure. Additional sources of complexity are emphasized by Boehm et al.

(1989) who focus on the varying views implied by different stakeholders in the

development process, and by Mills (1999) who reminds us that software evolves over

time. Glass et al. (1992) summarize that software development ‘is the most complex

activity the human mind has ever undertaken’. The classical response to complex

requirements is specification tactics that uses abstraction to document requirements based

on combinations of textual and graphical representations (Mathiassen et al. 1995).

The reviewed literature also emphasizes requirements reliability as a key risk in business

software development. Requirements reliability refers to the dynamics of information

about the new software. Such dynamics occur as the involved stakeholders change

perceptions because they learn during the development process or as the internal or

external conditions for using the software change. An additional source of reliability risks

is that end-user needs are seldom evident to developers (Houston et al. 2001; Kraut et al.

1995; Nidumolu 1995; Willcocks et al. 1994). Boehm (1988) argues that iterative

[15]
 Sprouts - http://sprouts.aisnet.org/4-26

approaches can increase requirements reliability by combining learning with systematic

documentation. Experimenting has generally been suggested as the tactic that addresses

requirements reliability (Boehm 1988; Brooks 1987; Lyytinen 1987; Mathiassen et al.

1995; Ramamoorthy et al. 1996; Zmud 1980). Davis’ (1982) contingency framework,

which has been slightly modified by Fazlollahi and Tanniru (1991), helps practitioners

select appropriate experimental techniques when the uncertainty of the development task

is high.

The literature finally emphasizes risks related to requirements availability. The

communication gap between developers and end-users has increased as more business

applications target users that are external to the organization (Barki et al. 1993; Dennis et

al. 1988; Nunamaker et al. 1991). Requirements availability depends on the physical,

conceptual, and cultural distance between the developers and the would-be users. There is

currently a shift from internal end-users towards customers and end-users that are

external to the business. This shift occurs as business software is increasingly produced to

markets and used by customers and business partners. The voice of the customers and

other external users has, consequently, become an important factor in requirements

engineering (Pai 2002; Ravichandran et al. 1999; Ravichandran et al. 2000; Zultner

1993). Questions have been raised on how to identify and reach external users

(Hirschheim et al. 1991; Keil et al. 1995) and Salaway argues (1987) that it is more

problematic to communicate with external users than with internal ones. Also, end-users

in general rarely understand the requirements of business software applications (Walz et

al. 1993; Watson et al. 1993). These factors increase the risks related to making

information about requirements readily available for a development team.

[16]
 Sprouts - http://sprouts.aisnet.org/4-26

Communication between stakeholders (Curtis et al. 1992; Curtis et al. 1988; Davidson

2002; Keil et al. 1995) and involvement of different groups of users (Bostrom 1977;

Bostrom 1989; Elboushi et al. 1997) are classical examples of discovery tactics that can

help development teams access relevant information about requirements.

This analysis of the literature confirms that requirements complexity, reliability, and

availability represent important risks in requirements engineering. To further understand

how well this conception of requirements risks covers the important sources of risks and

how well it provides a balanced view of requirements risk profiles, we examined key

sources on software risks and requirement risks. Barki et al. (1993) has reviewed the

literature and provide on that basis a comprehensive list of the different sources of risk in

development of business software. The only available source that examines in detail the

specific risks involved in requirements engineering is Davis (1982). Table 3 maps these

two accounts of risk sources to requirements complexity, reliability, and availability. The

result suggests that the proposed conception of requirements risks is both comprehensive

and well balanced.

Table 3 Mapping requirements engineering risks to measures

Proposed Measures of Risks

Risks

Software
Development

(Barki et al. 1993)

Requirements Engineering (Davis
1982)

Requirements
Complexity

• Technical
complexity

• Relative project
size

• Number of links to
existing systems

• Number of links to

• A complex system
• Lack of well-understood model of

the utilizing system.
• Lack of structure for activity or

decision being supported

[17]
 Sprouts - http://sprouts.aisnet.org/4-26

future systems
• Number of

hardware
suppliers

• Number of
software suppliers

• Need for new
hardware

• Need for new
software

Requirements
Reliability

• Task complexity
• Extent of changes

brought
• Lack of

development
expertise in team

• Team’s lack of
expertise with
application

• Team’s lack of
general expertise

• Resource
insufficiency

• Magnitude of
potential loss

• Intensity of
conflicts

• Lack of stability in use of the
information system

• Change in the utilizing system
• Lack of stability in structure and

operation of the utilizing system
• Changes in the use of information
• Lack of user experience in

utilizing system and lack of
experience in type of application
being proposed

Requirements
Availability

• Number of users
outside the
organization

• Number of users
in the
organization

• Lack of user
experience and
support

• Number of
hierarchical levels
occupied by users

• Team’s lack of

• A large number of users affect the
existence and stability of
requirements

• A large number of users which will
affect level of participation and
users’ feeling of responsibility in
specifying requirements

• Type of users doing the
specifications

[18]
 Sprouts - http://sprouts.aisnet.org/4-26

expertise with
task

• Number of people
on team

• Lack of clarity of
role definitions

• Team diversity

3.2. Understanding Techniques

The literature suggests requirements specification as the tactic that resolves complexity

risks in software development and requirements engineering. Three types of specification

techniques are represented in the reviewed literature. First, formal techniques that are

based on rigorously defined concepts and notation schemes are promoted as the

exemplary technique to resolve complexity risks (Hausler et al. 1994; Hevner et al. 1993;

Jenkins et al. 1984; van Lamsweerde et al. 2000). Formalization of requirements is

established as a comprehensive and all-encompassing technique (Hevner et al. 1995; van

Lamsweerde et al. 2000) that involves goal-oriented modeling to explicate and include

viewpoints of all stakeholders (Darke et al. 1997; Leite et al. 1991; Nuseibeh et al. 1994).

Box structures offer one such formal approach to represent requirements with execution

semantics that allow for simulation of the specifications (Hevner et al. 1995). Other

techniques are CREWS (Haumer et al. 1998), KAOS (van Lamsweerde et al. 2000) and Z

(Liu et al. 1998). Second, combined techniques have been promoted to facilitate end-user

involvement in requirements engineering. Scenario-based requirements elicitation

(Haumer et al. 1998) was, for example, found to be helpful in engaging end-users. In a

similar vein, Petri net modeling was successfully integrated with adoption of use cases

(Lee et al. 1998).While these combined techniques facilitate end-user involvement, the

basic form of representation is still formalized to avoid fuzziness and ambiguity (Rolland

[19]
 Sprouts - http://sprouts.aisnet.org/4-26

et al. 2003; Rolland et al. 1998). Quite a variety of pragmatic specification techniques are

also presented, for example in the available surveys of requirements engineering

techniques (Byrd et al. 1992; Keil et al. 1995). These specification techniques focus

either on acquiring information from end-users, on studying existing systems, or on

developing graphical representations of requirements, and they adopt natural language as

the basic means for defining semantics. Prominent examples of these techniques are

entity-relationship modeling (Haumer et al. 1998; Pedersen et al. 2001) and data flow

diagraming (Larsen et al. 1992; Marakas et al. 1998; Ramesh et al. 1999).

Two types of requirements experimentation techniques were found in the literature. First,

there are iteration techniques that facilitate learning based on specifications, prototypes,

and preliminary versions of software modules. Prototyping of business software and user

interfaces help developers receive direct feedback from users (Davis 1982; Keil et al.

1995; Lyytinen 1987; Watson et al. 1993). Boehm argues that iterations should continue

until requirements have stabilized at which point the process can adopt a pure

specification approach to support construction of the final version of the software

(Boehm 1988; Mathiassen et al. 1995). Second, there are collaboration techniques that

involve end-users in the development process (Kujala 2003). The objective of these

techniques is to have end-user knowledge and experience directly influence requirements

engineering activities (Duggan et al. 2004; Kujala 2003). Joint Application Design

(Andrews 1991; Wetherbe 1991) exemplifies this technique and it has provided the basis

for more sophisticated ways of collaboration (Vessey et al. 1994). Other examples are

participatory design (Kujala 2003) and ETHICS (Duggan et al. 2004). These techniques

help users and developers solve problems collaboratively and debate requirements

[20]
 Sprouts - http://sprouts.aisnet.org/4-26

through various forms of structured workshops and they have been widely used by

practitioners (Baskerville et al. 2001; Blackburn et al. 1996).

Finally, the literature offers three types of techniques for connecting internal as well as

external end-users to the development team to help discover requirements. First, cognitive

techniques focus on listening to and understanding the voice of the customer or other user

groups inspired by approaches in marketing science, like quality function deployment

(Pai 2002; Ravichandran et al. 1999; Ravichandran et al. 2000; Zultner 1993), Delphi

(Davis 1982), and laddering (Browne et al. 2002; Browne et al. 2001; Davidson 2002).

Second, group techniques, like focus group interviews (Leifera et al. 1994; Telem 1988)

and Group Support Systems (Chen et al. 1991; Duggan 2003; Duggan et al. 2004; Liou et

al. 1993), are suggested to take advantage of group dynamics in discovering

requirements. Third, observation techniques help discover requirements by having end-

users explain or demonstrate their work process in context. Contextual Design (Holtzblatt

1995; Jones et al. 1993) is a prime example of discovering requirements by observing

end-users while they work on a day-to-day basis. This technique simultaneously

addresses the problem of reaching individual users and understanding the context of use.

Discovery techniques generally focus on understanding the software and its use, for

example with protocol analysis or behavior analysis (Byrd et al. 1992) and through rich

information about the context in which it will be adopted (Fazlollahi et al. 1991). To

facilitate this process, techniques are proposed to ensure effective communication, for

example using multimedia to represent requirements (Ramesh et al. 1995),

multidimensional data models (Pedersen et al. 2001), semantic maps (Marakas et al.

1998), and the use of cognitive mapping (Montazemi et al. 1986).

