
Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 1

Test Case Selection Using CBIR and Clustering
Research-in-Progress

Everton Note Narciso
School of Arts, Sciences and Humanities - EACH

University of São Paulo - Brazil

evernarciso@usp.br

Márcio Eduardo Delamaro
Institute of Mathematics and Computer Sciences

University of São Paulo - Brazil

delamaro@icmc.usp.br

Fátima de Lourdes dos Santos Nunes
School of Arts, Sciences and Humanities - EACH

University of São Paulo - Brazil

fatima.nunes@usp.br

ABSTRACT

Choosing test cases for the optimization process of information systems testing is crucial, because it helps to eliminate

unnecessary and redundant testing data. However, its use in systems that address complex domains (e.g. images) is still

underexplored. This paper presents a new approach that uses Content-Based Image Retrieval (CBIR), similarity functions

and clustering techniques to select test cases from an image-based test suite. Two experiments performed on an image

processing system show that our approach, when compared with random tests, can significantly enhance the performance of

tests execution by reducing the test cases required to find a fault. The results also show the potential use of CBIR for

information abstraction, as well as the effectiveness of similarity functions and clustering for test case selection.

Keywords

Test case selection, content-based image retrieval, clustering, similarity functions.

INTRODUCTION

The methods used during the software testing phase directly affect the product’s final quality. Manual and unplanned testing

usually implies doubtful reliability in terms of software production, not meeting the desired requirements.

Automated testing is a process that seeks to minimize the subjectivity of manual testing and optimize the available resources.

To create mechanisms that exploit software requirements with the least possible computational effort represents a major

challenge, and in this scenario the tools for test case selection are vital to determine the test strategies.

The main objective to select test cases regards eliminating redundant or unnecessary test data. There are many approaches to

select test cases for systems under object-oriented paradigm, embedded systems and systems with alphanumeric

inputs/outputs in general (Engstrom, Skoglund and Runeson 2008; Yoo and Harman 2012). However, there is a gap with

regards to selecting test cases for graphic domain systems, such as image processing systems.

To test a system using a large number of images requires high computational costs. Considering the impracticality of this

alternative, we present a new approach for selecting test cases. Our approach focuses on image processing systems, which

consists of applying Content-Based Image Retrieval (CBIR), similarity functions and clustering techniques in order to select

more relevant test cases (images), based on their characteristics.

To achieve the proposed objective, the paper was organized as follows: Section 2 presents the basic concepts of test case

selection, image processing, CBIR, similarity functions and clustering - fundamental topics to develop the proposal. Section 3

presents the methodology of the experiments. Section 4 shows the results. Section 5 presents the discussions and threats to

validity. Section 6 presents the related works and Section 7 concludes the paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301359421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 2

BACKGROUND

To develop the proposal, the contributions from different computing areas must be taken into account, such as image

processing, CBIR and Software Engineering. This section presents the fundamental concepts regarding such topics.

Image Processing

Digital image processing consists of a set of techniques to capture, represent and transform images using a computer. The

digital image is a representation of a scene in a discrete region, limited by a finite set of integer values that represent each of

their dots. Mathematically, an image can be described as a function of light-intensity returned by an object. Most images

consider the two-dimensional space, defined as a function f(x,y), where x and y are the spatial coordinates, and the value of f

in coordinates x,y provides the image intensity at the dot. Each value refers to a dot in the image and represents one color.

These tiny dots are called pixels. A pixel is the smallest unit of an image, spatially, on which operations can be performed

(Gonzales and Wintz, 1987).

Image processing is the entire set of operations that can be applied to a matrix that represents an image. The purpose to

mathematically define the image is the possibility to manipulate its contents in order to make changes or to extract important

information (Gonzales and Wintz, 1987).

Content-Based Image Retrieval (CBIR)

 A CBIR system consists of a set of techniques that uses visual content, usually called characteristics, to find images

according to user requests from an image used as model template. Figure 1 presents the typical structure of a CBIR system

(Delamaro, Nunes and Oliveira, 2011).

