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ABSTRACT 

The exponential growth of user-generated content in online environment calls for techniques that can help to make sense of the 

content. Despite of a host of research on online consumer reviews, there is still a great demand for research to improve the 

techniques for feature extraction. To this end, we proposed extraction methods based on detailed categorization of review 

features. By taking into account of the characteristics and patterns of different types of features, the proposed methods not only 

identify new features but also filter irrelevant features. The results of an experiment demonstrate that our proposed methods 

outperform the state-of-the-art techniques. 
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INTRODUCTION 

As the Internet becomes more popular and powerful than ever before, online consumer reviews for a wide variety of products 

and services are playing an increasingly important role in e-commerce. Before deciding to buy a product, consumers tend to 

consult others’ opinions or some recommendations on it. Online consumer reviews serve as a good supplement to expert 

reviews and product descriptions. They are used to reduce purchasing uncertainty (Dellarocas, 2003) and help consumers to 

make better decisions. Researchers have also found that consumer reviews have a positive effect on product sales (Chevalier 

and Mayzlin, 2006). As the volume of online reviews rapidly increases and the quality of reviews vary widely, many 

e-commerce websites have implemented the function that allows consumers to vote for the helpfulness of a review.  However, 

these helpfulness votes could still be problematic for a variety of reasons. For instance, consumers may seek different types of 

information from an online review; newer reviews tend to receive fewer votes or no votes; and some spam reviews may have 

manipulated the helpfulness votes.  

Extracting product features from online product reviews is fundamental to online review mining. There has been an extensive 

amount of work on product feature extraction, using linguistics-based methods, statistical methods or machine learning 

methods (e.g., Hu and Liu, 2004, Kobayashi, Inui and Matsumoto 2007, Popescu and Etzioni, 2007, Qiu, Liu, Bu and Chen 

2009, Wong and Lam 2005, 2008). However, most of these researches are focused on explicit subjective product features. For 

example, in sentence, “The picture of this camera is amazing”, “picture” is a feature that appears in the sentence and reviewer 

explicitly express opinion on it. This research aims to extract both explicit subjective and objective features from online 

consumer reviewers.  

Despite of the extensive research on developing analytical techniques for online consumer reviews, this research makes several 

new contributions. First, we developed new criteria for classifying product features, which will guide our development of 

extraction methods. Second, we identified new patterns of product features from the sentence level such as prescriptive 

statements, comparison patterns and special words or structures. Third, we incorporated information from sources such as 

WordNet, sentence structure, and document frequency to prune irrelevant terms in feature extraction. The empirical results 

show that our proposed methods outperform the state-of-the-art techniques for feature extraction.  

The remainder of this paper proceeds as follows. In the next section, we review prior literature as related to our research setting. 

After that, we propose a new method for feature extraction followed by our data collection methods and experiment design. In 

the following section, we report our empirical results. We discuss and conclude our findings in the last section. 

RELATED WORK 

We drew related work from two areas: ecommerce and text mining. Researchers in ecommerce focus primarily on how to apply 

extracted features to support other applications. While researchers in text mining primarily deal with the identification of 

product features and how to improve the performance of feature extraction. 
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Since our data set comes from online reviews and our work aims to generate more specific or personalized reviews by 

incorporating specific product features, it is necessary to introduce how product feature extraction related to ecommerce. 

Online consumer reviews can be defined as peer-generated product evaluations posted on company or third party websites 

(Mudambi and Schuff, 2010). There are two basic components in online customer review: rating (usually ranging from 1 to 5 

stars) and open-ended customer-generated comments. An online review is regarded as an assessment of a single consumer’s 

perceived quality of a product, which provides not only a way in which consumers can share their opinions, but also a valuable 

resource for potential customers to make purchase decisions (Liu, Huang, An and Yu 2008). Several researches in this area 

focus on how to predict the helpfulness of online reviews in term of how many product features it contains (Kim, Pantel, 

Chklovski and Pennacchiotti, 2006; Liu, Cao, Lin, Huang and Zhou, 2007). While other researchers aim to build a helpful 

recommender system based on review data (O’Mahony and Smyth, 2009) and make use of product features to analyze the 

product price (Archak, Ghose, G.Ipeirotis 2011).  