[21]
 Sprouts - http://sprouts.aisnet.org/4-26

This analysis of the literature confirms that requirements specification, experimentation,

and discovery characterize important tactics in requirements engineering. In addition, the

current literature suggests a more refined understanding of the techniques (i.e. formal,

combined, pragmatic, iterative, collaboration, cognitive, group, and observation

techniques) that are available. To further understand how well this classification of

requirements techniques covers available techniques and provides a balanced view of the

overall portfolio of techniques, we compared and contrasted it with other conceptions of

requirements engineering techniques. Byrd et al. (1992) provide a review of requirements

engineering techniques and categorize them according to their approach to research

information; Keil et al. (1995) categorize techniques based on their support for

development of custom or package business software. Table 4 maps our conception

against these two conceptions of requirements engineering techniques. Also, we used our

classification scheme to categorize the techniques that are presented in the reviewed

literature as summarized in Table 5. These mappings suggest that the proposed

conception of requirements engineering techniques covers the available techniques well

and provides a balanced view of the overall portfolio of techniques.

Table 4 Mapping classifications of requirements engineering techniques

Tactics Techniques Byrd et a. (1992) Keil et al. (1995)
Formal
techniques

• Formal analysis
techniques

• Mapping
techniques

Combined
techniques

• Formal analysis
techniques

 Requirements
Specification

Pragmatic
techniques

• Unstructured
Elicitation
Techniques

• Mapping

[22]
 Sprouts - http://sprouts.aisnet.org/4-26

techniques

Iteration
techniques

• Observation
Techniques

• User-interface
prototyping

• Requirements
prototyping

• Trade show
• Testing

Requirements
Experimentation

Collaboration
techniques

• Structured
elicitation
techniques

• Facilitated team

Cognitive
techniques

• Mapping
techniques

• Structured
elicitation
techniques

• Survey
• Interview

Group
techniques

• Unstructured
Elicitation
Techniques

• Structured
elicitation
techniques

• Facilitated team
• Email/bulletin

board
• User group
• Focus group

Requirements
Discovery

Observation
techniques

• Observation
Techniques

• MIS intermediary
• Support line
• Usability lab
• Marketing and

sales
• Observational

study

Table 5 Categorization of requirements engineering techniques in the literature

Tactics Techniques

Requirements
Specification

Formal techniques
• Box structure specification and design (Hausler et al.

1994; Hevner et al. 1993; Hevner et al. 1995)
• CREV (Hickey et al. 2004)
• CREWS (Haumer et al. 1998)
• Goal modeling oriented requirements elicitation (Darke

et al. 1997; Hevner et al. 1995; Leite et al. 1991;
Nuseibeh et al. 1994; van Lamsweerde et al. 2000)

• KAOS (van Lamsweerde et al. 2000)

[23]
 Sprouts - http://sprouts.aisnet.org/4-26

• Lyee (Rolland et al. 2003)
• Machine rule induction (Byrd et al. 1992)
• Multidimensional scaling (Byrd et al. 1992)
• Object oriented Z (Liu et al. 1998)
• Petri nets (Lee et al. 1998)
• Prime-CREWS (Haumer et al. 1998)
• State charts (Haumer et al. 1998)
• VDM-SL (Liu et al. 1998)
• VDM ++ (Liu et al. 1998)
• Z (Liu et al. 1998)
Combined techniques
• Unified modeling language (Cysneiros et al. 2004;

Haumer et al. 1998)
• Scenario-based requirements elicitation (Haumer et al.

1998; Rolland et al. 2003; Rolland et al. 1998)
• Petri nets combined with use cases (Lee et al. 1998)
• SCRAM (Hickey et al. 2004)
Pragmatic techniques
• Booch’s object oriented design method (OODA)

(Hevner et al. 1993)
• Business information analysis and integration

technique (Davis 1982)
• Business process planning (BSP) (Davis 1982)
• Coad and Yourdon’s object oriented method (OOAD)

(Hevner et al. 1993)
• Data flow diagrams (Larsen et al. 1992; Marakas et al.

1998; Ramesh et al. 1999)
• Decision analysis (Watson et al. 1993)
• Deriving requirements from an existing system (Davis

1982)
• Ends/Means analysis (Wetherbe 1991)
• Entity-Relationship modeling (Haumer et al. 1998;

Pedersen et al. 2001)
• Goal oriented approach (Byrd et al. 1992; Darke et al.

1997)
• Information systems work and analysis of changes

(Davis 1982)
• ISAC (Haumer et al. 1998)
• Jackson system development (JSD) (Vessey et al.

1994)

[24]
 Sprouts - http://sprouts.aisnet.org/4-26

• Meyer’s object oriented approach (Hevner et al. 1993)
• Multidimensional data models (Pedersen et al. 2001)
• Normative analysis (Watson et al. 1993)
• Object oriented analysis and design (Hevner et al.

1993; Vessey et al. 1994)
• OOSE (Haumer et al. 1998)
• Process analysis (Watson et al. 1993)
• Repertoire Grids (Byrd et al. 1992)
• Rich pictures (Darke et al. 1997)
• Socio-technical analysis (Davis 1982)
• Seidewitz and Stark’s object oriented method (Hevner

et al. 1993)
• Strategy set analysis (Watson et al. 1993)
• Text analysis (Byrd et al. 1992)
• Use cases (Lee et al. 1998)
• Variance analysis (Byrd et al. 1992)
• Warren-Orr diagrams (Fazlollahi et al. 1991)
Iteration techniques
• Prototyping (Byrd et al. 1992; Davis 1982; Watson et

al. 1993)
• Requirements prototyping (Keil et al. 1995)
• Testing (Keil et al. 1995)
• Trade show (Keil et al. 1995)
• User-interface prototyping (Keil et al. 1995)

Requirements
Experimentation

Collaboration techniques
• Cooperative prototyping (Leifera et al. 1994)
• Clean room (Salaway 1987; Trammell et al. 1996)
• ETHICS (Duggan 2003)
• Facilitated team (Keil et al. 1995)
• Joint application design (Andrews 1991; Kujala 2003;

Wetherbe 1991)
• Participatory design (Duggan 2003; Kujala 2003)
• Rapid application development (Salaway 1987)
• Soft systems methodology (Kujala 2003)
• Structured walkthroughs (Salaway 1987)

Requirements
Discovery

Cognitive techniques
• Affinity techique (Duggan 2003)
• Card sorting (Byrd et al. 1992; Maiden et al. 1998)
• Cognitive mapping (Byrd et al. 1992; Montazemi et al.

[25]
 Sprouts - http://sprouts.aisnet.org/4-26

1986)
• Critical success factors (Byrd et al. 1992)
• Delphi method (Davis 1982)
• Laddering (Browne et al. 2002; Browne et al. 2001;

Byrd et al. 1992)
• Open interview (Byrd et al. 1992)
• Precision model (Bostrom 1989)
• Quality function deployment (Duggan 2003; Elboushi

et al. 1997; Pai 2002; Ravichandran et al. 1999;
Ravichandran et al. 2000; Zultner 1993)

• Semantic maps (Marakas et al. 1998)
• Strategic Business Objectives (Frolick et al. 1995)
• Structured Interview (Byrd et al. 1992)
• Surveys (Keil et al. 1995)
• Teach-back interview (Byrd et al. 1992)
Group techniques
• Brainstorming (Byrd et al. 1992)
• EasyWinWin (Stallinger et al. 2001)
• Email/bulletin board (Keil et al. 1995)
• Facilitated team (Keil et al. 1995)
• Focus groups (Keil et al. 1995; Leifera et al. 1994;

Telem 1988)
• Future Analysis (Byrd et al. 1992)
• Group Support Systems and Joint Application Design

(Duggan 2003; Duggan et al. 2004; Liou et al. 1993)
• Group Support Systems and Strategic Business

Objectives (Frolick et al. 1995)
• Guided Brainstorming (Davis 1982)
• Nominal group technique (Duggan 2003)
• Requirements workshops (Hickey et al. 2004)
• Structured Group Elicitation Method (Bryant 1997)
• User group (Keil et al. 1995)
Observation techniques
• Behavior analysis (Byrd et al. 1992)
• Contextual design (Holtzblatt 1995; Jones et al. 1993;

Kujala 2003)
• Marketing and sales (Byrd et al. 1992)
• MIS intermediary (Keil et al. 1995)
• Open systems task analysis (Jones et al. 1993)

[26]
 Sprouts - http://sprouts.aisnet.org/4-26

• Protocol analysis (Byrd et al. 1992)
• Support line (Keil et al. 1995)
• Usability lab (Keil et al. 1995)

3.3. Understanding Principles

The above analysis of requirements engineering risks and techniques in the literature can

be summarized in the following fundamental principle for managing requirements

engineering risks:

Resolution Principle. Tactics for requirements engineering resolve risks as follows:

1) Requirements complexity is resolved by specification tactics including formal,

combined, and pragmatic techniques.

2) Requirements reliability is resolved by experimentation tactics including iteration

and collaboration techniques.

3) Requirements availability is resolved by discovery tactics that connect relevant

stakeholders through cognitive, group, and observation techniques.

This Resolution Principle links individual requirements risks to individual resolution

tactics. It does not, however, shed light on how to combine techniques in response to the

overall risk profile or on how to adjust tactics during requirements engineering practices.

Prioritizing during requirements engineering to respond effectively to different risks is an

important issue (Ramamoorthy et al. 1996). The literature offers several suggestions for

how to priorities risks and tactics. Some focus on the software to be developed while

others focus on the development process. Prioritizing software issues, Fitzgerald (1996)

suggests to distinguish between what business software is expected to do, and how it does

it. This fundamental distinction applies to how requirements are best captured and

[27]
 Sprouts - http://sprouts.aisnet.org/4-26

documented. Trammel et al.(1996) note in their review that projects should be

incremental to ensure continuous customer feedback from each new version of the

software. Other researchers recommend repetitive refinement of the software from the

what-level towards the how-level (Drehmer et al. 2001; Hausler et al. 1994).

Our focus is on the process, i.e. on how different tactics should be adopted and prioritized

during the project life-cycle. Many writers cite Boehm’s (1988) spiral development

model for the way it combines discovery, experimentation, and specification tactics

through a sequence of iterative learning cycles in which requirements are incrementally

specified (Apte et al. 1990; Bersoff et al. 1991; Lyytinen 1987; Lyytinen et al. 1998;

Mathiassen et al. 1995; Ropponen et al. 1997). Mathiassen et al. (1995) provides similar,

but more abstract guidance in their principle of limited reduction. Their model explains

how specification and experimentation can be used and combined to reduce complexity

and uncertainty (Mathiassen et al. 1995). There is also agreement in the literature that

projects seldom rely on one single technique (Chatzoglou et al. 1996; Davis 1982).