Figure 1. Typical Structure of a CBIR System.

Figure 1 shows that a user can specify a query by providing a model image and a set of similar images are returned as the

system output. A CBIR system processes the information contained in the digital images and creates an abstraction of such

images in terms of visual attributes. The characteristics can, for example, refer to color, texture or form, and can be

represented by a numerical vector that contains the information of the image in question (Delamaro, Nunes and Oliveira,

2011). In a CBIR system the similarity among the images is calculated by using similarity functions that allow comparing

characteristics extracted using image processing techniques. Considering that the heuristic in which the more dissimilar test

cases are preferable for detecting faults, we can use the CBIR concepts and similarity functions to select an optimized subset

of test cases, as described in the next sessions.

Test Case Selection

Test cases (TC) are input parameters, execution conditions, and expected results used for testing (IEEE, 1990). During the

development phase of large and complex software, it is customary that the size of the test suites increases as the software

requirements evolve. However, the execution of large test suites can be impractical because the time and resources limitations

should be taken into account. To mitigate this problem, methods should be implemented to reduce the number of test cases to

be run. In this context, the test case selection seeks to select an optimized subset of test cases from a finite test suite using

some criterion of interest to eliminate the redundant or unnecessary test data and maximize fault detection rates (Hemmati

and Briand, 2010).

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 3

Similarity Functions

The test case selection using similarity concepts is based on heuristics, in which the more dissimilar test cases are preferable

for detecting faults (Chen, Kuo, Merkel and Tse, 2010). This approach uses similarity functions to measure the distance (or

difference) between the test cases. The similarity functions should be suitable for representing and manipulating the input

data (Hemmati, Arcuri and Briand, 2010). Some examples of similarity functions are Euclidean distance and the Coverage

Manhattan distance (Hemmati and Briand, 2010). For test case selection, once the similarity function is defined, the method

chooses a dissimilar and reduced subset of test cases, optimizing the testing process. Nevertheless, besides the similarity

functions, we used the clustering techniques to grouping images and increase the power of inference about the test cases. The

basic concepts of clustering are described in the next session.

Clustering

Clustering is a technique used to group similar objects into mutually exclusive groups. Thus, each group consists of objects

that are similar to each other but dissimilar to the objects of other groups (Sapna and Mohanty 2010).

The clustering process identifies and classifies objects according to their characteristics, minimizing the intragroup variance

and maximizing the intergroup variance (Hemmati et al., 2010). The similarity criterion used in the clustering process can be,

for example, the variability between two or more objects belonging to the same cluster, such as the mean, standard deviation,

the Euclidean distance, and others. The result is a number of heterogeneous groups with homogeneous content. The

classification and attainment of condensed data groups enables to increase the inference power on the sets observed.

METHODOLOGY

The experiment consists of using CBIR, similarity function and clustering techniques to select test cases for testing image

processing systems. The theoretical foundation is mainly based on the heuristic that the more dissimilar test cases are

preferable for detecting faults. The test cases, in this case, are the images used as input parameters for the software under test

(SUT). The experimental test is determined in three steps: given the test suite, the algorithm extracts the characteristics of

each image, performs clustering using similarity functions and selects the most dissimilar test cases. The result is an

optimized subset of test cases. Figure 2 illustrates the selection process proposed.

Figure 2. Selection Process Using CBIR and Clustering.

Delamaro et al. (2011) developed a framework that uses CBIR techniques for defining test oracles with graphical output

systems, known as O-FIm (Oracle for Images). The O-FIm supports a set of classes developed in the Java language which

enables extracting the visual content of images, creating characteristic vectors and calculating the distance between the

processed images. Some O-FIm classes were adapted in order to develop our approach.

The image processing system used for testing was developed by our team in the Java language, intended to skeletize

grayscale images in standard RGB. Thus, the skeletization process removes all redundant pixels, producing a new simplified

image reduced to the width of a single-pixel, as illustrated in Figure 3.

