
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2013 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

6-18-2013

Scrum Abandonment in Distributed Teams: A
Revelatory Case
Paul Ralph
Lancaster University, paul@paulralph.name

Petr Shportun
Bloomberg LP, pshportun1@bloomberg.net

Follow this and additional works at: http://aisel.aisnet.org/pacis2013

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2013 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Ralph, Paul and Shportun, Petr, "Scrum Abandonment in Distributed Teams: A Revelatory Case" (2013). PACIS 2013 Proceedings. 42.
http://aisel.aisnet.org/pacis2013/42

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301359487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2013?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2013?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2013/42?utm_source=aisel.aisnet.org%2Fpacis2013%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

SCRUM ABANDONMENT IN DISTRIBUTED TEAMS: A
REVELATORY CASE

Paul Ralph, Lancaster University, Lancaster, UK, paul@paulralph.name

Petr Shportun, Bloomberg LP, London, UK, pshportun1@bloomberg.net

Abstract
The last decade has witnessed substantial growth in the adoption of both Agile and distributed
software development. However, combining Agile practices, which emphasize regular informal
communication, with geographically and temporally distributed sites, which hinder regular informal
communication, presents numerous challenges. Proponents of Agile, especially the Scrum project
management framework, have published several case studies of successful Scrum implementations in
distributed environments. However, few empirical studies examine failed or abandoned Scrum
implementations. Consequently, this paper presents a revelatory case study of a geographically and
temporally distributed software development team that abandoned its attempted transition to Scrum.
Two factors associated with the team’s decision to abandon Scrum are identified – degradation of
Scrum practices due to distribution and the undermining of the ScrumMaster’s credibility. Based on
this analysis the paper proposes that task/team familiarity, group cohesion and transactive memory
may be combined to understand the relationship between geotemporal distribution, process and
performance.
Keywords: Information Systems Development, Case Study, Scrum, Agile, Failure.

mailto:paul@paulralph.name
mailto:paul@paulralph.name
mailto:pshportun1@bloomberg.net
mailto:pshportun1@bloomberg.net

1 INTRODUCTION

Software development is increasingly distributed and global (Herbsleb et al. 2001b). Distributed work
takes more time than collocated work (Herbsleb et al. 2001a) as it requires more people (Herbsleb et
al. 2003) and coordination (Brooks 2010). Furthermore, distributed development is associated with
lower overall success rates (Ambler 2008; Standish Group 2009). Consequently, how to mitigate the
productivity impact of distributed work has become a key concern in methods literature (cf.,
Sutherland et al. 2008). Meanwhile, the increasingly popular agile project management framework
Scrum (Schwaber 2004) is associated with modest gains in developer productivity (Cardozo et al.
2010). Consequently, Sutherland et al. (2008) advanced “distributed Scrum” to overcome declining
productivity in distributed projects. However, non-trivial challenges are evident in applying Scrum, a
framework based on regular, informal communication, in a distributed environment where physical
and temporal distance impedes informal communication.
Much of the work on (distributed) Scrum specifically describes cases of successful implementations
of the framework (e.g., Berczuk 2007; Sutherland et al. 2008). Cases often present some challenges
faced by the team and describe ways in which they were overcome. For example, Pries-Heje et al.
(2011) found that Scrum’s usefulness in distributed projects derives from its effective use of boundary
objects, boundary spanners, social integration and coordination mechanisms (see below).
However, the Information Systems Development (ISD) literature appears to lack studies of Scrum
failure or abandonment, i.e., situations where Scrum practices are dropped after participants explicit
concede the Scrum adoption initiative. (One exception, discussed below, is Karekar et al., 2011.)
Operationalizing project failure as a abandonment is helpful as the latter is less ambiguous (Ewusi-
Mensah 2003). Exploring factors associated with abandoning Scrum adoption may provide beneficial
insights into what can go wrong, how to avoid it, and when Scrum adoption is unlikely to succeed.
Furthermore, the recent advancement of “distributed Scrum” despite the obvious challenges of
adopting Scrum in distributed environments makes research on Scrum adoption in distributed teams
especially timely. This leads to our primary research question, as follows.
Research Question: What factors are associated with abandoning Scrum adoption in distributed
teams?
To explore this question we begin by reviewing the literature on Scrum, distributed Scrum,
transitioning to Scrum and the roles of knowledge, power and trust in Agile software development.
We then describe our research methodology and summarize our findings. Next we discuss the
theoretical and practical implications of our results. The paper concludes with a summary of its
contributions and limitations, and suggestions for future research.

2 CONTEMPORARY UNDERSTANDING OF SCRUM

Scrum is a framework for managing software development projects. It can be applied in situations
characterized by sparse requirements, improvisation and where problem framing and problem solving
are entangled (Ralph 2010, 2011, 2012, 2013a, 2013b). Scrum consists of prescribed roles, rules,
artifacts, meetings, and assumptions.
Rather than a conventional project manager, Scrum teams have two management roles – a
ScrumMaster who manages the process and a Product Owner who manages the product. The third
role, simply The Team, does the work. The Team may include analysts, programmers and quality
assurance specialists. The Product owner is a boundary spanner (Levina et al. 2005), i.e., an individual
who facilitates knowledge sharing between domains, and the focal point for vertical coordination
(Nidumolu 1995).
One important rule in Scrum is to time-box (limit the time of) activities. Scrum development is
organized into time-boxed iterations, called sprints, which deliver functionality increments. To say a
sprint is time-boxed means that it ends when the allotted time is up, regardless of whether
development goals are achieved. Scrum meetings (below) are also time-boxed.
Scrum uses boundary objects to facilitate coordination and transparency. A boundary object is
something that is simultaneously adaptable enough to serve different needs in different circumstances

and stable enough to maintain a consistent identity. Examples include conceptual models and design
diagrams. Specifically, Scrum makes extensive uses of structured lists of tasks:

The Product Backlog is a prioritized list of everything that might be needed in the product. The
Sprint Backlog is a list of tasks to turn the Product Backlog for one Sprint into an increment of
potentially shippable product. A burndown is a measure of remaining backlog over time. A
Release Burndown measures remaining Product Backlog across the time of a release plan. A
Sprint Burndown measures remaining Sprint Backlog items across the time of a Sprint.
(Schwaber and Sutherland. 2010, p. 5)

Each sprint comprises development time punctuated by meetings. During the planning meeting, which
is held immediately before the each sprint, the product owner selects tasks from the product backlog
while team members estimate the effort required for each task and self-determine who will complete
each task. Each day of development starts with a time-boxed (15 minute) daily scrum meeting in
which team members describe what they have done since the previous Scrum, what they are going to
do next and any obstacles faced. Daily scrums facilitate development of shared mental models, which
are crucial for team coordination (Espinosa et al. 2001). Scrum also prescribes review meetings where
progress is reviewed and retrospective meetings where participants reflect on the Scrum process and
engage in method engineering (Brinkkemper 1996).
Scrum is very popular. In a a recent survey (VersionOne 2011) 52% of respondents reported using
Scrum and 17% reported using Scrum hybrids with no other methodology having more than 3%.
Meanwhile, Cardozo (2010) found 28 academic studies of Scrum between 2000 and 2009 with a
“reasonable level of reliability” (p. 3). Scrum was initially recommended for collocated teams
(Schwaber and Beedle 2001), and later extended to distributed teams (Sutherland et al. 2007).