Instead, projects adopt a mixture of techniques in response to the organizational needs

and executive contingencies they face (Watson et al. 1993). Moreover, the use of each

technique should be tailored to the particular context of development (Basili et al. 1988;

Ropponen et al. 1997; Ropponen et al. 2000). Boehm’s spiral model exemplifies, in this

way, important principles for how to prioritize requirements risks and tactics during the

project life-cycle. First, the model combines several tactics that are used both in parallel

and sequence. Second, priority is given to certain issues over others as the life-cycle

evolves (e.g. first focus on reducing risks; then focus on constructing software). Third,

[28]
 Sprouts - http://sprouts.aisnet.org/4-26

the model is generic and must be adapted to the specific development context (e.g. the

number of iteration cycles depend on the context).

This suggests the following principles for prioritizing requirements risks and tactics.

Initially, we should attempt to identify and connect to the end-users in order to discover

requirements (Duggan et al. 2004; Elboushi et al. 1997; Frolick et al. 1995) and possibly

involve them in the development effort as suggested by Kujala (2003). In this way, we

bridge the communication gap and make it possible to listen to the voice of customers

and other end-users (Curtis et al. 1992; Curtis et al. 1988; Davidson 2002; Keil et al.

1995; Pai 2002; Ravichandran et al. 1999; Ravichandran et al. 2000; Zultner 1993). From

a strong initial position in which users are connected and the context of use is

appreciated, it becomes feasible to increasingly focus on explicating and validating

requirements through various forms of experimentation. Finally, as requirements

stabilize, it becomes feasible to increasingly focus on detailing and specifying

requirements as a basis for constructing the software. The literature supports initial

emphasis on requirements availability and discovery (Browne et al. 2002; Browne et al.

2001; Duggan et al. 2004; Holtzblatt 1995; Jones et al. 1993; Nunamaker et al. 1991;

Ravichandran et al. 1999; Ravichandran et al. 2000; Stallinger et al. 2001) and the

subsequent priority between experimentation and specification is well understood (Apte

et al. 1990; Bersoff et al. 1991; Boehm 1988; Lyytinen 1987; Lyytinen et al. 1998;

Mathiassen et al. 1995). We summarize these insights for prioritizing risks and tactics

during requirements engineering as follows:

Prioritizing Principle. The primary focus on requirements engineering risks and tactics

should gradually change as follows:

[29]
 Sprouts - http://sprouts.aisnet.org/4-26

1) Requirements availability through discovery.

2) Requirements reliability through experimentation.

3) Requirements complexity through specification.

The literature finally emphasizes the importance of understanding and managing the

interaction between different requirements tactics (Lyytinen et al. 1998; Mathiassen et al.

1995). Interaction occurs when adoption of a tactic influences other types of risks than it

was intended to reduce. A simple example illustrates this phenomenon. If a project

manager is concerned with resource risks and team risks, he might add new members to

the team to reduce resource risks. Such a tactic will, however, invariably impact team

risks by introducing new persons into an established team. Tactics for reducing resource

risks are, therefore, intrinsically related to tactics for team risks.

The fundamental building blocks in requirements risk management are expressed in the

Resolution Principle above. It suggests that projects should understand their risk profile

and respond by using tactics that target each identified risk (Lyytinen et al. 1998). To do

this, risk management models contain lists of risk factors to help analyze the risk profile

and identify tactics to resolve identified risks. A typical approach is to determine the risks

and categorize them into either high or low risks (Davis 1982; Fazlollahi et al. 1991;

McFarlan 1982). The models then provide suggestions for how to address different levels

of risks by using specific resolution tactics. The literature also recommends that the risk

profiles should be continuously assessed to monitor how different risks interact as they

are addressed and a project evolves (Chen et al. 1999; Lyytinen et al. 1996; McFarlan

1982; Quintas 1994). Risk management, if practiced in this way, therefore involves

[30]
 Sprouts - http://sprouts.aisnet.org/4-26

continuous sense-and-respond activities in which risk profiles are updated and the

portfolio of adopted techniques is modified or changed (Lyytinen et al. 1996).

Mathiassen et al. (1995) provides a general understanding of why this is important. They

argue that we often cannot reduce one source of risk without affecting other sources.

Their Principle of Limited Reduction describes how tactics to reduce uncertainty risks

through experimentation generate additional information and hence increase complexity

risks (and visa versa with respect to specification tactics for reducing complexity risks).

The consequence of this principle is that risks should be addressed systemically because

adoption of certain tactics might require adoption of complementary tactics to address

adverse effects. These insights are summarized in the following principle for addressing

requirement engineering risks:

Interaction Principle. Adoption of a requirements engineering tactic can require

adoption of compensating tactics to reduce the adverse effect on other risks than the ones

targeted by the tactic.

This analysis of principles for linking requirements engineering tactics and risks is more

broadly supported by the literature than indicated above. Table 6 summarizes the selected

literature that addresses issues related to each of the identified principles.

Table 6 Sources addressing principles for linking requirements tactics and risks

Principle Sources

Resolution
Principle

(Andrews 1991; Apte et al. 1990; Barki et al. 1993; Baskerville et
al. 2001; Blackburn et al. 1996; Boehm et al. 1989; Bostrom
1977; Bostrom 1989; Bowen et al. 1995; Brooks 1987; Browne et
al. 2002; Browne et al. 2001; Bryant 1997; Byrd et al. 1992; Chen
et al. 1991; Curtis et al. 1992; Curtis et al. 1988; Cysneiros et al.
2004; Darke et al. 1997; Davidson 2002; Davis 1982; Dennis et
al. 1988; Duggan 2003; Duggan et al. 2004; Elboushi et al. 1997;
Fazlollahi et al. 1991; Frolick et al. 1995; Glass et al. 1992;

[31]
 Sprouts - http://sprouts.aisnet.org/4-26

Haumer et al. 1998; Hausler et al. 1994; Hevner et al. 1993;
Hevner et al. 1995; Hickey et al. 2004; Hirschheim et al. 1991;
Holtzblatt 1995; Houston et al. 2001; Jenkins et al. 1984; Jones
et al. 1993; Keil et al. 1995; Kraut et al. 1995; Kujala 2003;
Larsen et al. 1992; Lee et al. 1998; Leifera et al. 1994; Leite et al.
1991; Liou et al. 1993; Liu et al. 1998; Lyytinen 1987; Lyytinen
1988; Maiden et al. 1998; Marakas et al. 1998; Mathiassen et al.
1995; Mills 1999; Montazemi et al. 1986; Nidumolu 1995;
Nunamaker et al. 1991; Nuseibeh et al. 1994; Pai 2002; Rai et al.
2000; Ramamoorthy et al. 1996; Ramesh et al. 1995; Ramesh et
al. 1999; Ravichandran et al. 1999; Ravichandran et al. 2000;
Rolland et al. 2003; Rolland et al. 1998; Salaway 1987; Sawyer et
al. 1998; Stallinger et al. 2001; Telem 1988; Walz et al. 1993; van
Lamsweerde et al. 2000; Watson et al. 1993; Vessey et al. 1994;
Wetherbe 1991; Willcocks et al. 1994; Zmud 1980; Zultner 1993)

Prioritizing
Principle

(Apte et al. 1990; Basili et al. 1988; Bersoff et al. 1991; Boehm
1988; Chatzoglou et al. 1996; Davis 1982; Drehmer et al. 2001;
Fitzgerald 1996; Hausler et al. 1994; Lyytinen 1987; Lyytinen et
al. 1998; Mathiassen et al. 1995; Ramamoorthy et al. 1996;
Ropponen et al. 1997; Ropponen et al. 2000; Watson et al. 1993)

Interaction
Principle

(Boehm 1988; Chen et al. 1999; Davis 1982; Fazlollahi et al.
1991; Lyytinen et al. 1996; Lyytinen et al. 1998; Mathiassen et al.
1995; McFarlan 1982; Quintas 1994)

Having analyzed the existing literature on software development and requirements

engineering to understand requirements risks, requirements techniques, and principles for

linking the two, we proceed to synthesize the findings by proposing a model for

managing requirements engineering risks.

4. SYNTHESIZING THE FINDINGS

Webster and Watson (2002) argue that reviews should extend current theories or develop

new theories. In fact, they consider this the most important part of a literature review and

the part that needs careful planning and the most elaboration. For that reason, we

designed our analysis of the software development and requirements engineering

literature with the explicit objective of developing an up-to-date contingency model that

[32]
 Sprouts - http://sprouts.aisnet.org/4-26

could set directions for future research and inform practice. The literature base, the

analytical framework (see Table 2), and the questions that guided the analysis were

carefully designed to help synthesize the analysis into a model. In the following, we first

review available knowledge about contingency models and models for managing

software risks. These insights provide the foundation for synthesizing the literature

analysis into a model. We then proceed to present the rationale for and structure of a

model for managing requirements engineering risks in business contexts.

4.1. Building Contingency Models

Iivari (1992) discusses the issues involved in building contingency models based on

insights from organization theory (Kickert 1983; Van de Ven et al. 1985). Iivari suggests

a generic framework as follows:

1) Contextual factors considered,

2) Resolution options considered,

3) Methodology used,

4) Type of fit

a) Selection approach,

b) Interaction approach,

c) Systems approach,

5) Effectiveness criteria used.

We have identified requirements complexity, requirements reliability, and requirements

availability as the considered contextual factors. Similarly, we have identified

[33]
 Sprouts - http://sprouts.aisnet.org/4-26

requirements specification, requirements experimentation, and requirements discovery as

the considered resolution options. These factors and options are further elaborated in

Tables 3, 4 and 5. The methodology adopted to arrive at this understanding of situational

factors and resolution options is our analysis of published journal articles within software

development and requirements engineering.

Iivari (1992) offers three types of fit between contextual factors and resolution options.

The selection approach suggests that requirements engineering risks determine which

tactic to adopt. A situation is considered as given and tactics are adopted through

managerial selection. The interaction approach suggests that fit is achieved through

design of appropriate relationships between the specific situation and appropriate tactics.

A design influences not only which tactics to adopt but also the way in which tactics

interact with and shape the situation. The focus is, however, still on optimizing the fit

between pairs of risks and tactics. The systems approach suggests that fit represents the

overall consistency between multiple requirement engineering risks, requirement

engineering tactics, and the resulting performance characteristics.

