
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2009 Proceedings European Conference on Information Systems
(ECIS)

2009

Applying lessons learned from counselling : On
nurturing relations in design projects
Jörg Becker
University of Muenster, joerg.becker@ercis.uni-muenster.de

Milan Karow
University of Muenster, milan.karow@ercis.uni-muenster.de

Felix Müller-Wienbergen
University of Muenster, felix.mueller-wienbergen@ercis.uni-muenster.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2009

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Becker, Jörg; Karow, Milan; and Müller-Wienbergen, Felix, "Applying lessons learned from counselling : On nurturing relations in
design projects" (2009). ECIS 2009 Proceedings. 54.
http://aisel.aisnet.org/ecis2009/54

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301359048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009/54?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


APPLYING THEORY-BUILDING TECHNIQUES TO THE 

DESIGN OF MODELING LANGUAGES 

Becker, Jörg, University of Münster, Leonardo Campus 3, 4149 Münster, Germany, 

joerg.becker@ercis.uni-muenster.de 

Karow, Milan, University of Münster, Leonardo Campus 3, 4149 Münster, Germany, 

milan.karow@ercis.uni-muenster.de 

Müller-Wienbergen, Felix, University of Münster, Leonardo Campus 3, 4149 Münster, Germany, 

felix.mueller-wienbergen@ercis.uni-muenster.de 

Pfeiffer, Daniel, University of Münster, Leonardo Campus 3, 4149 Münster, Germany, 

daniel.pfeiffer@ercis.uni-muenster.de 

Seidel, Stefan, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490 Vaduz, Principality of 

Liechtenstein, stefan.seidel@hochschule.li 

Abstract 

In their 2004 paper Hevner et. al proposed a set of guidelines for conducting design science research 

projects in the IS discipline. While useful, these guidelines have a relatively high level of abstraction. 

However, various IT artifacts such as models, methods, techniques and implementations require IS 

researchers to apply differing methods in order to construct and evaluate purposeful artifacts 

respectively. In this paper we discuss a particular class of IT artifacts: conceptual modeling 

languages. As constituent parts of software development methods, a multitude of such languages has 

been proposed and discussed. Yet, in the related literature on method design only little guidance is 

provided on how to derive appropriate conceptual modeling languages from empirical data. We 

believe that “good methods” need to be rigorously grounded in empirical findings. Taking a look at 

the related literature on inductive theory building reveals that at there are prominent similarities 

between the elements that constitute theories and those that constitute conceptual modeling 

languages: whereas theories comprise of constructs and relationships between these, conceptual 

modeling languages comprise of language constructs and relationships among these. We draw from 

the body of literature on grounded theory building and propose a new approach to designing 

conceptual modeling languages. 
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1 INTRODUCTION 

Design Science Research has emerged as a popular research area in the IS discipline. Recently, there 

has been an increasing number of design science studies (cf. March & Storey, 2008; Winter, 2008) and 

also several discursive papers report on the usage of design science research in the IS discipline (e.g. 

Niehaves, 2007). Hevner et al. (2004) propose a set of guidelines for conducting design science 

research projects in the IS discipline. These guidelines are widely accepted as being feasible and 

providing guidance to an area of IS research that was often accused to not be rigorous and lack 

evaluation. While useful, the guidelines have a relatively high level of abstraction. However, particular 

IT artifacts such as constructs, models, methods, and instantiations require IS researchers to apply 

differing methods in order to construct and evaluate purposeful IT artifacts. 

One such type of artifacts subsumes conceptual modeling languages, as being part of the “methods 

applied on the development and use of information systems” (Hevner et al. 2004, p. 82). The 

construction of conceptual modeling languages mainly originates from the field of information 

systems development (ISD). In the last two decades, a great number of modeling languages has been 

developed which left software engineers facing the major problem of method evaluation and selection 

(Harmsen, 1997). This problem has been addressed in a two-fold manner. First, unification efforts 

have been made in order to merge the mutual aspects of prevalent methods (Jacobson et al., 1999). 

Second, much effort has been devoted to the adaptation of development methodology by assembling 

specific aspects of different methods in order to meet project-specific requirements. This area of 

research became well-known in the ISD discipline under the notion of (Situational) Method 

Engineering (Brinkkemper, 1996; Harmsen, 1997; Ralyté & Rolland, 2001). 

However, these approaches tend to not consider the actual domains, or contexts, methods are 

eventually applied to. The modeling languages used in this context mostly describe formal (software) 

systems, i.e. their constructs are anchored with formal semantics (such as programming language, c.f. 

Harmsen, 1997), thus having no denotation towards concepts of a material (“real-world”) domain. 

Nevertheless these languages are increasingly used for describing material contexts, e.g. in business 

process modeling (Rosemann et al., 2008) or requirements engineering (Mylopoulos et al., 1999). 