2.1 Distributed Scrum

As (collocated) Scrum is based on constant feedback and intra- and extra-team communication,
adapting Scrum to distributed environments is a nontrivial challenge. For instance, Abbattista et al.
(2008) argued that “Agile and distributed development practices are so different that, when blended
together, the key characteristics of the former exacerbate the challenges intrinsic to the latter” (p. 47).
Reviewing the literature on distributed Scrum reveals that while collocated Scrum has a de facto
standard formulation as set out in the official Scrum Guide (Schwaber and Sutherland 2010),
distributed Scrum is more ambiguous. For the purposes of this paper, “distributed Scrum” refers to
any adaptation of Scrum for geographically or temporally distributed teams. Recommended
adaptations for distributed Scrum include:
• daily Scrum team meetings of all developers from multiple sites; daily meetings of Product Owner

team (Sutherland et al. 2007)

• shorter sprints; greater emphasis on unit and automated tests (Berczuk 2007)

• shared product backlog but independent sprint backlogs; regular travel between sites; perpetual
tele-conferencing connections (Sutherland et al. 2008)

Moreover, Sutherland et al. (2008) suggests three forms of distributed Scrum. In “Isolated Scrums,”
teams in separate locations conduct independent Scrum meetings. In “Distributed Scrum of Scrums”
multiple teams retain independent Scrum meetings but their respective ScrumMasters (or team leaders
or project managers) have regular face-to-face or virtual meetings. In “fully distributed Scrums” team
members at different sites participate in virtual Scrum meetings.
However, distributed Scrum teams still face serious communication issues (Sutherland et al. 2009;
Abbattista et al. 2008) including basic communication disruptions due to time differences between
sites that inhibit work synchronization, daily scrums, sprint planning, and review meetings. For
example, Vax and Michlaud (2008) found that running daily meetings for all developers across three
sites becomes nearly impossible due to time zone differences. Similarly, Sutherland et al. (2007;
2008) found that timing issues forced distributed teams to reduce from Scrum meeting frequency from
daily to two or three per week. This hindered Scrum’s primary mechanism for team coordination and
sharing, the daily meeting (Hossain et al. 2009), which is likely to undermine trust and effectiveness
(Iacono et al. 1997). Finding time for longer meetings including sprint planning and sprint review
poses an even greater challenge.

Finding effective tools to facilitate communication is also challenging. In Berczuk’s (2007) case, the
team failed to identify a proper tool for communication. They tried Skype video calls, which was not
perfect due to bandwidth constraints and other, mostly technical issues. Furthermore, team members
are supposed to stand during Scrum meetings to discourage storytelling, excessive technical detail,
and exceeding the 15-minute time-box (Yip 2011). Although standing during videoconferences is
physically possible, without specialized hardware team members tend to sit in front of their
computers.
Moreover, distributing development teams across countries with different cultures may introduce
additional difficulties including language- or accent-induced miscommunications (Hossain et al.
2009) and awkwardness when mixing cultures with different levels of power distance (Sutherland et
al. 2009). These difficulties may undermine trust and developer satisfaction. Completing an initial
development phase in a collocated manner before splitting into multiple locations may increase team
familiarity and therefore have lasting positive effects on team effectiveness (Berczuk 2007; Espinosa
et al. 2007). Similarly, regular visits of senior team members may help (Hossain et al. 2009). Despite
the agile principle “Working software over comprehensive documentation” (Beck et al. 2001), several
papers argue that distributed teams require more extensive documentation (e.g., Abbattista et al. 2008;
Hossain et al. 2009). However, the extensive communication required by large projects is not
generally reduced by greater documentation (Curtis et al. 1992).
While our literature review uncovered several case studies of successful implementations of
distributed Scrum (e.g., Berczuk 2007; Sutherland et al. 2008; Lee and Yong 2010), no cases of failed
Scrum implementation were found. More generally, Ambler (2010) found that projects using Agile
processes have higher success rates than projects using traditional or ad hoc processes, while Ambler
(2008) found that collocated teams have higher success rates than distributed teams. Furthermore,
adapting Scrum for distributed work appears to depend on how geographically, temporally and
culturally distributed the team is – an issue rarely addressed in existing literature.

2.1 Transitioning to Scrum

Another key theme in the Scrum literature concerns challenges and practices associated with adopting
or transitioning to Scrum, especially from traditional development methods. For example, developers
may initially perceive Scrum as an attempt at micromanagement (Cohn and Ford 2003) as managers
take greater interest in each feature, leading to sometimes inadvertent resistance (Nerur et al. 2005).
Team members may exhibit dissatisfaction with changing roles (Sumrell 2007) including additional
developer responsibilities and the ScrumMaster / Product Owner split. Suggestions for overcoming
these challenges include encouraging constant communication and transition support for both
employees and upper-management (Schatz and Abdelshafi 2005; Lee 2008). Like other change
projects, Scrum adoption may benefit from a “champion” who drives the initiative. Moreover,
successful transition depends on how Scrum practices are implemented, adapted and followed.
Of course, challenges in transitioning to Scrum may differ depending on what the team is
transitioning from, e.g., traditional lifecycle or ad hoc development (Fitzgerald, 1997). Lee (2008)
analyzed a Scrum transition through the lens of Tuckman and Jensen’s (1977) model, which describes
team formation in terms of Forming, Storming, Norming, Performing stages. During the Forming
stage, teams tend to follow a manager’s orders (Hersey et al. 1979). However, during the Storming
and Norming stages, frequent communication is needed to resolve past issues and friction. In the
absence of sufficient communication, the team may be unable to proceed past the Forming stage. In
Lee’s case, for instance, the team felt it necessary to move to an office space where they could all sit
within shouting distance of each other.