The unidirectional causality implied by the selection approach is simplistic (Iivari 1992)

and it contradicts the dynamics implied by the identified Prioritizing and Interaction

Principles. The interaction and systems approaches offer more comprehensive views of

the relationship between risks and tactics that are consistent with the findings from the

literature. While the interaction approach offers dialectic conception of causalities, its

focus on specific pairs of factors and options can lead to unintended sub-optimizations

and it is not consistent with the insights underlying the Interaction Principle. For these

[34]
 Sprouts - http://sprouts.aisnet.org/4-26

reasons, we choose the systems approach as the basis for building a synthesizing model to

help manage requirements engineering risks.

Finally, which effectiveness criteria to use to link factors to options, is largely determined

through our choice of the systems approach. We assume, as a consequence, that that there

is no one best way to approach requirements engineering in a given situation. Instead, the

individual elements of a project’s approach to requirements engineering should be

selected and combined to achieve an internal consistency or harmony, as well as a basic

consistency with the risks that a project faces (Minzberg 1983, pp. 2-3).

Existing models for managing software risks provide additional support for synthesizing

the findings from the literature analysis. Iversen et al. (2004) have identified four types of

such models. First, there are risk lists (e.g. Barki et al. 1993). These models contain

generic risk items (often prioritized) to help managers focus on possible sources of risk;

they do not offer appropriate resolution techniques. Second, there are risk-action lists

(e.g. Boehm 1991). These models contain generic risk items (often prioritized), each with

one or more related risk resolution technique. Third, there are risk-strategy models (e.g.

McFarlan 1982). These models relate a project’s risk profile to an overall strategy for

addressing it. They combine comprehensive lists of risks and resolution techniques with

abstract categories of risks (to arrive at a risk profile) and abstract techniques (to arrive at

an overall risk management strategy). The risk profile is assessed along the risk

categories (e.g., into high or low), making it possible to classify the project as being in

one of a few possible situations. For each situation, the model offers a dedicated risk

strategy that combines several abstract techniques. Finally, there are risk-strategy analysis

approaches (e.g. Davis 1982). These approaches are similar to risk-strategy models in

[35]
 Sprouts - http://sprouts.aisnet.org/4-26

offering both detailed as well as aggregate risks and resolution techniques, but they apply

different heuristics. There is no model linking aggregate risks to aggregate resolution

techniques. Instead, these approaches offer a stepwise process in which risks are

identified and linked to techniques to form an overall risk management strategy.

Iversen et al. (2004) suggest that risk-strategy models have the most advantages from a

usage point of view, but they are more difficult to build and modify than the other

models. Accepting the difficulties involved in attempting to synthesize the findings from

the review into such a model, we chose this option in an attempt to support practical

management of requirements engineering risks as well as possible. Moreover, this choice

is consistent with the adoption of a systems approach (Iivari 1992) to fit contingency

factors to resolution options.

4.2. A Contingency Model

McFarlan (1982) provides the exemplary risk-strategy model in the software

development literature and other models of this type have been proposed by Donaldson et

al. (2001) and Keil et al. (1998). McFarlan’s model (1982) distinguishes between three

types of software development risks (size of project, experience with technology, and

understanding of task); it suggests to assess each risk using a high-low scale; and, it

proposes four basic tactics to resolve risks (external integration, internal integration,

project planning, and project control). The model leads to 23=8 archetypical project

situations and suggests for each of them a specific combination of tactics to effectively

resolve risks. The model can be used repeatedly over the project life-cycle as the risk

profile of a project changes. Our proposed model for managing requirements engineering

risks has used McFarlan’s model (1982) as template.

[36]
 Sprouts - http://sprouts.aisnet.org/4-26

Adopting a high-low scale for assessing complexity, reliability, and availability risks

leads to 23=8 different types of requirements engineering situations. Figure 1 illustrates

the resulting archetypical situations and how they relate to each other as risks are

resolved according to the Prioritizing Principle. Each situation is characterized by

availability-reliability-complexity risks (HI=high; LO=low). Based on the characteristics

of the eight situations and the relationships between them, we propose to distinguish

between for types of projects: high-risk projects, engineering projects, design projects,

and routine projects (see Figure 1). In the following, we review each of these, the risk

profiles that characterize them, and the recommended requirements engineering tactics

for addressing risks. The resulting contingency model is summarized in Table 7.

High risk projects. These projects face complex requirements while at the same time

having to deal with difficult issues related to the availability and reliability of relevant

information. Projects that are assessed as HI-HI-HI (type 1 in Table 7) should mainly

focus on requirements discovery to ensure strong connections to would-be-users and the

context in which they operate (cf. the Resolution Principle and the Prioritizing Principle).

At the same time, these projects must adopt moderate levels of experimentation and

specification tactics from the outset to help capture and assess information about

requirements as it is discovered (cf. the Interaction Principle). It is important that these

complementary tactics are not too heavily emphasized because that might create barriers

towards effective discovery of requirements. Projects that are assessed as HI-LO-HI (type

2 in Table 7) should also mainly focus on requirements discovery (cf. the Resolution

Principle and the Prioritizing Principle). However, as requirements are highly reliable,

they only need complementary specification techniques to help capture information as it

[37]
 Sprouts - http://sprouts.aisnet.org/4-26

is discovered (cf. the Interaction Principle). Finally, projects that are assessed as LO-HI-

HI (type 3 in Table 7) are well connected to would-be-users and the context in which they

operate. They should mainly focus on experimentation tactics to ensure reliable

requirements (cf. the Resolution Principle and the Prioritizing Principle). In addition, they

should adopt complementary specification tactics to document requirements as they are

suggested and validated (cf. the Interaction Principle). All high risk projects have a weak

understanding of the development task and they need to give high priority to external

integration tactics (McFarlan 1982). As these risks are resolved, they should increasingly

concentrate on internal integration, project planning, and project control to address the

high complexity involved. Too early emphasis on these tactics can create barriers towards

effective integration between would-be-users and the development team. In Davis’ terms

(1982) high risk projects involve high task uncertainty and they should adopt approaches

based on combinations of experimentation and specification tactics.

Figure 1 Relation between archetypical requirements engineering situations

HI-HI-HI LO-HI-HI

HI-LO-HI

HI-HI-LO

LO-LO-HI LO-LO-LO

LO-HI-LO

HI-LO-LO

High Risk Projects

Design Projects

Routine ProjectsEngineering Projects

HI-HI-HI LO-HI-HI

HI-LO-HI

HI-HI-LO

LO-LO-HI LO-LO-LO

LO-HI-LO

HI-LO-LO

High Risk Projects

Design Projects

Routine ProjectsEngineering Projects

[38]
 Sprouts - http://sprouts.aisnet.org/4-26

Engineering projects. These projects face a complex set of reliable requirements. The

available requirements reflect business and user needs and they remain relatively stable

over the project life-cycle. Projects that are assessed as LO-LO-HI (type 4 in Table 7) can

afford to focus mainly on specification tactics (cf. the Resolution Principle). These

projects face low risks related to understanding the task, but the high complexity risk

suggests that they should emphasize internal integration, project planning, and project

control (McFarlan 1982). According to Davis’ framework (1982), engineering projects

should mainly be based on specification tactics.

Design projects. These projects will eventually face relatively simple requirements, but

there are serious risks related to the availability and reliability of information about

requirements. The key challenge in these projects is to design a viable solution. Such

projects should identify and validate requirements through interaction with would-be-

users and the business context. Projects that are assessed as HI-HI-LO (type 5 in Table 7)

should mainly focus on discovery tactics to interact effectively with would-be-users and

the context in which they operate (cf. the Resolution Principle and the Prioritizing

Principle). At the same time, these projects must adopt complementary experimentation

tactics from the outset to help validate information about requirements as it is discovered

(cf. the Interaction Principle). Because requirements are relatively simple, there is no

need to adopt comprehensive specification tactics. Projects that are assessed as HI-LO-

LO (type 6 in Table 7) should proceed in a similar fashion, except they need not

concentrate on the reliability of requirements. Finally, projects that are assessed as LO-

HI-LO (type 7 in Table 7) have access to relevant information about requirements, but the

information is highly unreliable. These projects must emphasize experimentation tactics

[39]
 Sprouts - http://sprouts.aisnet.org/4-26

to stabilize requirements (the Resolution Principle). All design projects face high risks

related to understanding the task and they need to give high priority to external

integration tactics (McFarlan 1982). As the complexity is low, there is little need to

emphasize internal integration, project planning, and project control. In Davis’ terms

(1982), design projects should mainly be based on a combination of discovery and

experimentation tactics.

Routine projects. Finally, there are routine projects that are assessed as LO-LO-LO

(type 8 in Table 7). In these projects, requirements are available and stable, and the

development team understands them well and knows from previous experience how to

design and develop software that meets the requirements. Routine projects require no

special attention from a requirements engineering perspective; straightforward

approaches can be adopted to develop the software. McFarlan suggests that such projects

should concentrate entirely on internal integration to make sure that the development

team is capable and committed to develop the requested software (McFarlan 1982). Davis

(1982) suggests that routine projects should be based on direct and informal interactions

with would-be-users and the business context, or alternatively, if similar software is

available they should be based on modifying or imitating existing software.

The distinctions and logic in Figure 1 express a synthesis of the key findings from the

literature analysis. This synthesis and the elaboration into the four types of project

situations provide the rationale for the contingency model summarized in Table 7. In the

model, we have expressed levels of risks using the high-low scale and we have expressed

the degree to which individual tactics should be emphasized in designing a

comprehensive strategy for risk resolution using a weak-medium-strong scale.

[40]
 Sprouts - http://sprouts.aisnet.org/4-26

Table 7 Managing requirements engineering risks

 Avai-
Lability

Relia-
bility

Com-
plexity

Dis-
covery

Experi-
mentation

Speci-
fication

1 High High High Strong Medium Medium
2 High Low High Strong Weak Medium
3 Low High High Weak Strong Medium
4 Low Low High Weak Weak Strong
5 High High Low Strong Medium Weak
6 High Low Low Strong Weak Weak
7 Low High Low Weak Strong Weak
8 Low Low Low Weak Weak Weak

5. DISCUSSION AND IMPLICATIONS

The results from the analysis of the literature show that the portfolio of requirements

engineering research recognizes the problems involved in practice (e.g. Table 3) and

provides a rich variety of techniques to guide practice (e.g. Tables 4 and 5). Most

techniques focus, however, on solving particular requirements engineering problems and,

only a handful of papers discuss how techniques can be combined. There is little meta

level research that provides a structured understanding of the field, its problems and

challenges, and the techniques available to support practice. Such research is particularly

important because it provides guidance to studying the literature and to adapting insights

from the literature to practice.