In this paper we advance the construction of conceptual modeling languages by introducing a new 

approach to ground the development of such methods in empirical data. The motivation for this 

approach rests in the awareness that existent literature to a great extent does not address inductive 

development of methods based on empirical data. Yet, the related literature on theory building reveals 

that there are prominent similarities between the elements that constitute theories and those that 

constitute conceptual modeling languages: whereas theories comprise of constructs and relationships 

between these, conceptual modeling languages comprise of language constructs and relationships 

among these. Thus, we draw from the body of literature on theory building and propose a new 

approach to designing conceptual modeling languages.  

The paper is structured as follows. In the next section we introduce related work on method design, 

design science research and theory building. We then introduce a new approach to designing 

conceptual modeling languages by transferring existent knowledge on theory building to the domain 

of designing methods. We then discuss the proposed approach. The paper concludes with a brief 

discussion of contributions and limitations and provides an outlook onto our future research agenda. 

2 BACKGROUND 

2.1 Design Science Research 

Design science research aims at solving practical and theoretical problems ”by creating new and 

innovative artifacts.” (Hevner et al., 2004 p. 75) The basic principles of design science research (DSR) 

can be traced back to engineering and Simon’s (1996) sciences of the artificial. In contrast to 



behavioral science, DSR does not seek to understand the world as it is and how it works. Rather, it 

strives to develop solutions to improve the current state of affairs. DSR intends to provide IT artifacts 

that are novel and useful. These IT artifacts must exceed the current state of the art and have to serve a 

human purpose.  

There have been several attempts in the IS community to define the IT artifact (Orlikowski & Iacono, 

2001; Weber, 2003; Benbasat & Zmud, 2003; Venable, 2006). March and Smith (1995) differentiate 

between four types of IT artifacts: constructs that provide language concepts in which problems are 

described, methods that explicate the process of how to solve a problem, models that utilize the 

constructs to represent an application domain and express the problem and solution space, and 

instantiations that constitute the technical realization of constructs, models, and methods. In the 

understanding of March and Smith (1995) design science research must ultimately lead to one of these 

artifacts. A design science research method seeks to systematically guide the development of an 

artifact. 

Until now, no widely accepted research method for design science has been established in the IS 

community. Even more so, there exist concerns that a general design method cannot be defined 

(Hooker, 2004). It is argued that design is a creative process that cannot be fully formalized. 

Nonetheless, various procedures have been suggested to methodically support the design activities 

(Peffers et al., 2007; Takeda et al., 1990; Nunamaker et al., 1990; Walls et al., 1992; Cole et al., 2005). 

More specifically, various approaches for the design of conceptual modeling methods and languages 

have been proposed. the most prominent of which we discuss in the subsequent section. 

2.2 Design of Conceptual Modeling Languages 

As has been indicated, conceptual modeling languages are applied in order to represent the relevant 

knowledge of a domain (Wand et al., 1995). In this paper we focus on modeling languages that are 

designed in order to represent facts about material domains, meaning aspects of the physical and 

social world or – more precisely – perceptions thereof, for means of communication and 

understanding (Mylopoulos, 1992). Note that such methods are not ought to be used in order to specify 

formal systems. 

Conceptual modeling languages comprise of fundamental modeling constructs, that is, language 

primitives which are called the vocabulary. For example, in the Business Process Modeling Notation 

(BPMN), constructs represent activities, events or sequence flows. In addition to that, conceptual 

modeling languages provide a collection of rules that describe how the constructs can be combined to 

create statements about the domain of discourse. Such rules specify what constructs may be connected 

to each other. For example, it can be defined that activities can be linked by a sequence flow. Usually, 

rules are specified in a language’s meta-model and complementing contextual conditions (Earwig, 

1999).  

In the existent literature, two major approaches to the design of conceptual modeling languages can be 

found: language design in method engineering and ontology-based language development.  

The first approach views conceptual modeling languages as artifacts that are created as part of a 

method engineering process. Thus, it is concerned with the selection, adaptation and design of 

(situation-specific) conceptual modeling languages as well as their corresponding modeling 

procedures. A system development method is assumed as to consist of a set of reusable fragments 

(Brinkkemper et al., 1998; Harmsen, 1997). Ralyté et al. (2004) describe different strategies for 

method engineering projects that differ regarding the degree of fragment reuse. However project 

specifics may, require the method engineer to derive novel language constructs from the problem 

domain at hand. While method engineering literature provides comprehensive directions on how to 

prepare method fragments for tool-supported integration and assembly, little guidance is given to the 

challenge of approaching a problem domain in order to derive feasible modeling language constructs. 

Furthermore, the concept of domain has primarily been perceived as the formal target systems in 



earlier ISD modeling language development, such as programming languages or paradigms. 

Consequently, the resulting languages are mostly anchored to formal semantics.  