In the community of text mining, researchers focus on how to extract product features effectively and efficiently. In a 

pioneering work, Hu and Liu (2004) proposed a technique for product feature extraction using association rule mining based on 

the assumption that people often use the same words when they express their opinions. Popescu and Etzioni (2007) developed 

a similar algorithm to determine whether a noun/noun phrase is a feature by computing the point wise mutual information 

(PMI) score between the phrase and class specific discriminators. Later, to achieve a better performance, different researchers 

use different methods including machine learning, linguistic rules. Ghani, Probst, Liu, Krema and Fano (2006) proposed a 

method to extract attribute and value pairs from textual product descriptions. They viewed products as sets of attribute value 

pairs rather than as atomic entities. The method learns these attributes by applying supervised and semi-supervised learning 

techniques to the product descriptions available from retailers’ web sites. Lee and Bradlow (2007) presented a method to 

support conjoint study design by automatically eliciting an initial set of attributes and levels from online customer reviews. 

Raju, Shiashtla and Varma (2009) proposed a novel solution to extracting features from a set of product descriptions. They 

classified product attributes into tangible and intangible (explicit and implicit) categories. They first constructed a graph from 

the text using word co-occurrence statistics, then computed word clusters and extract attributes from these clusters using graph 

based methods. Hai, Chang and Kim (2011) proposed a novel two-phase co-occurrence association rule mining approach to 

identifying implicit features. Double Propagation (Qiu, Liu, Bu and Chen, 2009) is a state-of-the-art unsupervised technique for 

extracting features. It mainly extracts noun features, and works well for medium-size corpora. However, for large corpora, this 

method can introduce a great deal of noise (low precision), and for small corpora, it can miss important features.  

Most existing methods have their own limitations, Hu and Liu (2004)’s work doesn’t work well on infrequent features; Double 

propagation works well for medium-size corpora. However, for large and small corpora, it can result in low precision and low 

recall (Zhang, Liu, Lim and O'Brien-Strain 2011), it has been shown in (Qiu et al., 2009) that many feature and opinion word 

pairs have long range dependencies. To deal with above problems, we design a new set of methods to extract features. 

PROPOSED METHODS 

In this section, we propose methods for extracting product features from online consumer reviews. To compare with our 

methods, we first review several existing classification criteria for product features, and then introduce our categorization 

criteria and propose extraction methods based on the type of the features.  

Feature classification 

One popular classification scheme for product features (Hu and Liu 2004) contains two types of features: explicit and implicit 

features. Explicit features are explicitly mentioned in review sentences, while implicit features refer to those features that do not 

directly appear in the reviews.  

The second type of classification criteria is based on how features are expressed. Extant extraction methods are mostly based on 

syntactic analysis. Hu and Liu (2004) used adjectives to find near nouns which are candidates of features that reviewers 

commented on. Qiu et al (2009) proposed a domain sentiment word extraction approach based on the propagation of both 

known sentiment lexicon and extracted product features. The method exploits dependency relationship to capture the 

association both between features and sentiment words and between sentiment words and features themselves. Thus, the key 

task of these methods is to summarize how people express their opinions, what adjectives they usually use, what sentence 

structure they use. Experimental results show that these syntactic based methods are more effective and have better recall and 

precision than other alternative methods.  

We propose a scheme that is based on but extends the previous work on feature objectivity. First, as mentioned above, double 

propagation mainly focuses on subjective statements that express opinions on some features, while ignoring objective 

statements that only describe the characteristic of some features without expressing any positive or negative opinions. Second, 

double propagation only considers dependency structures, missing other subjective patterns, in our study we incorporate 
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comparative structures and some other simple patterns. Third, based on our observation, there are some unique features that are 

either seldomly mentioned (e.g., ergonomical) or have their own structures, such as brand names or special models. Therefore, 

our proposed classification scheme is based on subjectivity of features, which contains subjective features and objective 

features. Subjective features are those features appear in subjective statements where reviewers express their opinions 

explicitly, objective features appear in objective statements which don’t evolve reviewers’ opinions. 

Subjective statements:  “This camera is awesome, with great lens ...”  “I like the design of this phone, it’s amazing ...”  “With this 

camera, I really haven’t taken a bad picture”  “They didn’t correct the design flaw ...” 

Objective statements:  “This phone comes with a rechargeable battery ...”   “It includes a rechargeable battery, a 4mb memory card 

...”   “This phone has a two-year warranty ...”  “I got a while phone, and there are so many different colors to choose ...” 

Extraction methods 

Figure 1 shows an overall process flow of our extraction method. It consists of several key processes: preprocessing, feature 

extraction and pruning. The system takes product reviews as the input and produce product features as the output. 