While there are relatively up-to-date surveys of requirements engineering techniques

available (Byrd et al. 1992; Davis 1982; Keil et al. 1995; Nuseibeh et al. 2000), none of

them link the identified types of techniques to different types of requirements engineering

situations. In fact, the only models in the reviewed literature that can help practitioners

design appropriate requirements engineering approaches date back to the early eighties

(Alter et al. 1978; Davis 1982; McFarlan 1981; McFarlan 1982). As a consequence, these

models do not address the shifts that have occurred in requirements engineering theory

[41]
 Sprouts - http://sprouts.aisnet.org/4-26

and practices as business software is increasingly produced to markets and used by

customers and business partners across organizational boundaries.

Our analysis of the literature suggests, that today’s business software projects face

situations involving requirements availability risks, requirements reliability risks, as well

as requirements complexity risks. To address such differentiated risk profiles, the analysis

suggests that practitioners should design approaches that combine requirements discovery

tactics, requirements experimentation tactics, as well as requirements specification

tactics. Moreover, the analysis identifies principles for applying requirements engineering

tactics to resolve risks: the Resolution Principle (that helps link relevant tactics to specific

risks), the Prioritizing Principle (that helps decide on which risks to focus on as a project

evolves), and the Interaction Principle (that helps combine different tactics into a

comprehensive strategy that addresses the risk profile as a whole).

The synthesis of these findings into a contingency model for managing requirements risks

(see Table 7), identifies eight different requirements engineering risk profiles and for

each of these it suggests a combination of tactics to resolve the risks. In addition, the

model suggests (see Figure 1) to distinguish between four archetypical requirements

engineering projects: high risk projects, engineering projects, design projects, and routine

projects. Each of these poses different challenges, they call for different strategies, and

they will, consequently, require development teams with different skill profiles, mindsets,

collaboration patterns, and management practices. This synthesis and the underlying

insights from the literature analysis have implications for both research and practice.

[42]
 Sprouts - http://sprouts.aisnet.org/4-26

5.1 Implications for research

The paper has highlighted the continuously growing portfolio of techniques and still more

differentiated risk profile involved in requirements engineering. As the literature provides

little guidance in navigating this increasingly complex landscape, we encourage

researchers to (cf. Hickey et al. 2004): 1) deepen our understanding of the characteristics

that differentiate today’s requirements engineering projects; 2) develop surveys of

available techniques that help distinguish them with respect to their usefulness in

different types of requirements engineering situations; and, 3) further develop and

validate contingency models for managing requirements engineering risks.

The first research challenge could start out from available knowledge about software

risks in general (Barki et al. 1993; Lyytinen et al. 1998) and requirements engineering

risks in particular (Davis 1982) (see Table 4). General risk measures need to be projected

into the requirements engineering space and requirements engineering risk measures need

to be updated to reflect today’s practices. The goal of these efforts should be to develop

useful categories of requirements risks and related measures that can be used to identify

and assess risk profiles in requirements engineering practice. One approach would be to

develop a generic set of requirements risks across all types of projects and software.

Another approach would be to categorize types of software (e.g. custom versus package)

(Keil et al. 1995) or types of projects (e.g. in-house or outsourced) to develop more

specialized measures of the involved risks.

The second research challenge is to further develop and refine available attempts to

categorize requirements engineering techniques (Byrd et al. 1992; Darke et al. 1997;

Davis 1982; Keil et al. 1995; Nuseibeh et al. 2000). The goal of this research is to take

[43]
 Sprouts - http://sprouts.aisnet.org/4-26

stock of the available portfolio of techniques and provide guidance on how to categorize,

assess, and select specific techniques. Such insights can guide practical requirements

engineering as well as continued efforts to develop a better and more comprehensive

portfolio of techniques. This research should survey and assess techniques beyond those

presented in the analyzed literature, it should critically contrast the espoused benefits and

actual effects of using the techniques, and it should differentiate techniques based on their

ability to resolve specific types of requirements risks, for example as suggested in Table

5.

Finally, the third research challenge should further develop and apply contingency

models (including the one proposed in this paper) to practical management of

requirements engineering risks. This would call for empirical work on validating the

applicability of our proposed principles and tactics in real world situations under different

contextual factors. These efforts should be tightly linked to requirements engineering

practices based on a variety of research approaches: surveys of how practitioners select

and combine requirements engineering techniques (Blackburn et al. 1996; Chatzoglou et

al. 1996; Rai et al. 2000); case studies of the relationship between practices and

techniques, of how and why techniques are adopted and combined, and of the effects that

techniques have on resolving requirements risks (Browne et al. 2001; Darke et al. 1997;

Elboushi et al. 1997; Haumer et al. 1998; Kujala 2003; Liu et al. 1998). These activities

could be followed by design research (Hevner et al. 2004) studies to develop

complementary methods to better cover the portfolio of requirements engineering risks.

Finally, action research projects could develop, apply, modify, and validate proposed

models for managing requirements engineering risks in business contexts. In support of

[44]
 Sprouts - http://sprouts.aisnet.org/4-26

the latter type of research, Iversen et al. (2004) provides a comprehensive action research

approach to develop risk management practices within the information systems and

software engineering disciplines. This approach can be used to develop models tailored to

a particular business (e.g. that provide package software solutions for markets) or, models

to be applied in particular types of projects (e.g. high-risk, engineering, or design

projects).

5.2 Implications for practice

While the review is limited to the academic literature on requirements engineering, the

findings have direct impacts on development of business software. Practitioners are

advised to distinguish between different types of requirements engineering projects and

situations. The proposed contingency model provides guidelines for how to do so. First,

practitioners should assess each new requirements engineering project. To that end they

should study Table 4 and use the suggested measures as indicators to help understand the

risk profile of the project. Second, they can use Table 7 to arrive at an abstract strategy to

address the risks they face. Third, they then translate the strategy into concrete plans for

action by identifying specific techniques corresponding to the suggested combination of

requirements engineering tactics (see table 7). This can be done by critically reviewing

the techniques they are currently using or by exploring alternative techniques in Table 5.

Finally as suggested by Figure 1, practitioners are encouraged to reassess risks and adjust

requirements engineering strategy as they go along. Lyytinen et al. (1996; 1998) argue

that software risk management is a very inexpensive and low-risk technology. Risk

management practices help shape practitioners’ attention more sharply on the challenges

[45]
 Sprouts - http://sprouts.aisnet.org/4-26

they face (Lyytinen et al. 1998) and they provide useful guidance on what approaches to

adopt.

In summary, we encourage researchers to consider and help bridge the gap between the

portfolio of available techniques and the profile of risks that practitioners face in

requirements engineering. At the same time we encourage practitioners to adopt risk

management practices to help design approaches to requirements engineering that apply

to the type of project and situations they are involved in.

6. LIMITATIONS

This research has, as any other scientific efforts, shortcomings. Most importantly, we

have limited ourselves to analyze and synthesize scientific papers published in

information systems and software engineering journals. The subject of why, when, and

how requirement engineering techniques should be used in different types of project

situations lends itself strongly towards empirical research. The literature on the subject is,

however, extensive, and we felt a need to carefully review this body of knowledge before

engaging ourselves in further empirical studies. Also, we have not included analyses of

the extensive practitioner oriented literature on requirements engineering. Such analyses

could provide additional and valuable insights into the types of techniques that are

available for requirements engineering and into the espoused theories about the

applicability of different types of techniques. Finally inspired by Webster and Watson

(2002), we approached the review of the literature with the ambition to extend current

theories. For that reason, we designed the literature analysis with the specific goal of

developing an up-to-date contingency model for managing requirements engineering

[46]
 Sprouts - http://sprouts.aisnet.org/4-26

risks. While this approach has helped us focus the analysis, it has also given us a specific

and limited perspective on the extensive knowledge that is available about requirements

engineering.

7. CONCLUSION

The objective of this research was to analyze what we know about requirements

engineering risks and techniques in the context of developing business software, and to

synthesize the insights from the analysis into an up-to-date understanding of why, when,

and how requirement engineering techniques should be used in different types of project

situations. To that end, we developed a rigorous procedure that helped us identify 91

scientific papers on the subject in leading information systems and software engineering

journals. We also adopted a simple conceptual framework to structure the analysis of the

literature. The literature analysis led to a review the risks involved in requirements

engineering, the techniques that are available to resolve these risks, and the principles by

which techniques can be applied to resolve risks. The findings from the analysis were

subsequently synthesized into a contingency model for managing requirements

engineering risks. The model has implications for future research and it suggests how

practitioners can use insights from the literature to navigate the requirements engineering

landscape.

REFERENCES

Alter, S., and Ginzberg, M. "Managing uncertainty in MIS implementation," Sloan

Management Review (20:1) 1978, pp 23-31.

[47]
 Sprouts - http://sprouts.aisnet.org/4-26

Andrews, D.C. "JAD: a crucial dimension for rapid applications development.," Journal

of Systems Management (42:3) 1991, pp 23-31.

Apte, U., Sankar, C.S., Thakur, M., and Turner, J.E. "Reusability-Based Strategy for

Development of Information Systems: Implementation Experience of a Bank,"

MIS Quarterly (14), December 1990, pp 421-433.

Barki, H., Rivard, S., and Talbot, J. "Toward an Assessment of Software Development

Risk," Journal of Management Information Systems (10:2) 1993, pp 203-225.

Basili, V.R., and Rombach, H.D. "The TAME project: towards improvement-oriented

software environments," IEEE Trans. Software Engineering (14:6), June 1988, pp

758-773.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., and Slaughter, S. "How Internet

software companies negotiate quality," Computer (34:5), May 2001, pp 51-+.

Bersoff, E.H., and Davis, A.M. "Impacts of Life-Cycle Models on Software

Configuration Management," Communications of the Acm (34:8), Aug 1991, pp

104-118.

Blackburn, J.D., Scudder, G.D., and VanWassenhove, L.N. "Improving speed and

productivity of software development: A global survey of software developers,"

IEEE Transactions on Software Engineering (22:12), Dec 1996, pp 875-885.