Figure 3. Illustration of the Skeletization Result Process.

The functional characteristics of SUT were empirically considered to define the contents of the abstracted images using CBIR

techniques. The purpose of the system developed is to remove redundant pixels from an image and simplify it with the width

of a single pixel. The skeletized images must be in the grayscale. Based on this information, the following characteristic

extractors were defined: color (to differentiate the shades of gray), area (to determine the spaces filled in shades of gray) and

perimeter (to determine the location of the external pixels of each image). In fact, the skeletization process directly affects the

color characteristics, area and perimeter of the skeletized image.

Extract
features

Clustering using
similarity
functions

Random selection
(one TC per

cluster at time)

Optimized
test suite

Test Suite

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 4

In the CBIR process, each characteristic can be represented by a numerical value varying between zero and one. At the end of

the extraction process, each image is represented by a numerical vector with three positions, called a characteristic vector,

related to the three characteristics implemented. Algorithm 1 shows the pseudocode of the area extractor.

Algorithm 1. Area Characteristic Extractor.

Defining the extractors and creating the characteristic vectors enables to systematically apply the similarity functions in order

to find the most dissimilar images in terms of characteristics of interest. Figure 4 presents the similarity functions used in the

experiments. Equation 1 is the Canberra distance; equation 2 is the Jeffrey distance; equation 3 is the Euclidean distance and

equation 4 is the Chi-square.

The hierarchical clustering method, known as Agglomerative Hierarchical Clustering (AHC), was used to identify and group

the most similar test cases (Sapna and Mohanty, 2010). Given a test suite of size S, a similarity matrix of size (S*S)/2 is

created to represent all possible distances between the test case pairs. Note that the similarity matrix is symmetric. Due to the

distance between the test cases A and B are the same distance as between B and A, there is no need to build a matrix of size

S*S. In AHC, each test case represents an isolated cluster. At each clustering stage, the two most similar clusters are grouped

into one cluster. Figure 4 represents the initial stages of an AHC process. In the first three stages of this example the closest

clusters are (1)↔(2), (6)↔(8) and (13)↔(16), respectively. In these stages each cluster is isolated and grouped, generating

new clusters (cluster 1, cluster 2 and cluster 3). At the end of the third stage, the closest clusters are (1,2)↔(6,8). In the fourth

stage these clusters are grouped, generating a new cluster (1,2,6,8). The process is repeated until the desired stopping point is

achieved (e.g. when a similarity level is achieved) or until all data are grouped into a single cluster.

Figure 4. Representation of AHC Process.

(1)

(2)

(3)

(4)

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 5

In short, in our experiment the similarity functions were used to create similarity matrices M and the AHC was applied to

these matrices. After the clusters were created, a test case was randomly selected for each cluster until reaching the desired

test suite size.

Evaluation of Characteristic Extractors

This section presents the statistical evidence to support previous hypotheses that given the functional characteristics of SUT,

in which the characteristic extractors called color, area and perimeter are suitable for abstracting the test cases, since such

abstractions are relevant to find the data dissimilarity. In this scenario, the importance of using multiple characteristics is due

to the fact that a given test case A may contain the same characteristic of another test case B (such as area), and in such cases

it is necessary to find additional characteristics to measure the dissimilarity between A and B.

We empirically assume the hypothesis that independent, uncorrelated and nonlinear characteristics (also called variables) are

preferable to reveal the dissimilarity between the test cases. We consider that dependent, strongly correlated or linear

variables tend to reveal the same fault patterns, undesirable within the context of our experiment.

As three different characteristic extractors were used, a scatterplot was deployed to analyze the behavior of data and the

correlation analysis and chi-square test were performed to evaluate the influence of each variable on the dissimilarity

calculation. Thus, the scatterplot allows visualizing the behavior of data. The correlation allows analyzing the strength of the

relationship among data and the chi-square test allows analyzing the dependence of data (Devore, 2012). In other words, the

statistical tests performed should answer the following questions: 1) what is the influence of each variable on the dissimilarity

calculation? 2) what is the effect that changes in any variable cause on the other variables?