 

Figure 1. Main Components of the Feature Extraction Methods 

Features are generally expressed as nouns or noun phrases with certain grammar patterns in online reviews (Liu, Hu and Cheng 

2005). Typically, a noun or noun phrase acting as the object or the subject of a verb is a potential feature. To design extraction 

methods, we made the following assumption: different type of features has different grammatical patterns, but within one type, 

different features may share the same sentence structures. We will introduce extracting methods for different types of features 

separately. 

Subjective features 

Subjectivity refers to aspects of language used to express opinions (Wiebe, Wilson, Bruce, Bell and Martin, 2004). Opinion that 

appears in text comes in two flavors: explicit where the subjective sentence directly expresses an opinion (“It’s a beautiful 

day”), and implicit where the text implies an opinion (“The earphone broke in two days”) (Hu and Liu, 2006). Most of the work 



Kang et al  Product Feature Extraction 

Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, Illinois, August 15-17, 2013. 4 

done so far focuses on the explicit sentiment (Hu and Liu, 2004, 2006; Kim et al 2006; Liu et al 2007; Popescu and Etzioni, 

2007; Wong and Lam 2005, 2008), since it is easier to analyze. Hu and Liu (2004, 2006) proposed a grammar pattern based 

method. They found that infrequent features and frequent features sometimes share the same expression pattern. For instance, 

both pictures and software are features in the following two sentences: “The pictures are absolutely amazing”, “The software 

that comes with it is amazing”. Despite that picture is a frequent feature and software is an infrequent one, both features are 

expressed with the same grammatical patterns. Based on the observation, the authors extracted the noun words or phrases from 

sentences that contain certain adjectives. To improve the performance of the naïve method, Hu and Liu (2006) proposed a 

supervised sequential rule mining method, where they abstracted specific adjectives into general patterns, and also took order 

into consideration. However, this method is mainly focused on phrase reviews rather than complete sentence reviews. In 

addition, subjectivity sentences can be further divided based on its polarity – positive and negative, and a distinction can be 

further made between the polarity of sentiment and of its strength. In view that online consumer reviews are mostly in form of 

complete sentences, we intend to focus on explicit subjective sentences, and apply grammatical rule based method to extract 

subjective features. We further enhanced the method with a new pruning method to improve its precision. 

Double propagation is a well-known method, which essentially extends grammar-based method by using dependency parser to 

detect the opinion word and features. It makes use of dependency grammars to generate eight rules based on dependency 

relations between opinion word and target word, and repeatedly extract opinion word and target word alternatively. In our 

work, to extract subjective features, we first applied double propagation, and then used comparison patterns to extracted more 

features.  

Besides dependency, comparison is also an important pattern that expresses subjectivity in corpora. For example, in the 

following expression, “battery life is over 4.5 hours, compared to about 2.5 for G2”, there is a comparison between two 

different phones. Since “over 4.5 hours” is not a typical subjective structure, so this feature can not be extracted by double 

propagation, while apparently it is a positive opinion about battery. This kind of pattern actually is very useful for feature 

extraction, and is widely used to express opinions. Thus, we incorporated the comparison patterns into the extraction of product 

features in our proposed method. Jindal and Liu (2006a,b) proposed a data mining method called labeled sequential rule to 

identify comparative sentences and generate comparative relations. Because their method require a lot of labeling work, and 

they reported that indicating words would lead to a recall of about 90%, we decided to just use their indicating words (words 

end with ‘er/est’ and a set of manually collect words) to identify comparative sentences, deferring the introduction of pruning 

methods to the pruning section. 

Objective features 

An objective review may cover multiple aspects of a product, which is intended to be unbiased or impersonal. Objective 

reviews tend to state some facts about a product or its properties. Given that the information is concrete bits of facts, the review 

is usually expressed in concrete language in terms of precise numbers or quantities, weights and measures, and so on. In the 

context of product reviews, there could be many reviews describing some features of one product without using any opinion 

word. For instance, “It comes with a rechargeable battery...”, “There are three colors to choose from ...”, “It combines auto 

mode and manu mode ...” In these cases, double propagation no longer works, neither does the extraction of frequent terms 

because some features may just appear only once or a few times.  