Boehm, B. "A Spiral model of software development and enhancement," IEEE Computer

(21:5) 1988, pp 61-72.

Boehm, B. "Software Risk Management: Principles and Practices," IEEE Software (8:1),

January/February 1991, pp 32-41.

[48]
 Sprouts - http://sprouts.aisnet.org/4-26

Boehm, B., and Ross, R. "Theory-W software project management principles and

examples," IEEE Trans. Software Engineering (15:7), July 1989, pp 902-916.

Bostrom, R.P. "MIS Problems and Failures: A Socio-Technical Perspective PART 1:THE

CAUSES," MIS Quarterly (1:3), September 1977, pp 17-32.

Bostrom, R.P. "Successful application of communication techniques to improve the

systems development process," Information & Management (16:5), May 1989, pp

279-275.

Bowen, J.P., and Hinchey, M.G. "10-Commandments of Formal Methods," IEEE

Computer (28:4), Apr 1995, pp 56-63.

Broadbent, M., and Koenig, M.E.D. "Information and Information Technology

Management," Annual Review of Information Science and Technology (23) 1988,

pp 237-270.

Brooks, F.P. "No Silver Bullet - Essence and Accidents of Software Engineering," IEEE

Computer (20:4), April 1987, pp 10-19.

Browne, G.J., and Ramesh, V. "Improving information requirements determination: a

cognitive perspective," Information & Management (39:8), Sep 2002, pp 625-645.

Browne, G.J., and Rogich, M.B. "An empirical investigation of user requirements

elicitation: Comparing the effectiveness of prompting techniques," Journal of

Management Information Systems (17:4), Spr 2001, pp 223-249.

Bryant, J. "Requirements capture using SODA," European Journal of Information

Systems (6:3), Sep 1997, pp 155-163.

[49]
 Sprouts - http://sprouts.aisnet.org/4-26

Byrd, T.A., Cossick, K.L., and Zmud, R.W. "A Synthesis of Research on Requirements

Analysis and Knowledge Acquisition Techniques," Mis Quarterly (16:1), Mar

1992, pp 117-138.

Chatzoglou, P.D., and Macaulay, L.A. "Requirements capture and IS methodologies,"

Information Systems Journal (6:3), Jul 1996, pp 209-225.

Chen, J.Y.J., and Chou, S.C. "Consistency management in a process environment,"

Journal of Systems and Software (47:2-3), Jul 1 1999, pp 105-110.

Chen, M., and Nunamaker Jr., J.F. "The Architecture and Design of a Collaborative

Environment for Systems Definition," Data Base (22:1-2), Winter-Spring 1991,

pp 22-29.

Curtis, B., Kellner, M.I., and Over, J. "Process modeling," Communications of ACM

(35:9), September 1992, pp 75-90.

Curtis, B., Krasner, H., and Iscoe, N. "A field study of the software design process for

large systems," Communications of ACM (31:11), November 1988, pp 1268-1287.

Cysneiros, L.M., and Leite, J.C.S.D. "Nonfunctional requirements: From elicitation to

conceptual models," Ieee Transactions on Software Engineering (30:5), May

2004, pp 328-350.

Darke, P., and Shanks, G. "User viewpoint modelling: understanding and representing

user viewpoints during requirements definition," Information Systems Journal

(7:3), Jul 1997, pp 213-239.

Davidson, E.J. "Technology frames and framing: A socio-cognitive investigation of

requirements determination," MIS Quarterly (26:4), Dec 2002, pp 329-358.

[50]
 Sprouts - http://sprouts.aisnet.org/4-26

Davis, G. "Strategies for information requirements determination," IBM Systems Journal

(21:1) 1982, pp 4-31.

Dennis, A.R., George, J.F., Jessup, L.M., Nunamaker Jr., J.F., and Vogel, D.R.

"Information Technology to Support Electronic Meetings," MIS Quarterly (12:4)

1988, pp 591-624.

Donaldson, S.E., and Siegel, S.G. Successful Software Development Prentice Hall, Upper

Saddle River, NJ, 2001.

Drehmer, D.E., and Dekleva, S.M. "A note on the evolution of software engineering

practices," Journal of Systems and Software (57:1), Apr 27 2001, pp 1-7.

Duggan, E.W. "Generating systems requirements with facilitated group techniques,"

Human-Computer Interaction (18:4) 2003, pp 373-394.

Duggan, E.W., and Thachenkary, C.S. "Integrating nominal group technique and joint

application development for improved systems requirements determination,"

Information & Management (41:4), Mar 2004, pp 399-411.

Elboushi, M.I., and Sherif, J.S. "Object-oriented software design utilizing quality

function deployment," Journal of Systems and Software (38:2), Aug 1997, pp

133-143.

Fazlollahi, B., and Tanniru, M.R. "Selecting a Requirement Determination Methodology-

Contingency Approach Revisited," Information & Management (21:5), Dec 1991,

pp 291-303.

Fitzgerald, B. "Formalized systems development methodologies: A critical perspective,"

Information Systems Journal (6:1), Jan 1996, pp 3-23.

[51]
 Sprouts - http://sprouts.aisnet.org/4-26

Frolick, M.N., and Robichaux, B.P. "Eis Information Requirements Determination -

Using a Group Support System to Enhance the Strategic Business Objectives

Method," Decision Support Systems (14:2), Jun 1995, pp 157-170.

Gillenson, M., and Stutz, J. "Academic Issues in MIS: Journals and Books," MIS

Quarterly (15:4) 1991, pp 147-452.

Glass, R.L., Vessey, I., and Conger, S.A. "Software Tasks - Intellectual or Clerical,"

Information & Management (23:4), Oct 1992, pp 183-191.

Grudin, J. "Interactive Systems - Bridging the Gaps between Developers and Users,"

Computer (24:4), Apr 1991, pp 59-69.

Hardgrave, B., and Walstrom, K. "Forums for Management Information Systems

Scholars," Communications of ACM (38:3) 1997, pp 93-102.

Haumer, P., Pohl, K., and Weidenhaupt, K. "Requirements elicitation and validation with

real world scenes," Ieee Transactions on Software Engineering (24:12), Dec

1998, pp 1036-1054.

Hausler, P.A., Linger, R.C., and Trammell, C.J. "Adopting Cleanroom Software

Engineering with a Phased Approach," IBM Systems Journal (33:1) 1994, pp 89-

109.

Hevner, A.R., March, S.T., and Park, J. "Design Research in Information Systems

Research," Mis Quarterly (28:1) 2004, pp 75-105.

Hevner, A.R., and Mills, H.D. "Box-structured methods for systems development wirh

objects," IBM Systems Journal (32:2) 1993, pp 232-251.

Hevner, A.R., and Mills, H.D. "Box-Structured Requirements Determination Methods,"

Decision Support Systems (13:3-4), Mar 1995, pp 223-239.

[52]
 Sprouts - http://sprouts.aisnet.org/4-26

Hickey, A.M., and Davis, A. "A Unified Model of Requirements Elicitation," Journal of

Management Information Systems (20:4) 2004, p 65–84.

Hirschheim, R., and Newman, M. "Symbolism and Information Systems Development:

Myth, Metaphore and Magic," Information Systems Research (2:1) 1991, pp 29-

62.

Holsapple, C., Johnson, L., Manakyan, H., and Tanner, J. "Business Computing Research

Journals: A Normalized Citation Analysis," Journal of Management Information

Systems (11:1) 1994, pp 131-140.

Holtzblatt, K. "Requirements Gathering: The Human Factor," Communications of ACM

(38:5) 1995, pp 31-33.

Houston, D.X., Mackulak, G.T., and Collofello, J.S. "Stochastic simulation of risk factor

potential effects for software development risk management," Journal of Systems

and Software (59:3), Dec 15 2001, pp 247-257.

Iivari, J. "The organizational fit of information systems," Journal of Information Systems

(2) 1992, pp 3-29.

Iversen, J.H., Mathiassen, L., and Nielsen, P.A. "Managing Risk in Software Process

Improvement: An Action Research Approach," Mis Quarterly (28:3), September

2004, pp 395-433.

Jayaratna, N. Understanding and Evaluating Methodologies McGraw Hill, London,

1994.

Jenkins, A.M., Naumann, J.D., and Wetherbe, J.C. "Empirical investigation of systems

development practices and results," Information & Management (7:2), April 1984,

pp 73-82.

[53]
 Sprouts - http://sprouts.aisnet.org/4-26

Jones, R.M., Candy, L., and Edmonds, E.A. "Knowledge-Based System Requirements,"

Knowledge-Based Systems (6:1), Mar 1993, pp 31-37.

Katerattanakul, P., Han, B., and Hong, S. "Objective Quality Ranking of Computing

Journals," Communications of ACM (46:10), October 2003, pp 111-114.

Keil, M., and Carmel, E. "Customer-developer links in software development,"

Communications of the Acm (38:5) 1995, pp 33-44.

Keil, M., Cule, P.E., Lyytinen, K., and Schmidt, R.C. "A Framework for Identifying

Software Project Risks," Communications of the Acm (41:11) 1998, pp 76-83.

Kickert, W.J.M. "Research note: Research models underlying situational dependency,"

Organization Studies (4) 1983, pp 55-72.

Kraut, R.E., and Streeter, L.A. "Coordination in software development," Communications

of ACM (38:3), March 1995, pp 69-81.

Kujala, S. "User involvement: a review of the benefits and challenges," Behaviour &

Information Technology (22:1), Jan-Feb 2003, pp 1-16.

Larsen, T.J., and Naumann, J.D. "An Experimental Comparison of Abstract and Concrete

Representations in Systems-Analysis," Information & Management (22:1), Jan

1992, pp 29-40.

Lee, W.J., Cha, S.D., and Kwon, Y.R. "Integration and analysis of use cases using

modular Petri nets in requirements engineering," Ieee Transactions on Software

Engineering (24:12), Dec 1998, pp 1115-1130.

Leifera, R., Leeb, S., and Durgeea, J. "Deep structures: Real information requirements

determination," Information & Management (27:5), November 1994, pp 275-285.

[54]
 Sprouts - http://sprouts.aisnet.org/4-26

Leite, J., and Freeman, P.A. "Requirements Validation through Viewpoint Resolution,"

Ieee Transactions on Software Engineering (17:12), Dec 1991, pp 1253-1269.