2.2 Knowledge, Power and Trust in Software Development

Knowledge management, including team knowledge, domain knowledge and knowledge transfer to
newcomers, is one of the main capabilities that should be supported in development environments
(Curtis et al. 1988; Chau et al. 2003). Different methodologies prescribe different mechanisms for
knowledge sharing and retention including documents (Parnas 2009; Parnas et al. 1995), use cases
(Jacobson et al. 1999), requirements (Royce 1970), responsiveness (Beck et al. 2001), a boundary-
spanning product owner (Schwaber and Beedle 2001), budget and schedule (cf., Brooks 2010), risk
(Boehm 1988) and interpersonal relationships (Beck 2005). While the problems associated with losing

team knowledge through employee attrition, forgetting and miscommunication are obvious,
documents may quickly become out of date, inconsistent and generally neglected. Therefore, Agile
processes including Scrum tend to advocate tacit knowledge shared through interpersonal interaction
and team awareness (Beck 2005; Carstensen and Schmidt 2003). Teams may facilitate informal
knowledge sharing by sharing physical and virtual spaces (Carsteen and Schmidt 2003) and through a
variety of technologies including comprehensive bug trackers, wikis and forums (Bowen and Maurer
2002).
More generally, domain familiarity is crucial for designing complex systems (Curtis et al. 1988;
Espinosa et al. 2007). Scrum practices designed to promote domain familiarity include on-site
customer, review meetings where customers are invited, regular feedback and the Product Owner role.
A comprehensive understanding of distributed Scrum adoption also involves power and trust issues.
While a complete review of the extensive literature on change management, group development and
trust is beyond the scope of this paper, the key point for our purposes is twofold. First, project actors
may rely on various bases of power including coercive, connection, reward, legitimate, referent,
information and expert power (Hersey, Blanchard, and Natemeyer 1979). The Product Owner and
ScrumMaster ideally rely on expert power rather than coercion; therefore, if expert power is
undermined, the team may lose faith in its leaders, jeopardizing the Scrum adoption effort. Second,
Agile methods rely on intra-team trust rather than authority to facilitate coordination and on trust
between the the team and other project stakeholders rather than fixed-price contracts to manage risk.
Trust generally facilitates information and knowledge sharing (Kramer and Tyler, 1996), while
Komiak and Benbasat (2006) differentiate between cognitive trust, which may be more important for
team-stakeholder interactions and emotional trust, which may be more important within teams. As
distributed teams build trust more slowly than collocated teams (Wilson et al. 2006), the importance
of trust is enhanced.

2 RESEARCH METHOD

Studying failing or abandoned Scrum implementations is challenging as it requires identifying one or
more organizations having at least the following characteristics:
1. operates in a distributed environment
2. attempted to transition to distributed Scrum
3. unambiguously failed to transition to distributed Scrum
4. contains informants who are willing to share their experiences of what may be perceived as a

costly mistake
5. has attempted the transition recently enough that the key actors are still reachable and remember

what happened
Having previously considered the difficulties of contemporary field research on method abandonment
and project failure, when we became aware of a research-friendly company in midst of a Scrum
adoption initiative that appeared to be failing, we took advantage of the opportunity and quickly
employed a single case study design.
Yin (2009) argues that single case studies are appropriate where the case is revelatory. “Revelatory”
does not mean that the case revealed an astonishing discovery; rather, it refers to one where “the
investigator has access to a situation previously inaccessible to scientific observation” (p. 43). More
generally, demanding multiple-case designs by default on the basis that they have greater
generalizability represents a misapplication of statistical generalizability to non-statistical, non-
sampling research (Lee and Baskerville 2003). Practically speaking, given the restrictiveness of the
above criteria and the absence of studies of failed Scrum implementation in the literature, we are
fortunate to have identified a single appropriate organization.
Our objective was to explore the events leading up to Scrum abandonment and identify factors that
may have contributed to it. Therefore, we adopted an interpretive case study approach (Eisenhardt,
1989) within a critical realist ontology. Our approach is interpretive in that we studied the attempted

Scrum adoption through the meanings ascribed by participants in interviews and observations, which
are socially constructed (Myers and Avison 2002).

2.1 The Context

RA is a small software development company with offices in San Mateo, California and St.
Petersburg, Russia. RA develops and maintains a single product, a data analysis platform for brand
audience management. The platform creates models of different audiences for online content and
facilitates use of these models for targeted advertising among other purposes. This product is
developed by a single team, which is distributed between the two offices. RA was founded in 2009
with funding from institutional investors and attracted several experienced personnel before being
acquired by a larger company in December 2011. Our study took place in July 2011. During this time,
upper management was concentrated in the San Mateo office while development activities were
concentrated in the St. Petersburg office.

2.2 Data Collection

When data collection began, RA was in the process of dissolving its Scrum adoption initiative. We
therefore proceeded by examining documents and artifacts from the Scrum initiative period as well as
interviewing key informants and briefly observing their current practices. All interviews were
recorded an transcribed for analysis. Interviews conducted in Russian were transcribed into English
by one of the authors. Observation notes were taken in English. We also photographed the work area
including all remaining physical artifacts associated with the attempted Scrum implementation.
Semistructured interviews followed the interview guide in the Appendix; however substantial
deviations from the guide were allowed when interviewees raised unexpected but possibly important
concerns. Interview questions were selected to understand the team, the evolution of their process
from before the Scrum initiative to the time of the study, and the factors leadings to Scrum
abandonment. Questions concerned participants’ perceptions of what changes occurred and why, who
was driving the changes, and the outcomes. The interview guide was subjected to a two-stage
validation process including review by an expert in Scrum methodology followed by pilot interviews
with three practitioners from another company. Validation resulted in minor changes to question
wording and structure.
All interview transcripts, observation notes, document copies and photographs were organized in a
case database to facilitate analysis.

2.3 Data Analysis

We applied an iterative open-coding process (Silverman and Marvasti 2008) similar to that used in
Grounded Theory research (Glaser and Strauss, 1967) to the transcripts, documents and observation
notes. During open coding, similar codes are grouped into an unspecified number of categories, the
names of which become the “themes” or key findings. We also used mind-mapping (Tattersall et al.
2007) to consolidate issues and identify dependencies. Mind mapping is especially helpful in
understanding connections between themes, codes and evidence from the case as well as relating
evidence to existing literature. As mind maps quickly become too large for print, Figure 1 provides an
example mind map segment illustrating relationships between risk factors in and recommended
practices for distributed Scrum. Finally, we shared our analysis with several participants to gauge how
well it corresponds to their perceptions of the events in question, leading to minor revisions.