All statistical tests were performed using the R software version 2.15.2 (R Core Team, 2012). The characteristic vectors were

submitted to the software, which in turn returned the statistical results of the experiment. Figure 5 shows the scatterplot of

color, area and perimeter characteristics.

Figure 5. Scatterplot of Color, Area and Perimeter Characteristics.

Figure 5 is a scatterplot that shows the behavior of pairs of data (Color, Area and Perimeter). Each dot represents a test case

and the straight line represents the regression line. If there are many dots following the line, there are indications that the data

possibly has the same behavior patterns. Thus, the scatterplot depicting evidences that the behavior of the data (all variables)

is nonlinear. Table 1 presents the correlation tests.

Correlation

Characteristic Color Area Perimeter

Color 1 0,31 0,29

Area 0,31 1 0,008

Perimeter 0,29 0,008 1

Table 1. Correlation Tests.

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 6

Table 1 depicts the correlation tests among the pairs of characteristics color, area and perimeter. The correlation analysis

shows that the variables are weakly correlated (because the result is much less than one), indicating that modifying any

variable can cause little or no changes in the other variables. The result of the p-value of the chi-square test is less than 0.5% -

indicating that the variables are independent.

All tests carried out suggest that the variables are nonlinear, weakly correlated, independent and strongly influential on the

dissimilarity calculation. Based on these statistics we assume that removing any variable (color, perimeter or area) can

compromise the efficiency of the selection based on dissimilarity.

Finally, it should be noted that the statistical results are incipient and represent evidence to support the hypothesis that the

characteristic extractors used are suitable for the experiment.

Evaluation Metrics

There are two skeletization software versions, each with a single semantic seeded error and detected by a small range of test

cases available in the test suite. The test suite consists of seven thousand nine hundred images manually and randomly taken

from the Internet, without any restriction regarding its use. All images were reset to grayscale and RGB default. Only fifty

test cases were able to reveal the seeded errors, representing 0.6% of the entire test suite.

The domain of software that works with images is complex. In the context of our experiment the heuristic on similarity-based

selection is preferable than the heuristic on coverage-based selection (more specifically code coverage) because a single

image can contain a lot of information (e.g. a small image of size 100 lines per 100 columns contains ten thousand pixels),

and a small set of images covers most part of the SUT code, but cannot find the existing fault. Note that the test suite is

comprised of seven thousand nine hundred images, and only fifty images are able to find the seeded errors. That is called

data-sensitive faults, in contrast to coverage-sensitive faults.

Regarding the evaluation of the experiments, researchers have adopted different metrics to determine the effectiveness and

the efficiency of the methods proposed, such as the fault detection rate (Hemmati et al., 2010) and the model or code

coverage (Mirarab, Akhlaghi and Tahvildari, 2011). Researchers also have adopted the number of test cases required to find

the first fault as the key metric for evaluating the selection methods (Kuo, Chen, Liu and Chan 2007; Chen et al., 2010). The

general idea is that a fault at a given point of the code can cause other faults at different points of the code. Therefore, to find

the first fault, the developer must repair the error that caused the fault before submitting the software to a new test, thereby

avoiding other faults resulting from the first fault (Rothermel, Untch, Chengyun and Harrold, 2001). As mentioned, this is

particularly useful in a domain susceptible to data-sensitive faults, as the one addressed in this article.

The evaluation metrics used in the experiment measures the number of test cases required to find the first fault. Our intention

is to show that the proposed selection method can outperform the F-measure, which is the measure of number of test cases

required to find the first fault at random. To obtain a statistically consistent result, the random selection was executed one

hundred times and the simple average was considered as the final result of the experiments, which is compared to our

selection using CBIR and clustering.