Liou, Y.I., and Chen, M. "Using group support systems and joint application

development for requirement specification," Journal of Management Information

Systems (10:3) 1993, pp 25-41.

Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., and Ohba, M. "SOFL: A formal engineering

methodology for industrial applications," Ieee Transactions on Software

Engineering (24:1), Jan 1998, pp 24-45.

Lyytinen, K. "Different Perspectives on Information-Systems - Problems and Solutions,"

Computing Surveys (19:1), Mar 1987, pp 5-46.

Lyytinen, K. "Expectation Failure Concept and Systems Analysts View of Information-

System Failures - Results of an Exploratory-Study," Information & Management

(14:1), Jan 1988, pp 45-56.

Lyytinen, K., Mathiassen, L., and Ropponen, J. "A framework for software risk

management," Journal of Information Technology (11:4), Dec 1996, pp 275-285.

Lyytinen, K., Mathiassen, L., and Ropponen, J. "Attention shaping and software risk - A

categorical analysis of four classical risk management approaches," Information

Systems Research (9:3), Sep 1998, pp 233-255.

Maiden, N.A.M., and Hare, M. "Problem domain categories in requirements

engineering," International Journal of Human-Computer Studies (49:3), Sep

1998, pp 281-304.

[55]
 Sprouts - http://sprouts.aisnet.org/4-26

Marakas, G.M., and Elam, J.J. "Semantic structuring in analyst acquisition and

representation of facts in requirements analysis," Information Systems Research

(9:1), Mar 1998, pp 37-63.

Mathiassen, L., Seewaldt, T., and Stage, J. "Prototyping and Specifying: Principles and

Practices of a Mixed Approach," Scandinavian Journal of Information Systems

(7:1) 1995, pp 55-72.

Mathiassen, L., and Stage, J. "The Principle of Limited Reduction in Software Design,"

Information, Technology and People (6:2) 1992.

McFarlan, F.W. "Portfolio Approach to Information Systems," Harvard Business Review

(59:5) 1981, pp 142-150.

McFarlan, W. "Portfolio Approach to Information Systems," Journal of Systems

Management (33:1) 1982, pp 12-19.

Mills, H.D. "The management of software engineering - Part I: Principles of software

engineering (Reprinted from IBM Systems Journal, vol 19, 1980)," IBM Systems

Journal (38:2-3) 1999, pp 289-295.

Minzberg, H. Structure in fives: designing effective organizations Prentice-Hall

International, New Jersey, 1983.

Montazemi, A.R., and Conrath, D.W. "The Use of Cognitive Mapping for Information

Requirements Analysis," MIS Quarterly (10:1) 1986, pp 44-56.

Mylonopoulos, N., and Theoharakis, V. "On-Site: Global Perceptions of IS Journals,"

Communications of ACM (44:9), September 2001, pp 29-33.

[56]
 Sprouts - http://sprouts.aisnet.org/4-26

Nidumolu, S. "The Effect of Coordination and Uncertainty on Software Project

Performance: Residual Performance Risk as an Intervening Variable,"

Information Systems Research (6:3), September 1995, pp 191-219.

Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D., and George, J.F. "Electronic

meeting systems to Support Group Work," Communications of the Acm (34:7)

1991, pp 40-61.

Nuseibeh, B., and Easterbrook, S. "Requirements engineering: a roadmap," Future of

Software Engineering, ICSE 2000, ACM Press, Limerick, Ireland, 2000, pp. 35-

46.

Nuseibeh, B., Kramer, J., and Finkelstein, A. "A Framework for Expressing the

Relationships Between Multiple Views in Requirements Specification.," IEEE

Trans. Software Engineering (20:10) 1994, pp 760-773.

Pai, W.C. "A quality-enhancing software function deployment model," Information

Systems Management (19:3), Sum 2002, pp 20-24.

Pedersen, T.B., Jensen, C.S., and Dyreson, C.E. "A foundation for capturing and

querying complex multidimensional data," Information Systems (26:5), Jul 2001,

pp 383-423.

Peffers, K., Gengler, C.E., and Tuunanen, T. "Extending critical success factors

methodology to facilitate broadly participative information systems planning,"

Journal of Management Information Systems (20:1), Sum 2003a, pp 51-85.

Peffers, K., and Tang, Y. "Identifying and Evaluating the Universe of Outlets for

Information Systems Research: Ranking the Journals," Journal of Information

Technology Theory and Application (5:1) 2003b, pp 63-84.

[57]
 Sprouts - http://sprouts.aisnet.org/4-26

Quintas, P. "A Product-Process Model of Innovation in Software-Development," Journal

of Information Technology (9:1), Mar 1994, pp 3-17.

Rai, A., and Al-Hindi, H. "The effects of development process modeling and task

uncertainty on development quality performance," Information & Management

(37:6), Sep 2000, pp 335-346.

Ramamoorthy, C.V., and Tsai, W.T. "Advances in software engineering," Computer

(29:10), Oct 1996, pp 47-&.

Ramesh, B., and Sengupta, K. "Multimedia in a Design Rationale Decision-Support

System," Decision Support Systems (15:3), Nov 1995, pp 181-196.

Ramesh, V., and Browne, G.J. "Expressing casual relationships in conceptual database

schemas," Journal of Systems and Software (45:3), Mar 15 1999, pp 225-232.

Ravichandran, T., and Rai, A. "Total quality management in information systems

development: Key constructs and relationships," Journal of Management

Information Systems (16:3), Win 1999, pp 119-155.

Ravichandran, T., and Rai, A. "Quality management in systems development: An

organizational system perspective," Mis Quarterly (24:3), Sep 2000, pp 381-415.

Rolland, C., Souveyet, C., and Ayed, M.B. "Guiding Lyee user requirements capture,"

Knowledge-Based Systems (16:7-8), Nov 2003, pp 351-359.

Rolland, C., Souveyet, C., and Ben Achour, C. "Guiding goal modeling using scenarios,"

Ieee Transactions on Software Engineering (24:12), Dec 1998, pp 1055-1071.

Ropponen, J., and Lyytinen, K. "Can software risk management improve system

development: An exploratory study," European Journal of Information Systems

(6:1), Mar 1997, pp 41-50.

[58]
 Sprouts - http://sprouts.aisnet.org/4-26

Ropponen, J., and Lyytinen, K. "Components of software development risk: How to

address them? A project manager survey," Ieee Transactions on Software

Engineering (26:2), Feb 2000, pp 98-112.

Salaway, G. "An Organizational Learning Approach to Information Systems

Development," Mis Quarterly (20:1) 1987, pp 244-264.

Sawyer, S., and Guinan, P.J. "Software development: Processes and performance," IBM

Systems Journal (37:4) 1998, pp 552-569.

Stallinger, F., and Grunbacher, P. "System dynamics modelling and simulation of

collaborative requirements engineering," Journal of Systems and Software (59:3),

Dec 15 2001, pp 311-321.

Telem, M. "Information Requirements Specification I: Brainstorming a Collective

Decision- Making Approach," Information Processing & Management (24) 1988,

pp 549-557.

Trammell, C.J., Pleszkoch, M.G., Linger, R.C., and Hevner, A.R. "The incremental

development process in Cleanroom software engineering," Decision Support

Systems (17:1), April 1996, pp 55-71.

Walz, D., Elam, J., and Curtis, B. "Inside a software design team: Knowledge

acquisistion, Sharing and Integration," Communications of the Acm (36:10) 1993,

pp 62-77.

Van de Ven, A.H., and Drazin, R. "The concept of fit in contingency theory," Research in

Organizational Behaviour (7) 1985, pp 333-365.

[59]
 Sprouts - http://sprouts.aisnet.org/4-26

van Lamsweerde, A., and Letier, E. "Handling obstacles in goal-oriented requirements

engineering," Ieee Transactions on Software Engineering (26:10), Oct 2000, pp

978-1005.

Watson, H.J., and Frolick, M.N. "Determining information requirements for an EIS," MIS

Quarterly (17:3) 1993, pp 255-269.

Webster, J., and Watson, R.T. "Analyzing the Past to Prepare for the Future: Writing a

Literature Review," MIS Quarterly (26:2), June 2002, pp xiii-xx.

Vessey, I., and Conger, S.A. "Requirements Specification: Learning Object, Process, and

Data Methodologies," Communications of the Acm (37:5) 1994, pp 102-113.

Wetherbe, J.C. "Executive Information Requirements - Getting It Right," Mis Quarterly

(15:1), Mar 1991, pp 51-65.

Whitman, M., Hendrickson, A., and Townsend, A. "Research Commentary. Academic

Rewards for Teaching, Research and service: Data and Discourse," Information

Systems Research (10:2) 1999, pp 99-109.

Willcocks, L., and Margetts, H. "Risk assessment and information systems," European

Journal of Information Systems (3:2), April 1994, pp 127-138.

Zmud, R.W. "Management of Large Software Development Efforts," MIS Quarterly

(4:2), June 1980, pp 45-55.

Zultner, R.E. "TQM for technical teams," Communications of the Acm (36:10), October

1993, pp 79-91.