3 FINDINGS

3.1 Background

Beginning in late autumn 2010, RA attempted to transition from their existing ad hoc development
approach to distributed Scrum. The transition began as a management initiative to improve the
transparency of the development process. It required various role changes for existing employees
(summarized in Table 1). In the remainder of the paper we use individuals’ original titles and Scrum
role names interchangeably.

Prior to the Scrum adoption initiative, the team consisted of two architects, three Java developers (one
of whom was designated a “Senior Developer”), two user interface (UI) developers and three testers.
The testers acted independently, rather than integrating with the team as is common in Scrum. The
team was managed by the chief scientist who was directly involved in the development process and
later assumed the Product Owner role. The chief scientist, architects and one of the UI developers
were located in San Mateo, California while the remaining team members were located in St.
Petersburg, Russia. Architect Two left the company during the transition to Scrum.

Figure 1. Example Mind Map Segment

Original title Scrum role Location Responsibilities and Activities in Practice
Chief scientist Product Owner San Mateo Managing the development and testing teams including

prioritizing tasks and communicating with clients
Architect One ScrumMaster San Mateo Improving the software architecture and introducing Scrum;

championing the transition to Scrum
Architect Two Team Member San Mateo Was originally designated an architect but quickly became just

a developer albeit senior
Senior Developer Team Member St. Petersburg In practice, the Senior developer retained a de facto leadership

role within the team and made many of key technical
decisions. Others referred to him as the “Technical Lead”

Developers Team Members St. Petersburg Developing product functionality
UI Developers Team Members One in each Developing product interface
Testers Testers St. Petersburg Product quality assurance

Table 1. Actors and Scrum Roles
Our analysis produced two main themes in participants’ perceptions of the factors leading to
abandoning the Scrum adoption project: Scrum practice degradation and the undermining of the
ScrumMaster. Each of these is described in turn, below. The evidence supporting each theme is
summarized in Table 2.

Theme Example Codes Example Evidence1 PDS2

Scrum
Practice
Degradation

intra-sprint
requirements
instability

“It is like this: you start developing a feature and you sort out the
requirements as you go. And it is all in one sprint, it is not like we fix the
requirements and everybody knows exactly what to do at the
start.” (Developer One)
The Product Owner “continued working in the way he did before. So if
everything has changed he calls us and says, everything has changed we
need to redo the whole thing.” (Technical Lead)

No

Scrum
Practice
Degradation

Scrum wall
redundancy

“Everybody communicates with each other one way or the other and
understands the main idea of the work that is being done and there is no
need for this sort of reporting.” (Developer Two)
No one consulted or modified the Scrum Wall during observations.
All interviewees indicated that they had stopped using the Scrum wall
after a month or so.

Yes

Scrum
Practice
Degradation

meeting time
conflict

Daily Scrum meetings “were in place. But everyone was unhappy with
the time because it was either early in the morning or late in the evening
and half the company comes early in the morning and the other half late
during the day. So we could not come to a consensus on this
question.” (Developer One)
“it was hard to find time for meetings that suited everybody.” (Developer
Two)

Yes

Subversion
of the
ScrumMaster

credibility

The ScrumMaster “started to develop the UI back end himself. And
frankly it didn’t go well. He was doing it very slowly. There were a lot of
bugs, well, there were a lot of problems.” (Technical Lead)
Developer One made clear that the ScrumMaster, being a newcomer, did
not fully understand the project.

No

Subversion
of the
ScrumMaster

infighting

During the interview it was obvious that Technical Lead was charismatic
and could manipulate others’ opinions. He also spoke quite negatively
about work that ScrumMaster did. Other interviewees agreed that
Technical Lead was opposing initiatives of the ScrumMaster. The
Technical Lead expressed unhappiness that the ScrumMaster had
assumed some of his responsibilities, including liaising with the Product
Owner.

No

Subversion
of the
ScrumMaster

trust Several interviewees indicated that the ScrumMaster lost their trust by
trying to develop part of functionality himself and doing it badly.

Yes

Subversion
of the
ScrumMaster

relationships
“developers and managers on the USA side did not establish good
communication links with the team” (Technical Lead)
Developer One indicated that the Technical Lead and ScrumMaster were
unable to establish good communication or a good relationship

Yes

Table 2. Challenges in Adopting Distributed Scrum
1Quotations translated from Russian with some paraphrasing for clarity
2Particular to Distributed Projects (or exacerbated by the distribution of participants)

3.2 Theme One: Scrum Practice Degradation

Berczuk (2007) recommends that during initial Scrum adoption, practices should be implemented by
the book, especially when a team has no experience in the process. However, practitioners rarely
follow methods precisely or even closely (Mathiassen and Purao 2001). RA initially adopted Scrum
roles, sprints, some meetings including daily Scrums and some artifacts including user stories and
burndown charts. However, the distributed nature of the team contributed to deterioration of at least
three Scrum elements.
First, the daily, time-boxed, stand-up meetings for which Scrum is named are the key facilitator of
shared mental models, team cohesion and coordination. RA adopted the “fully distributed Scrum”
model (Sutherland et al. 2008) where team members at different locations participate in virtual Scrum
meetings. However, the 11-hour time difference between the two sites made it nearly impossible to
find meeting times that were convenient for everyone. Consequently, many people regularly missed
the meetings, which undermined their usefulness and increased friction within the team. Although
Sutherland et al. (2007) report successful daily meetings despite large time zone differences, RA’s
developers found the meetings disruptive and irritating. This led to communication and knowledge