OBTAINED RESULTS

Given the test suites, running the two experiments using our new approach consists of selecting the test cases and submit

them to SUT (each containing only one seeded error), as well as to the original software (considered correct). The results of

both processes are compared (pixel by pixel), and the experiment is concluded when the execution of the test cases selected

shows differentiated outputs, indicating there is a fault. Figure 6 illustrates the test running process through an activity

diagram of Unified Modeling Language (UML).

Figure 6. Test Running Process.

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 7

Figure 6 shows that the test cases are submitted to the execution of tests until a fault is detected. The same procedure was

used for the random selection and for our selection using CBIR and clustering. Table 2 shows details about the tests and the

results of the experiments.

Selection Method Similarity Function
TC required to find the

first fault
Experiment

148 (F-measure) SUT1
Random None

141 (F-measure) SUT2

Canberra 13

Jeffrey 14

Euclidean 25

Chi-Square 13

SUT1

Canberra 31

Jeffrey 135

Euclidean 22

CBIR, similarity
functions and

clustering

Chi-Square 19

SUT2

Table 2. Results of Test Case Selection Process.

Table 2 presents the overall results of the experiments. The column 3 shows the test times (the number of executed test cases

until a fault is detected). Note that all tests based on CBIR and similarity functions outperformed the random tests. In SUT1,

an average of 16 test cases was needed to find the first fault, which when compared to the F-measure represents only 11%. In

SUT2, although the Jeffrey function showed an unsatisfactory result, an average of 52 test cases was needed to detect the first

fault, which compared to the F-measure, represents only 37%.

The results of the experiments show the potential of the techniques used in the software testing process. First, using CBIR to

abstract relevant information from images proved feasible and suitable. Second, the selection heuristic using similarity

functions was effective. Third, using clustering to group the most similar test cases also showed good results.

DISCUSSION AND THREATS TO VALIDITY

A limitation of the experiments is the fact that the SUT used in our experiment is relatively small (~200 lines of code), and

the extractors used were color, perimeter and area. Replication studies considering large software may reveal different

patterns of effectiveness of our proposed method. Future works should perform tests on different image processing systems,

as well as develop and implement new characteristic extractors that meet different demands to corroborate the good results

achieved. Despite the need for developing and implementing new characteristic extractors, there is a framework to help the

creation of automated oracles. This framework contains various classes of extractors and similarity functions to support

graphic processing testing and is available at the Free-software Competence Center in the University of São Paulo

(http://ccsl.icmc.usp.br/pt-br/projects/o-fim-oracle-images).

Regarding the results validation, the SUT2 showed a poor result when the Jeffrey distance was used for the selection. Out of

141 random selection test cases, it needed 135 test cases to find the first fault. This result indicates that the similarity

functions used have a direct impact on the selection process proposed. In practical terms, it can be inferred that in the SUT2

the Jeffrey function did not represent the dissimilarity between test cases and, therefore, studies on this and other functions

should be complemented and expanded, within the context of our approach.

A major advantage provided by our approach lies in the fact that extracting characteristics from images has to be performed

only once. In fact, despite the computational cost and the time required for data abstraction, the characteristic vectors can be

stored in a database and used later to select test cases independent of the SUT.

Another benefit is that redundant images (in terms of characteristics) can be deleted from the test suites. After executing

CBIR and similarity functions, only the images stored that meet some predetermined dissimilarity criterion can be kept.

Scalability is the third potential gain of our approach. There is always the possibility to add a new image in the test suites,

and in this case there is no need to reprocess (via CBIR) the previously included images.

We believe that our approach can be exploited in related areas, such as Search-based Software Engineering. Therefore, the

test case selection can be treated as a high-complexity optimization problem in which search-based methods explore a range

of possible solutions in order to find the best result combinations, with a reasonable computational cost (Hemmati et al.,

2010; Li, Harman and Hierons, 2007). Different search-based methods have been successfully used in various software

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 8

testing activities, such as genetic algorithms (Li et al., 2007) and particle swarm optimization (Souza, Miranda, Prudencio,

and Barros, 2011). The use of search-based methods for test case selection using CBIR and similarity functions can

contribute to optimize the scalability, robustness and reliability of the tests.