Objective patterns occur frequently in text and are expressed by a variety of lexico-syntactic structures such as “part-whole” 

relation(Girju, Badulescu and Moldovan 2006; Popescu and Etzioni, 2007) and “contain/include”, “come with”, which are also 

widely-used patterns to describe facts. We identified the following types of patterns of objective features: 

NP+Verb+NP: NP is the noun word or noun phrase representing product or product feature. In this pattern, different verb 

choices may represent similar relationship between the two NPs. For example, we can infer from the expression of “the camera 

contains a lens” that memory card is an accessory of camera. Likewise, in the expression “This phone has a color screen”, 

screen is a feature of phone. Both of the above examples represent the part-whole relation. We followed Zhang et al (2011)’s 

method to extract these features using verbs such as “have” “include” “contain” “consist”, and “comprise”. Besides, there are 

other verbs expressing the relationship between the feature and the product other than the part-whole type. For example, “This 

camera comes with a 4mb memory card”, and “The phone is made of plastic”. In these examples, the feature actually is a 

property or accessory of the product. We propose to address such features by compiling verbal phrases such as “made of” and 

“come with”. 

PRP/Ex+Verb+NP: PRP/Ex refers to pronoun, usually used to represent a product, and NP indicates a feature. In the following 

sentences, “It plays mpeg video”, “It comes with a tripod and a memory card”, it refers to a product, and the object of verbs are 

features. Although this statement contains “comes with”, it cannot be directly treated as an example of the previous pattern 

(NP+verb+NP) without pronoun resolution, because it could lead to the extraction of wrong patterns. In addition, previous 
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methods are incapable of dealing with statements like “There are auto mode and manu mode”, where “auto mode” and “manu 

mode” should be considered as features, which will be addressed in this research. To extract aforementioned patterns, we first 

matched POS patterns and then substituted ‘verb’ with specific words, after that we extracted the object of each verb as 

candidate features. 

Special features 

The above patterns are not inclusive. We also include several special patterns such as “with/without” pattern, “no/not” pattern 

and unique expressions; they belong to this type because it is difficult and not necessary to determine their polarity.  

“With” pattern describes sentences beginning with “with/without”, “by using”, etc. For example, “without auto mode, it is 

difficult to ...”, “with external flash on my Nikon SLR ...”, This is a specific pattern of reviews and posts in an online 

environment. Likewise, such a pattern either doesn’t contain any opinion word, or even if an opinion word presents, it doesn’t 

directly modify the features. We label this pattern as “with/without + noun/noun phrases”, and used it in feature extraction.  

“No” pattern is in the form of “no” word followed by noun/noun phrase, which was first introduced by Zhang et al (2011) such 

as “no noise” and “no indentation”. The pattern also takes care of the some fixed “no” expressions such as “no problem” “no 

offense”. We extended the pattern as “no/not” pattern to address cases like “not a deal” as well as “no accessories” and 

incorporated them into our method for feature extraction. 

To extract above two short patterns, we applied a naive match method (e.g. regular expression) to extract those patterns and 

then extracted the noun words as candidate features. Additionally, we manually filtered several idioms such as “no problem”. 

The third type is unique expressions such as brand names and models, we summarized and categorized those special cases, and 

developed dictionary based method and some heuristic rules for them. For instance, models are usually expressed in the form of 

“Letter+Number” or “Brand+Number”, we first use regular expression to match those terms as candidates, and then use a 

manually compiled brand dictionary to extract those real brand features. 

Pruning methods 

Integrating several methods in extracting product features is expected to improve the recall, meanwhile it also is likely to reduce 

the precision. To filter those non-feature terms, the simplest way would be to remove those non-frequent terms.  

Unlike traditional frequency based methods, we used the document frequency instead of Term Frequency * Inverse Document 

Frequency (TFIDF). The method was motivated by the following observation. After removing stop words, it becomes almost 

impossible for two reviews mentioning the same term to be unrelated to the product. Thus, for all candidates extracted by above 

methods, we calculated the DF of each term, and remove those terms whose DF is lower than a minimum threshold (manually 

set up as 2). In addition, we further pruned the terms to deal with two types of features: lexical redundant features and semantic 

non-relevant features. Lexical redundant features contain those features that share the same meaning but are represented in 

different formats, such as wifi and wi-fi or misspelling. To this end, we introduce textual feature similarity function that 

compares the edit distance between a candidate feature and all the other features. If the distance is less than one, the two features 

would be considered as similar to each other. To detect semantically irrelevant words, we introduced another function that 

calculates the semantic similarity between a candidate feature and a class word. We used WordNet’s path similarity to measure 

the similarity between two words. For example, within the type of camera, we calculated the similarity between one candidate 

with class word ‘camera’, and compared this value with the mean of similarities between a predefined set of features and the 

class word, those predefined features are collected from Hu and Liu (2004)’s result. Furthermore, if the distance between the 

candidate and class word is greater than a minimum threshold (set as the std-mean of the similarities between the class word and 

all those predefined features), it is extracted as a feature. 