sharing difficulties (below). Additionally, as meetings were held through Skype, participants tended to
sit at their desks, which undermines the key benefits of stand-up meetings, namely, discomfort from
standing helps keep meetings short. Consequently, daily meetings tended to exceed their time-box,
increasing developers‘ frustrations.
Second, Scrum calls for a Scrum Wall or sprint burndown chart, which physically visualizes progress.
Tasks are written on sticky notes, which are organized by the developer to which the task is assigned.
In contrast, distributed Scrum teams may rely on a digital Scrum wall to coordinate across sites
(Sutherland et al. 2007). The physical wall, therefore, simply replicates part of the digital version. In
contrast to Berczuk’s (2007) case where replicating tasks from an online task tracking tool onto a
physical chart was successful, RA’s developers perceived the physical version as redundant. One
developer explained that the Scrum Wall was only used when the ScrumMaster was present.
Here, the distributed nature of the team necessitated a digital burndown chart, which led to lack of
interest in maintaining the physical version. However, the physical wall has benefits that the digital
version lacks including increasing work transparency. With a physical chart, anyone with access to the
team’s premises can see, at a glance, who is working on what and the remaining sprint tasks. “Teams
are more likely to see a big, visible chart than they are to look at Sprint burndown chart in Excel or a
tool” (Schwaber and Sutherland, 2010).
Third, Scrum calls for development sprints of a fixed and consistent duration (e.g., one month) during
which the sprint backlog is fixed; i.e., the Product Owner is not supposed to change requirements
during the sprint. However, RA’s product owner often altered requirements mid-sprint. In response,
the ScrumMaster altered the sprint duration or delayed the next release, citing the intra-sprint changes
as justification. The product owner recorded these changes using red sticky notes on the physical
burndown chart, but often neglected to update the digital burndown chart. This lead to poor
communication between management (in San Mateo) and development (in St. Petersburg).
Specifically, the ScrumMaster’s justifications for schedule changes referred to the disruptions evident
on the physical burndown chart; however, as management could only see the digital burndown chart,
delays seemed unwarranted. In this way, the combination of the Product Owner’s changes and poor
communication caused by physical distribution undermined management’s confidence in the
ScrumMaster, which relates to the second major theme.

3.3 Theme Two: Subversion of the ScrumMaster

Prior to adopting Scrum, the St. Petersburg group relied heavily on informal communication to
facilitate knowledge sharing, with minimal documentation in the form of requirements lists and
unstructured notes. The ScrumMaster who was working in San Mateo found that combination of
informal communication norms and geotemporal distance inhibited communication and knowledge
sharing. Consequently, he transferred to the St. Petersburg office in the third week of the first sprint.
There, the ScrumMaster encountered substantial difficulties in understanding the project, especially
its architecture. The developers felt that the ScrumMaster did not sufficiently engage with their
informal knowledge sharing to develop a good understanding of the project. However, having
previously worked as a software architect, the ScrumMaster made some architectural design
decisions. Other team members felt that these decisions were misguided and found them difficult to
maintain.
Meanwhile, the formerly entitled “lead developer” was unhappy with his perceived demotion to
simply “team member” resulting from adopting Scrum. He consequently invented the title “Technical
Lead,” opposed the Scrum initiative and antagonized the ScrumMaster. The team and to some extent
management perceived the Technical Lead as having greater expertise than the ScrumMaster. The
Technical Lead’s agonistic approach and the ScrumMaster’s poorly perceived architectural revisions
combined to undermine the ScrumMaster’s credibility with the developers. Meanwhile, the schedule
changed discussed in Theme One exacerbated the ScrumMaster’s problems by similarly undermining
his credibility with upper management.
The ScrumMaster (and newest member of the team) championed Scrum adoption, i.e., he was the
intellectual and social force driving the change initiative. When he lost the trust of the development
team, he lost the ability to maintain the change (Schatz and Abdelshafi 2005; Komiak and Benbasat
2006). In this way, the Scrum initiative became conflated with the individual advocating it – as the

ScrumMaster’s credibility was actively undermined by the Technical Lead, so the whole Scrum
implementation was undermined.

4 DISCUSSION AND RECOMMENDATIONS

Karekar et al. (2011) found that a Scrum adoption initiative was abandoned due to “lack of firm
leadership commitment to agile, absence of a clearly defined customer ... failure to provide adequate
initial or ongoing training and support ... and underestimating the change management
requirements” (p. 1). This case differs in that the key factors that drove abandonment appear to be
problems implementing Scrum practices due to the team’s geotemporal distribution and a
conflagration of political infighting, technical errors and resistance to change that undermined the
ScrumMaster and project champion’s credibility.
Our results also contrast sharply with existing cases of successful distributed Scrum implementation
(e.g., Berczuk 2007; Sutherland et al. 2008, 2009; Lee and Yong 2010). More specifically, although
Sutherland et al. (2007) and Woodward et al. (2010) argue that teleconferencing can overcome
problems associated with daily meetings across time differences, our results suggest that this requires
highly motivated participants. Additionally, while some studies (e.g., Sutherland et al. 2008; Hossain
et al. 2009) found that good tools could overcome communication issues, this case illustrates how the
limitations of basic teleconferencing tools hindered daily meetings and undermined Scrum adoption.
Similarly, although Berczuk (2007) found that simply copying information from project management
software onto a physical Scrum wall was useful, the RA team denigrated the Scrum Wall as
ridiculous. Finally, this case differs from many existing studies of distributed Scrum implementation
in that it lacked a charismatic and experienced Scrum guru to champion Scrum adoption.
These results relate to and extend existing theories of familiarity, transactive memory and group
cohesion. Familiarity may improve performance in software projects in two different ways – task
familiarity increases performance “by increasing member ability” while team familiarity increases
performance “by facilitating recognition and utilization of member expertise” (Littlepage et al. 1997,
p. 133). Here, task familiarity indicates participants’ domain knowledge and skill level while team
familiarity is the extent to which team members are aware of each other’s knowledge and expertise.
Furthermore, while geographic dispersion and team size negatively impact team performance, groups
with greater team familiarity are more resistant to these negative effects (Espinosa et al. 2007).
Task/team familiarity are related to the concepts of memory and meta-memory in the Theory of
Transactive Memory, which posits that individuals encode beliefs in memory and beliefs about beliefs
in “metamemory” (Wegner 1987). A software development team can therefore be seen as a transactive
memory system where individuals (specialists) have not only specialist domain knowledge (memory/
task familiarity) but also knowledge of what other team members know (metamemory/team
familiarity). Team performance therefore depends on not only individual skills but also individuals’
knowing who to ask about topics outside their skills.
Team familiarity and metamemory also relate to Group Cohesion. Group cohesion has long been
considered an important if not the most important variable for understanding the formation and
performance of small groups (Golembiewski 1962; Lott and Lott 1965). However, ambiguity
regarding its precise nature remains (Bollen and Hoyle 1990). For example, group cohesion has been
defined as “the tendency for a group to stick together and remain united in the pursuit of its goals and
objectives” (Carron et al. 1985, p. 124) while perceived cohesion has been defined as “an individual’s
sense of belonging to a particular group and his or her feelings of morale associated with membership
in groups” (Bollen and Hoyle 1990, p. 482). Here we use team cohesion to indicate the extent to
which a team acts together as a single agent toward toward shared goals. Team cohesion implies not
only team familiarity but also shared mental models, shared purpose, trust and camaraderie.
Our analysis suggests a more complex relationship between geotemporal distribution, process and
performance. Many agile and Scrum practices should strengthen transactive memory and increase
team familiarity and cohesion. For example, daily meetings facilitate developing shared mental
models and keep team members current on each other’s activities (Schwaber 2004). Similarly, the
Scrum wall builds trust by increasing process transparency and the Product Owner builds a sense of
shared purpose by facilitating experience sharing between team members and project stakeholders.