Finally, we believe it is possible to apply our approach to the prioritizing process of test cases. Prioritizing will sequentially

arrange the test cases, enabling to execute first the most important test data. Its goal is to find the presence of faults as early

as possible, allowing a faster depuration of SUT (Li et al., 2007). Similar to the search-based methods, prioritization has been

successfully employed in research that is focused mainly on regression testing. Using CBIR and similarity functions to

prioritize test cases is a promising research possibility, considering that many selection methods used can be adapted to

prioritization (Bo, Zhang, Chan and Tse, 2009; Catal, 2012).

RELATED WORKS

Chen, Merkel and Tse (2010) presented a synthesis of important theoretical studies related to adaptive random testing (ART),

a similarity-based test case selection method. In the ART method, test cases are randomly chosen from the original test suite,

and an evaluation of the results is then performed so that only the test cases that meet the dissimilarity criterion are utilized.

In this study the researchers also discuss relevant topics such as fault patterns, theoretical limits, random sequences and fault-

based tests.

Engstrom, Skoglund and Runeson (2008) developed a systematic review on test case selection methods for regression testing.

The researchers selected 28 of 2923 articles found in various scientific data sources. Despite the different selection methods

used (such as genetic algorithms, simulated annealing, dataflow-based coverage, among others), the researchers found no

evidence determining the superiority of any particular method with regards to all the methods evaluated.

Yoo and Harman (2012) presented a survey on the approaches to minimization, selection and prioritization of test cases for

regression testing. The researchers discuss various methods used to reduce the test suite, the interrelationship between

approaches, the characteristics, advantages and disadvantages of each topic under consideration.

Many test case selection methods have been sufficiently studied, analyzed and implemented, resulting in mature, viable and

well established solutions. However, we found no studies that utilize CBIR and similarity functions for selecting test cases

considering systems in the image processing domain.

CONCLUSION

This paper presented a new approach for test case selection using CBIR, similarity functions and clustering. The proposed

selection method uses CBIR techniques to abstract relevant information from images, and then performs clustering using

similarity functions. The most dissimilar images are selected and submitted to the software under test. The experiment results

show the feasibility of the method presented, and in the context evaluated, its superiority compared to random selection. Our

approach, focused on testing image processing systems, is promising in terms of data reduction in the test suites, generality

(can be used in any image processing system) and scalability.

There are many well-established test case selection methods in the literature. However, we found no studies that utilize CBIR

and similarity functions for test case selection. Additionally, our approach paves the way for other research possibilities, such

as its application to Search-based Software Engineering and prioritization of test cases. Some future works can include: 1)

creating a framework for selecting test cases using CBIR and similarity functions; 2) implementing new characteristic

extractors and new similarity functions; 3) using different evaluation metrics, such as the number of test cases needed to find

all the faults (in situations with more than one fault in SUT); and 4) conducting different software tests to analyze and

evaluate the effectiveness of the proposed approach.

ACKNOWLEDGMENT

This research was supported by the State of São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de

São Paulo-Fapesp) Process 2010/15691-0 and Brazilian National Council of Scientic and Technological Development

(Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq) Process 559931/2010-7 and the National Institute

of Science and Technology-Medicine Assisted by Scientific Computing (Instituto Nacional de Ciência e Tecnologia -

Medicina Assistida por Computação Científica-INCT-MACC).

The authors thank to Professor Delhi Tereza Paiva Salinas from the University of São Paulo for her help in statistical

analysis.

Narciso et al. Test Case Selection Using CBIR and Clustering

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 9

REFERENCES

1. IEEE Standard Glossary of Software Engineering Terminology (610.12-1990). URL http://standards.ieee.org/findstds/

standard/610.12-1990.html.