[60]
 Sprouts - http://sprouts.aisnet.org/4-26

APPENDIX 1 - JOURNAL LIST FOR LITERATURE
REVIEW

1. ACM Computing Surveys
2. ACM SIGecom Exchanges
3. ACM Trans. on Database Systems
4. ACM Trans. on Information Systems
5. AI Magazine
6. Artificial Intelligence
7. Australian J. of Information Systems
8. Behavior & Information Technology
9. Communications of the ACM
10. Communications of the AIS
11. Computer Journal
12. Computer Supported Cooperative

Work
13. DATA BASE
14. Decision Support Systems
15. Electronic Commerce Research and

Application
16. Electronic Markets
17. e-Service J.
18. European J. of Information Systems
19. Expert Systems w. Applications
20. Human-Computer Interaction
21. IBM Systems J.
22. IEEE Computer
23. IEEE Trans. on Software

Engineering
24. Information & Management
25. Information and Organization
26. Information Processing &

Management
27. Information Research
28. Information Resources Management

J.
29. Information Systems
30. Information Systems Frontiers
31. Information Systems J.
32. Information Systems Management
33. Information Systems Research
34. Information Technology & People
35. Information Technology and

Management
36. Informing Science
37. Int. J. of Human-Computer Studies
38. Int. J. of Electronic Commerce
39. Int. Journal of Human Computer

Study
40. Int. Journal of Information

Management
41. J. of Computer and System

Sciences

42. J. of Computer Information Systems
43. J. of Computer IS
44. J. of Database Management
45. J. of End-User Computing
46. J. of Global Information

Management
47. J. of Global Information Technology

Management
48. J. of Information Systems Education
49. J. of Information Technology
50. J. of IT Cases & Applications
51. J. of Management Information

Systems
52. J. of Strategic Information Systems
53. J. of Strategic IS
54. J. of Systems and Software
55. J. of the ACM
56. J. of the Association for Information

Systems
57. J. of Information Technology Theory

& Application
58. J. of Information Systems

Management
59. J. of Information Technology
60. J. of Information Technology

Education
61. J. of Management
62. J. of Organizational Computing and

EC
63. Knowledge Based Systems
64. MIS Quarterly
65. MISQ Discovery
66. Scandinavian J. of Information

Systems
67. The Information Society
68. Wirtschaftsinformatik

[61]
 Sprouts - http://sprouts.aisnet.org/4-26

APPENDIX 2 – TABLE OF REVIEWED ARTICLES

Journal Article
IEEE Trans. On Software Engineering (12) Basili V.R. and H.D. Rombach (1988)
 Blackburn J.D., G.D. Scudder and L.N. VanWassenhove

(1996)
 Boehm B. and R. Ross (1989)
 Cysneiros, L.M. and Leite, J. (20004)
 Haumer P. , K. Pohl and K. Weidenhaupt (1998)
 Lee W.J., S.D. Cha and Y.R. Kwon (1998)
 Leite J. and P.A. Freeman (1991)
 Liu S. , A.J. Offutt C., Ho-Stuart Y. Sun and M. Ohba

(1998)
 Nuseibeh B. , J. Kramer and A. Finkelstein (1994)
 Rolland C., C. Souveyet and C. Ben Achour (1998)
 Ropponen J. and K. Lyytinen (2000)
 van Lamsweerde A. and E. Letier (2000)
 MIS Quarterly (11) Apte U. , C.S. Sankar M., Thakur and J.E. Turner (1990)
 Bostrom R.P. (1977)
 Byrd T.A., K.L. Cossick and R.W. Zmud (1992)
 Davidson E.J. (2002)
 Dennis A.R., J.F. George ,L.M. Jessup, J.F. Nunamaker

Jr. and D.R. Vogel (1988)
 Montazemi A.R. and D.W. Conrath (1986)
 Ravichandran T. and A. Rai (2000)
 Salaway G. (1987)
 Watson H.J. and M.N. Frolich (1993)
 Wetherbe J.C. (1991)
 Zmud R.W. (1980)
Communications of the ACM (10) Bersoff E.H. and A.M. Davis (1991)
 Curtis B., H. Krasner and N. Iscoe (1988)
 Curtis B., M.I. Kellner and J. Over (1992)
 Holtzblatt K. (1995)
 Keil M. and E. Carmel (1995)
 Kraut R.E. and L.A. Streeter (1995)
 Nunamaker J.F. , A.R. Dennis, J.S. Valacich, D. Vogel

and J.F. George (1991)
 Vessey I. and S.A. Conger (1994)
 Walz D. , J. Elam and B. Curtis (1993)
 Zultner R.E. (1993)
Information & Management (10) Bostrom R.P. (1989)
 Browne G.J. and V. Ramesh (2002)
 Duggan E.W. and C.S. Thachenkary (2004)
 Fazlollahi B. and M.R. Tanniru (1991)
 Glass R.L., I. Vessey and S.A. Conger (1992)
 Jenkins A.M. , J.D. Naumann and J.C. Wetherbe (1984)
 Larsen T.J. and J.D. Naumann (1992)
 Leifera R. , S. Leeb and J. Durgeea (1994)
 Lyytinen K. (1988)
 Rai A. and H. Al-Hindi (2000)
J. of Systems and Software (6) Chen J.Y.J.and S.C. Chou (1999)

[62]
 Sprouts - http://sprouts.aisnet.org/4-26

 Drehmer D.E. and S.M. Dekleva (2001)
 Elboushi M.I. and J.S. Sherif (1997)
 Houston D.X., G.T. Mackulak and J.S. Collofello (2001)
 Ramesh V. and G.J. Browne (1999)
 Stallinger F. and P. Grunbacher (2001)
IBM Systems J. (5) Davis G. (1982)
 Hausler P.A., R.C. Linger and C.J. Trammell (1994)
 Hevner A.R. and H.D. Mills (1993)
 Mills H.D. (1999)
 Sawyer S. and P.J. Guinan (1998)
IEEE Computer (5) Baskerville R., L. Levine, J. Pries-Heje, B. Ramesh and S.

Slaughter (2001)
 Boehm B. (1988)
 Bowen J.P. and M.G. Hinchey (1995)
 Brooks F.P. (1987)
 Ramamoorthy C.V. and W.T. Tsai (1996)
J. of Management Information Systems (5) Barki H. S. Rivard and J. Talbot (1993)
 Browne G.J. and M.B. Rogich (2001)
 Liou Y.I. and M. Chen (1993)
 Hickey and Davis (2004)
 Ravichandran T. and A. Rai (1999)
Decision Support Systems (4) Frolick M.N. and B.P. Robichaux (1995)
 Hevner A.R. and H.D. Mills (1995)
 Ramesh B. and K. Sengupta (1995)
 Trammell C.J., M.G. Pleszkoch, R.C. Linger and A.R.

Hevner (1996)
European J. of Information Systems (4) Bryant J. (1997)
 Chatzoglou P.D. and L.A. Macaulay (1996)
 Ropponen J. and K. Lyytinen (1997)
 Willcocks L. and H. Margetts (1994)
Information Systems Research (4) Hirschheim R. and M. Newman (1991)
 Lyytinen K., L. Mathiassen and J. Ropponen (1998)
 Marakas G.M. and J.J. Elam (1998)
 Nidumolu S. (1995)
Information Systems J. (3) Fitzgerald B. (1996)
 Darke P. and G. Shanks (1997)
 Lyytinen K., L. Mathiassen and J. Ropponen (1996)
J. of Information Technology (2) Andrews D.C. (1991)
 Quintas P. (1994)
Knowledge-Based Systems (2) Jones R.M., L. Candy and E.A. Edmonds (1993)
 Rolland C., C. Souveyet and M.B. Ayed (2003)
ACM Computing Surveys (1) Lyytinen K. (1987)
Behavior & Information Technology (1) Kujala S. (2003)
DATA BASE (1) Chen M. and J.F. Nunamaker Jr. (1991)
Human-Computer Interaction (1) Duggan E.W. (2003)
Information Systems Management (1) Pai W.C. (2002)
Int. J. of Human-Computer Studies (1) Maiden N.A.M. and M. Hare (1998)
J. of Systems Management (1) McFarlan W. (1982)
Scandinavian J. of Information Systems (1) Mathiassen L., T. Seewaldt and J. Stage (1995)

[63]
 Sprouts - http://sprouts.aisnet.org/4-26

 Working Papers on Information Systems | ISSN 1535-6078

Editors:
Michel Avital, University of Amsterdam
Kevin Crowston, Syracuse University

Advisory Board:
Kalle Lyytinen, Case Western Reserve University
Roger Clarke, Australian National University
Sue Conger, University of Dallas
Marco De Marco, Universita’ Cattolica di Milano
Guy Fitzgerald, Brunel University
Rudy Hirschheim, Louisiana State University
Blake Ives, University of Houston
Sirkka Jarvenpaa, University of Texas at Austin
John King, University of Michigan
Rik Maes, University of Amsterdam
Dan Robey, Georgia State University
Frantz Rowe, University of Nantes
Detmar Straub, Georgia State University
Richard T. Watson, University of Georgia
Ron Weber, Monash University
Kwok Kee Wei, City University of Hong Kong

Sponsors:
Association for Information Systems (AIS)
AIM
itAIS
Addis Ababa University, Ethiopia
American University, USA
Case Western Reserve University, USA
City University of Hong Kong, China
Copenhagen Business School, Denmark
Hanken School of Economics, Finland
Helsinki School of Economics, Finland
Indiana University, USA
Katholieke Universiteit Leuven, Belgium
Lancaster University, UK
Leeds Metropolitan University, UK
National University of Ireland Galway, Ireland
New York University, USA
Pennsylvania State University, USA
Pepperdine University, USA
Syracuse University, USA
University of Amsterdam, Netherlands
University of Dallas, USA
University of Georgia, USA
University of Groningen, Netherlands
University of Limerick, Ireland
University of Oslo, Norway
University of San Francisco, USA
University of Washington, USA
Victoria University of Wellington, New Zealand
Viktoria Institute, Sweden

Editorial Board:
Margunn Aanestad, University of Oslo
Steven Alter, University of San Francisco
Egon Berghout, University of Groningen
Bo-Christer Bjork, Hanken School of Economics
Tony Bryant, Leeds Metropolitan University
Erran Carmel, American University
Kieran Conboy, National U. of Ireland Galway
Jan Damsgaard, Copenhagen Business School
Robert Davison, City University of Hong Kong
Guido Dedene, Katholieke Universiteit Leuven
Alan Dennis, Indiana University
Brian Fitzgerald, University of Limerick
Ole Hanseth, University of Oslo
Ola Henfridsson, Viktoria Institute
Sid Huff, Victoria University of Wellington
Ard Huizing, University of Amsterdam
Lucas Introna, Lancaster University
Panos Ipeirotis, New York University
Robert Mason, University of Washington
John Mooney, Pepperdine University
Steve Sawyer, Pennsylvania State University
Virpi Tuunainen, Helsinki School of Economics
Francesco Virili, Universita' degli Studi di Cassino

Managing Editor:
Bas Smit, University of Amsterdam

Office:
Sprouts
University of Amsterdam
Roetersstraat 11, Room E 2.74
1018 WB Amsterdam, Netherlands
Email: admin@sprouts.aisnet.org

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-4-2008

	Managing Requirements Engineering Risks: an Analysis and Synthesis of the Literature
	Lars Mathiassen
	Timo Saarinen
	Tuure Tuunanen
	Matti Rossi
	Recommended Citation

	htmldoc921.html