Peer programming and peer code reviews should strengthen transactive memory (Schmidt et al. 2012)
by providing opportunities for knowledge sharing.
However, geotemporal distribution hinders these practices. Stand-up meetings become inconvenient.
Scrum walls are virtualized. Stakeholder-team communication is hindered. Programmers can only
peer with others in the same physical location. Code reviews become forms instead of conversations.
Team members have fewer opportunities to share expertise and build cohesion through socialization.
The RA case particularly illustrates how team cohesion was undermined during the transition to
Scrum. As explained above, the technical lead and ScrumMaster did not share a common purpose: the
latter sought to transition to Scrum while the former sought to undermine the ScrumMaster and
transition. When developers complained that the ScrumMaster did not understand the product, they
imply a problem in their shared mental model. When the ScrumMaster made controversial
architectural decisions, the team lost trust in him. This lead to a relationship dominated by antagonism
rather than camaraderie. In other words, during the transition to Scrum, Team Cohesion collapsed,
hindering not only development performance but also performance of the Scrum transition itself.
In summary, focusing on team familiarity or transactive memory downplays emotion; e.g., knowing
who can solve your current problem is less helpful if that person refuses to speak to you. Focusing on
cohesion, meanwhile, downplays cognition; e.g., feeling comfortable enough with your team to admit
a serious error is less helpful if you have no idea which person has the knowledge to fix the error. This
motivates further research on distributed team performance, specifically theorizing about team
performance in terms of familiarity, transactive memory and cohesion.
Based on the above analysis we can make several practical recommendations. First, organizations
seeking to transition to Scrum should pay careful attention to team member’s perceptions of role
changes. Scrum provides a flat organizational model where all types and levels of developers are
simply ‘the team’. Employees accustomed to more hierarchical levels may experience indignation at
the loss of titles including “chief architect,” “senior developer,” “head of quality assurance” or ‘lead
designer”. Second, organizations should be aware that employees may conflate the benefits of
adopting Scrum with personality and technical competence of the individual championing Scrum
adoption. Finally, organizations should be aware that geotemporal distribution is a spectrum where
practices that empower a team distributed across two offices in neighboring cities may infuriate a
team distributed across 12 time zones; e.g., while teleconferencing may overcome communication
barriers, it cannot overcome the irritation of going to work in the middle of the night for a stand-up
meeting.
These results and recommendation should be interpreted in light of several limitations. First, our
analysis is specific to this particular case and may not generalize to dissimilar situations. Moreover,
this is obviously an extreme case with an 11-hour time difference and a disgruntled team member
actively subverting the Scrum adoption. However, studying outliers is necessary to fully understand a
phenomenon (Van de Ven 2007) and in many ways existing studies (e.g., Sutherland et al. 2007; 2008)
are also outliers due to the personal involvement of Scrum co-creator Jeff Sutherland. Second, our
data collection took place near the end of the Scrum project and is therefore subject to hindsight bias
and other memory effects (Pohl 2004). Third, with the available data we cannot definitively establish
causality; therefore, we present ScrumMaster subversion and practice degradation as factors
associated with Scrum abandonment rather than causes. Finally and less obviously, in this case the
ScrumMaster was also championing Scrum adoption; therefore we cannot disentangle the two roles,
i.e., it is unclear whether subversion of the ScrumMaster or subversion of the Scrum champion is the
critical factor. Common sense suggests neither benefits the transition.

5 CONCLUSION

This paper presents a revelatory case study of a distributed software team that abandoned a concerted
attempted to adopt the popular software project management framework, Scrum. We began with the
research question, what factors are associated with abandoning Scrum adoption in distributed teams?
Consequently, the paper’s primary contribution comprises two factors associated with abandoning
Scrum adoption in distributed teams – Scrum practice degradation and subversion of the ScrumMaster
or Scrum Champion. While the available data and research method cannot establish a definitive causal
link between these factors and the team’s decision to abandon Scrum, practically speaking they are

obvious warning signs that the transition is challenged. This contribution is novel in that these factors
differ from factors identified in previous research on Scrum adoption and abandonment.
Additionally, the paper makes a secondary contribution concerning theoretical lenses applied to
understand (software development) team performance. Scrum is explicitly designed to increase team
performance and substantial evidence indicates that it practically does so (Cardozo et al. 2010).
Several theoretical lenses provide mechanisms, including team familiarity, group cohesion and
transactive memory, through which Scrum might increase performance. Our analysis suggests that
none of these lenses provides a complete picture and that future research may benefit from
considering not only cognitive aspects (familiarity; transactive memory) but also emotional aspects
(cohesion) in understanding how Scrum practices affect performance.
By contrasting with existing cases of successful implementations of Scrum in distributed teams, this
study highlights the need for more research on not only the adaptations to Scrum practices necessary
for distributed work but also the antecedents of successful Scrum transition. Our specific results
question the view (cf. Woodward et al. 2010) that the challenges of distributed Scrum generally can be
overcome by process modification alone and motivate greater study of the role of team familiarity,
group cohesion and transactive memory in Scrum adoption and team performance.

6 APPENDIX: INTERVIEW GUIDE

1. What project are you currently working on? What is it about?

2. What is your role in the project?

3. Would you tell me a little about the development process you’re currently using?

4. Do you have any kind of retrospective meetings about the process?

5. Have you made any changes to the process lately?

6. How about since the beginning of the project?

7. How did you come to be using your current process?

8. How has the process changed over the course of the project?

 Probes: Specific example of a change, why it was made, how long it took, whom did it affect?

9. How is the current process working for you? Does it need more changes? If so, what kind?

10. Have there been any political issues surrounding process decisions?

11. How closely do you follow methodology guidance?

12. Have you ever just make things look like they were done according to the process after the fact, to
keep management happy?

References
Abbattista, F. et al. (2008). Incorporating social software into distributed agile development

environments. 23rd IEEE/ACM International Conference on Automated Software Engineering –
Workshops, L'Aquila, Italy, 46-51.

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile Software Development
Methods: Review and Analysis. Espoo: VTT Publications.

Ambler, S. (2010). 2010 Agile Project Success Rates Survey Results. Ambysoft. Available at: http://
www.ambysoft.com/surveys/agileSuccess2010.html [Accessed September 1, 2011].