2. Delamaro, M. E., Nunes, F. L. S., Oliveira, R. A. P. (2011) Using concepts of content-based image retrieval to

implement graphical testing oracles. Software Testing, Verification e Reliability. John Wiley e Sons. 1099-1689.

3. Hemmati, H., Arcuri, A., Briand, L. (2010) Reducing the cost of model-based testing through test case diversity. IFIP

International Federation for Information Processing, pp.63–78.

4. Kuo, F. C., Chen, T. Y., Liu, H., Chan, W. K. (2007) Enhancing adaptive random testing in high dimensional input

domains. Proceedings of the 2007 ACM symposium on Applied computing (SAC '07). ACM, New York, USA, pp.1467-

1472.

5. Bo, J., Zhang, Z., Chan, W. K., Tse, T. H. (2009) Adaptive Random Test Case Prioritization. Proceedings of the 2009

IEEE/ACM International Conference on Automated Software Engineering (ASE '09). IEEE Computer Society,

Washington, USA, pp.233-244.

6. Catal, C. (2012) On the application of genetic algorithms for test case prioritization: a systematic literature review.

Proceedings of the 2nd international workshop on Evidential assessment of software technologies (EAST '12). ACM,

New York, USA, pp.9-14.

7. Mayer, J. (2006) Adaptive random testing with randomly translated failure region. Proceedings of the 1st international

workshop on Random testing (RT '06). ACM, New York, USA, pp.70-77.

8. Hemmati, H., Briand, L. (2010) An Industrial Investigation of Similarity Measures for Model-Based Test Case Selection.

Software Reliability Engineering (ISSRE), pp.141-150.

9. Sapna, P. G., Mohanty, H. (2010) Clustering test cases to achieve effective test selection. Proceedings of the 1st Amrita

ACM-W Celebration on Women in Computing in India (A2CWiC '10). ACM, New York, USA, pp.15-8.

10. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/.

11. Li, Z., Harman, M., Hierons, R. M. (2007) Search Algorithms for Regression Test Case Prioritization. Software

Engineering, IEEE Transactions on, pp.225-237.

12. Souza, L. S. de, Miranda, P. B. C. de, Prudencio, R. B. C., Barros, F. A. de. (2011) A Multi-objective Particle Swarm

Optimization for Test Case Selection Based on Functional Requirements Coverage and Execution Effort. Tools with

Artificial Intelligence (ICTAI), 23rd IEEE International Conference, pp.245-252.

13. Chen, T. Y., Kuo, F., Merkel, R. G., Tse, T. H. (2010) Adaptive random testing: The ART of test case diversity. Journal

of Systems and Software, pp.60-66.

14. Engstrom, E., Skoglund, M., Runeson, P. (2008) Empirical evaluations of regression test selection techniques: a

systematic review. Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering

and measurement (ESEM '08). ACM, New York, USA, pp.22-31.

15. Yoo, S., Harman, M. (2012) Regression testing minimization, selection and prioritization: A survey. Software Testing

Verification and Reliability, pp.67-120.

16. Gonzales, Rafael S.; Wintz, Paul. (1987) Digital Image Processing. Addison-Wesley Publishing Company, USA.

17. Devore, Jay L. (2012) Probability and Statistics for Engineering and the Sciences. Brooks/Cole, Boston, USA.

18. Free-software Competence Center in the University of São Paulo. URL http://ccsl.icmc.usp.br/pt-br/projects/o-fim-

oracle-images.

19. Rothermel, G., Untch, R. H., Chengyun, C., Harrold, M. J. (2001) Prioritizing test cases for regression testing. Software

Engineering, IEEE Transactions on, pp.929-948.

20. Mirarab, S., Akhlaghi, E. S., Tahvildari, L. (2011). Size-Constrained Regression Test Case Selection Using Multi-

Criteria Optimization. Software Engineering, IEEE Transactions on, pp.1.