EXPERIMENTS 

Data set 

We conducted experiments to empirically test the proposed methods for product feature extraction. We employed the dataset of 

online product reviews from Hu and Liu (2004), which was originally collected from two websites: Amazon.com and 

C|net.com. This data set consists of five electronics products: two digital cameras, one DVD player, one mp3 player, and one 

cellular phone.  

Each of the reviews contains a textual review and a title. Before extracting features from each of the reviews, we first analyzed 

the data using natural language processing, including tokenization, stop-words removal (127 stop words from nltk, performed 

after syntactic analyses), POS tagging, entity recognition, chunking and dependency relation analysis. Some descriptive 

statistics of the dataset is reported in Table 1. 
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 Product Name  No. Reviews  No. Features 

 Camera (Canon G3)  45  79 

 Camera (Nikon)  34  96 

 Cell Phone (Nokia 6610)  41  67 

 MP3 Player (Creative)  95  57 

 DVD Player (Apex)  99  49 

Table 1. Statistical Description of Data set 

Evaluation 

We selected precision and recall as the evaluation metrics, which are commonly used in information retrieval and document 

classification research. Precision is defined as the ratio of the number of correctly classified items to the total number of items 

that were classified. Recall is defined as the ratio of the number of correctly classified items to the total number of items that 

were classified as the same category in the gold standard. We chosen Hu and Liu (2004)’s method and a newer method (Qiu et 

al 2009) as the baselines for comparison. 

RESULTS 

The performances of Hu and Liu (2004)’s method and the double propagation method (Qiu et al 2009) are reported in Table 2. 

The performance of our method is reported in Table 3. 

 

Product Hu and Liu (2004) Double Propagation 

Recall Precision Recall Precision 

Camera 1 0.82 0.75 0.81 0.87 

Camera 2 0.79 0.71 0.81 0.90 

Cell phone 0.76 0.72 0.86 0.90 

MP3 0.82 0.69 0.84 0.81 

DVD 0.80 0.74 0.86 0.92 

Avg 0.80 0.72 0.83 0.88 

Table 2. Precision and recall of Hu and Liu (2004) and Double Propagation 

Product Recall Precision 

Camera 1 0.83 0.81 

Camera 2 0.82 0.88 

Cell phone 0.90 0.85 

MP3 0.87 0.82 

DVD 0.88 0.83 

Avg 0.86 0.83 

Table 3. Precision and recall of our methods 

As shown in table 2, the performance of double propagation is better than Hu and Liu (2004)’s work in terms of recall and 

precision. A comparison of the results reported in Table 2 and Table 3 shows that our methods outperformed double 

propagation in terms of recall for all the selected products. Comparing to Double propagation, our methods achieved a higher 

recall due to the fact that we considered both subjective and objective features, and to extract subjective features we 

incorporated new patterns beyond double propagation. Nevertheless, the increase in recall is very moderate partly because 

some features appear both in subjective statements and objective statements and the size of the dataset. Besides, the precision of 
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our method is better than Hu and Liu (2004)’s method, but worse than Double propagation (Qiu et al 2009). The results suggest 

that the proposed pruning methods are effective but should benefit from additional pruning strategies from (Qiu et al 2009). 

The results also show that developing extraction methods based on feature types is promising. We conclude that only 

considering frequency of term is not inclusive, taking dependency relation and grammar rules into consideration is also 

important. In addition, it is necessary and useful to incorporate more grammars based on how features are expressed. 

CONCLUSION 

In this paper, we proposed new methods for extracting product features from online consumer reviews based on natural 

language processing and machine learning techniques. Our experimental results indicate that the proposed techniques are 

effective in extracting both subjective features and objective features. 

In our future work, we plan to improve these techniques in the following ways. First, consider more structural patterns of both 

subjective and objective features to increase recall, design new experiments to prune features to improve precision; second, 

evaluate our methods to online reviews of other types of products such as movies and books; and third, apply the extracted 

features to improve the prediction of review helpfulness and review recommendations.  
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