Ambler, S. (2008). Agile Adoption Rate Survey Results. Ambysoft. Available at: http://
www.ambysoft.com/surveys/agileFebruary2008.html [Accessed September 1, 2011].

Beck, K. (2005). Extreme Programming Explained: Embrace Change, 2nd edition. Addison Wesley:
Boston, MA, USA.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K.,
Sutherland, J., and Thomas, D. (2001). Manifesto for Agile Software Development. Available at:
http://agilemanifesto.org/ [Accessed September 1, 2011].

http://www.ambysoft.com/surveys/agileSuccess2010.html
http://www.ambysoft.com/surveys/agileSuccess2010.html
http://www.ambysoft.com/surveys/agileSuccess2010.html
http://www.ambysoft.com/surveys/agileSuccess2010.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://agilemanifesto.org
http://agilemanifesto.org

Berczuk, S. (2007). Back to Basics: The Role of Agile Principles in Success with an Distributed
Scrum Team. In AGILE 2007, 382-388.

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement, IEEE Computer 21
(5), May, 61-72.

Blackler, F., (1995). Knowledge, Knowledge Work and Organizations: An Overview and
Interpretation. Organization Studies, 16 (6), 1021-1046.

Blaxter, L., Hughes, C. and Tight, M. (2006). How to Research. Open University Press.
Bollen, K.A., and Hoyle, R.H. (1990). Perceived Cohesion: A Conceptual and Empirical Examination,

Social Forces 69 (2), 479-504.
Bowen, S. and Maurer, F. (2002). Process support and knowledge management for virtual teams doing

agile software development. In Proceedings of the 26th Annual International Computer Software
and Applications Conference, 1118-1120.

Brinkkemper, S. (1996). Method Engineering: Engineering of Information Systems Development
Methods and Tools, Information and Software Technology 38 (4), 275-280.

Brooks, F.P. (2010). The Design of Design: Essays from a Computer Scientist. Addison-Wesley
Professional.

Carron, A.V., Widmeyer, W.N., and Brawley, L.R. (1985). The Development of an Instrument to
Assess Cohesion in Sport Teams: The Group Environment Questionnaire, Journal of Sport
Psychology (7), 244-266.

Cardozo, E., Neto, J., Barza, A., França, A., and da Silva, F. (2010). Scrum and Productivity in
Software Projects: A Systematic Literature Review. In Proceedings of the 14th International
Conference on Evaluation and Assessment in Software Engineering, Keele University, UK.

Carstensen, P. and Schmidt, K. (2003). Computer supported cooperative work: New challenges to
systems design. In Kenji, I., ed. Handbook of Human Factors/Ergonomics. Tokyo: Asakura
Publishing, 619–636.

Chau, T., Maurer, F. and Melnik, G. (2003). Knowledge sharing: agile methods vs. Tayloristic
methods. In Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 302-307.

Cohn, M. and Ford, D. (2003). Introducing an agile process to an organization. Computer, 36 (6),
74-78.

Coplien, J.O., (1994). Borland Software Craftsmanship: A New Look at Process, Quality and
Productivity. In Proceedings of the 5th Annual Borland International Conference. Orlando, Florida.

Curtis, B., Kellner, M.I., and Over, J. (1992). Process Modeling, Communications of the ACM 35 (9),
75-90.

Curtis, B., Krasner, H. and Iscoe, N., (1988). A field study of the software design process for large
systems. Communications of the ACM, 31 (11), 1268-1287.

Eisenhardt, K.M., (1989) Building Theories From Case Study Research. The Academy of
Management Review, 14 (4), 532.

Espinosa, A., Kraut, R., Lerch, J., Slaughter, S., Herbsleb, J., and Mockus, A. (2001). Shared Mental
Models and Coordination in Large-Scale, Distributed Software Development. In Proceedings of
ICIS 2001, 513-518.

Espinosa, J.A., Sandra, A.S., Robert, E.K., and James, D.H. (2007). Familiarity, Complexity and Team
Performance in Geographically Distributed Software Development, Organization Science 18 (4),
613-630.

Ewusi-Mensah, K. (2003). Software Development Failures, Cambridge, MA, USA: MIT Press.
Fitzgerald, B. (1997). The use of systems development methodologies in practice: a field study.

Information Systems Journal, 7 (3), 201–212.
Glaser, BG and Strauss, A., (1967). Discovery of Grounded Theory. Strategies for Qualitative

Research, Sociology Press.
Golembiewski, R.T. (1962). The Small Group. University of Chicago Press.
Herbsleb, J.D., and Mockus, A. (2003). An Empirical Study of Speed and Communication in Globally

Distributed Software Development. IEEE Transactions on Software Engineering 29 (6), 481-494.
Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E. (2001). An Empirical Study of Global

Software Development: Distance and Speed. In Proceedings of ICSE 2001, Toronto, Ontario,
Canada: IEEE Computer Society, 81-90.

Herbsleb, J.D., and Moitra, D. (2001). Global Software Development, IEEE Software (18:2), 16-20.
Hersey, P., Blanchard, K.H. and Natemeyer, W.E., (1979). Situational Leadership, Perception, and the

Impact of Power. Group and Organization Management, 4 (4), 418-428.

Hossain, E., Babar, M.A. and Paik, H.-young (2009). Using Scrum in Global Software Development:
A Systematic Literature Review. In Proceedings of the Fourth IEEE International Conference on
Global Software Engineering, 175-184.

Iacono, C.S., and Weisband, S. (1997). Developing Trust in Virtual Teams. In Proceedings of HICCS
1997, 412-420.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Komiak, S.Y.X. and Benbasat, I. (2006). The effects of personalizaion and familiarity on trust and
adoption of recommendation agents. MIS Quarterly., 30 (4), 941-960.

Karekar, C., Tarrell, A., and Fruhling, A. (2011) Agile Development at ABC–What Went Wrong?. In
Proceedings of AMCIS 2011, paper 283.

Kramer, R.M. and Tyler, T.R., (1996). Trust in organizations: frontiers of theory and research, Sage
Publications.

Lave, J. and Wenger, E., (1991). Situated Learning, Cambridge University Press.
Lee, A.S., and Baskerville, R.L. (2003). Generalizing Generalizability in Information Systems

Research. Information Systems Research 14 (3), 221-243.
Lee, E.C. (2008). Forming to Performing: Transitioning Large-Scale Project Into Agile. In

Proceedings of Agile 2008, 106-111.
Lee, S. and Yong, H.-S. (2010). Distributed agile: project management in a global environment.

Empirical Software Engineering, 15 (2), 204-217.
Levina, N., and Vaast, E. (2005). The Emergence of Boundary Spanning Competence in Practice:

Implications for Implementation and Use of Information Systems, MIS Quarterly 29 (2), 335-363.
Littlepage, G., Robison, W., and Reddington, K. (1997). Effects of Task Experience and Group

Experience on Group Performance, Member Ability, and Recognition of Expertise, Organizational
Behavior and Human Decision Processes 69 (2), 133-147.

Lott, A.J., and Lott, B.E. (1965). Group Cohesiveness as Interpersonal Attraction: A Review of
Relationships with Antecedents and Consequent Variables, Psychological Bulletin (64), 259-309.

Myers, M.D., and Avison, D.E. (2002). Qualitative Research in Information Systems: A Reader. Sage.
Nerur, S., Mahapatra, R. and Mangalaraj, G. (2005). Challenges of migrating to agile methodologies.

Commuications of the ACM, 48 (5), 72-78.
Nidumolu, S. (1995). The Effect of Coordination and Uncertainty on Software Project Performance:

Residual Performance Risk as an Intervening Variable, Information Systems Research 6 (3),
191-219.

Parnas, D.L. (2009). Document Based Rational Software Development, Knowledge-Based Systems
22 (3), 132-141.

Parnas, D.L., and Madey, J. (1995). Functional Documents for Computer Systems, Science of
Computer Programming 25 (1), 41-61.

Pries-Heje, L., and Pries-Heje, J. (2011). Agile and Distributed Project Management: A Case Study
Revealing Why Scrum Is Useful. In Proceedings of ECIS 2011, Helsinki, Finland.

Pohl, R. (ed.) (2004). Cognitive Illusions. East Sussex, UK: Psychology Press.
Ralph, P. (2010). Comparing Two Software Design Process Theories. In R. Winter, J. L. Zhao, & S.

Aier (Eds.), Proceedings of DESRIST, St. Gallen, Switzerland: Springer LNCS 6105, 139-153.
Ralph, P. (2011). Introducing an Empirical Model of Design. In Proceedings of The 6th Mediterranean

Conference on Information Systems, Limassol, Cyprus.
Ralph, P. (2012). The Illusion of Requirements in Software Development. Requirements Engineering.
Ralph, P. (2013a). The Two Paradigms of Software Design. arXiv:1303.5938 [cs.SE].
Ralph, P. (2013b). The Sensemaking-Coevolution-Implementation Theory of Software Design. arXiv:

1302.4061 [cs.SE].
Rising, L. and Janoff, N.S. (2000). The Scrum software development process for small teams. IEEE

Software, 17 (4), 26-32.
Royce, W.W. (1970). Managing the Development of Large Software Systems: Concepts and

Techniques, Proceedings of Wescon.
Schatz, B. and Abdelshafi, I. (2005). Primavera gets agile: a successful transition to agile

development. IEEE Software, 22 (3), 36-42.
Schmidt, C., Spohrer, K., Kude, T., and Heinzl, A. (2012). The Impact of Peer-Based Software

Reviews on Team Performance: The Role of Feedback and Transactive Memory Systems. In
Proceedings of ICIS 2012, Orlando, FL, USA, December.

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press.

Schwaber, K., and Sutherland, J. (2010). The Scrum Guide. Scrum.org. Available: http://
www.scrum.org/scrumguides/ [Accessed September 1, 2011].

Schwaber, K., and Beedle, M. (2001. Agile Software Development with Scrum. Prentice Hall.
Standish Group (2009). Chaos Summary 2009. Boston, MA, USA. Available at: http://

www.standishgroup.com/newsroom/chaos_2009.php [Accessed September 1, 2011].
Silverman, D., and Marvasti, A.B. (2008). Doing Qualitative Research : A Comprehensive Guide.

Thousand Oaks, CA, USA: Sage.
Sumrell, M. (2007). From Waterfall to Agile - How does a QA Team Transition? In Proceedings of

AGILE 2007, 291-295.
Sutherland, J., Schoonheim, G. and Rijk, M. (2008). Fully Distributed Scrum: Replicating Local

Productivity and Quality with Offshore Teams. In Proceedings of HICSS 2008.
Sutherland, J., Schoonheim, G., Rustenburg, E., & Rijk, M. (2008). Fully Distributed Scrum: The

Secret Sauce for Hyperproductive Offshored Development Teams. In Proceedings of Agile 2008,
339–344.

Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In Proceedings of HICSS 2009.

Takeuchi, H. and Nonaka, I., (1986). The new new product development game. Harvard Business
Review, 64 (1), 137-146.

Tattersall, C., Watts, A. and Vernon, S. (2007). Mind mapping as a tool in qualitative research.
Nursing Times, 103 (26), 32-33.

Tuckman, B.W. and Jensen, M.A.C., (1977). Stages of Small-Group Development Revisited. Group
and Organization Management, 2 (4), 419-427.

Vax, M. and Michaud, S. (2008). Distributed Agile: Growing a Practice Together. In Proceedings of
Agile, 2008, 310-314.

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind, In Theories
of group behavior, B. Mullen and G. R. Goethals (eds.), New York: Springer, 185–208.

Wilson, J.M., Straus, S.G. and McEvily, B. (2006). All in due time: The development of trust in
computer-mediated and face-to-face teams. Organizational Behavior and Human Decision
Processes, 99 (1), 16-33.

Woodward, E., Surdek, S. and Ganis, M. (2010). A Practical Guide to Distributed Scrum, Prentice
Hall.

Van de Ven, A.H. (2007). Engaged Scholarship: A Guide for Organizational and Social Research.
Oxford, UK: Oxford University Press.

VersionOne. (2011). The State of Agile Development. Available at: http://www.versionone.com/
state_of_agile_development_survey/11/ [Accessed September 1, 2011].

Yin, R.K. (2009). Case study research: design and methods, Sage Publications.
Yip, J. (2011). It’s Not Just Standing Up: Patterns for Daily Standup Meetings. Available at: http://

www.martinfowler.com/articles/itsNotJustStandingUp.html [Accessed September 1, 2011].

http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/
http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.standishgroup.com/newsroom/chaos_2009.php
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://www.martinfowler.com/articles/itsNotJustStandingUp.html

	Association for Information Systems
	AIS Electronic Library (AISeL)
	6-18-2013

	Scrum Abandonment in Distributed Teams: A Revelatory Case
	Paul Ralph
	Petr Shportun
	Recommended Citation

	Scrum Abandonment 0.2 (PACIS)