The second approach aims to overcome the deficiencies of those languages to describe real-world-

phenomena: to anchor modeling languages to material domains, it draws on the concept of ontologies 

as a theoretical foundation. Wand and Weber (1993) utilized a top-level ontology (Bunge, 1977) to 

evaluate existing modeling languages with regard to precision and completeness by matching the 

language elements with ontological concepts. Guizzardi (2005) developed an own ontological 

foundation for structural conceptual modeling languages and suggested an approach to derive 

language constructs based on this ontology. Although ontologies represent feasible anchoring systems 

for modeling language constructs (Harmsen, 1997), relying on this concept merely shifts the problem 

of how to identify useful constructs from language design to ontology design. Although one can find 

the notion of ontology engineering (Devedžić, 2002) and examples for the construction of particular 

domain ontologies (e.g. Fernández-López et al., 1999), the body of research work on this approach 

lacks generalized guidance on how to derive a conceptualization from empirical data. 

Taking off from this discussion, in this paper we suggest an empirically-based approach to designing 

conceptual modeling languages. It is hoped that the inductive development of such languages based on 

empirical data can contribute to the languages’ usability and adequateness. 

3 ON THE APPLICABILITY OF THEORY BUILDING 

PROCEDURES TO DESIGN SCIENCE RESEARCH 

In the IS discipline, there have been attempts to classify theories and develop a more narrow 

understanding of what theory is. Gregor (2006) distinguishes between theories for analysis, 

explanation, prediction, explanation and prediction and design and action. Theory for analysis “does 

not extend beyond analysis and description. No causal relationships among phenomena are specified 

and no predictions are made” (p. 620). Similarly, conceptual modeling languages provide an analysis 

and description of a problem domain. Thus, we argue that conceptual modeling languages can be 

compared to analytic theory: they provide clear definitions of constructs that are relevant in a certain 

problem domain and describe relations among these.  

The most general term that describes the building blocks of a theory is called a concept (Strauss & 

Corbin, 1998). Concepts represent phenomena and can be grouped into more abstract concepts that are 

then referred to as categories (Strauss & Corbin, 1998). Categories have properties, which describe 

certain characteristics that objects of the same category share. For example, if one category was 

“actor” objects belonging to this category could share the property of “position”. Thus, different actors 

could be placed on a dimensional range describing various positions, such as producer or director. 

Generally, the scientific process comprises of the stages of observation, induction, and deduction 

(Eisenhardt, 1989; Handfield & Melnyk, 1998; Wallace, 1971). Thus, it can be argued that the 

scientific process starts with the inductive development of theory that is then deductively applied to 

incoming data and thus validated. This process of validation may lead to new or revised theory. There 

are various approaches of how to inductively develop theories, for example case study research 

(Eisenhardt, 1989), or Grounded Theory Method (GTM) (Glaser & Strauss, 1967; Strauss & Corbin, 

1998). In this paper we particularly draw on the literature on GTM. As indicated, GTM aims at 

inductively develop theory based on empirical data. GTM is thought to ground the emergent theory in 

the data. It is not preconceived or forced upon the data but rather emerges from it (Glaser & Strauss, 

1967).We argue that GTM offers the researcher a set of procedures that can be beneficial in order to 

inductively develop conceptual modeling languages. Our argument rests in the following observations: 

• The process of building grounded theories is highly iterative. Theory and data are constantly 

compared (Glaser & Strauss, 1967). This process can be referred to as comparative analysis. 

Similarly, DSR processes are highly iterative and constantly compare the evolving artifact with 

its purpose (Hevner et al., 2004). 



• Glaser and Strauss (1967) further introduce the term theoretical sampling as a process of ”data 

collection for generating theory whereby the analyst jointly collects, codes, and analyzes his data 

and decides what data to collect next and where to find them, in order to develop his theory as it 

emerges” ( p. 45). When designing a modeling method, the method designer will start to identify 

what concepts may be relevant in a certain context. In order to advance the construction, he or she 

will further investigate the domain at hand by decisively choosing locations and respondents he or 

she talks to. 

• Grounded theory studies typically start with a stage called open coding (Glaser & Strauss, 1967). 

In open coding the researcher identifies a set of themes or categories that appear to be relevant in 

order to describe and explain a phenomenon under investigation. Similarly, when designing a 

modeling method, the method designer has to identify those language constructs that are relevant 

and applicable to a particular domain. 

• Grounded theory provides procedures that support the researcher in identifying relationships 

between concepts. For example, Strauss and Corbin (Strauss & Corbin, 1998) suggest to classify 

emergent categories by whether they represent (a) phenomena, (b) conditions, (c) 

actions/interactions, or (d) consequences. Thus, conditional structure is identified. Likewise, the 

method designer seeks to identify relationships among language constructs. 

• Grounded theory relies on a technique called memoing (Miles & Huberman, 1994). Memos are 

used to document the researcher’s conceptual thoughts that eventually lead to the generation of 

theories. Memos are constantly written, re-written, and integrated (Strauss & Corbin, 1998). 

Thus, the process of memoing is conducive to the iterative nature of DSR projects, such as the 

development of methods. This concept is similar to what is referred to as a method rationale 

(Rossi et al., 2000). 

In the following section we compare the basic elements of conceptual modeling languages to the basic 

elements of grounded theories. We then describe how the above outlined procedures of building 

theory can be applied to generate conceptual modeling languages. 

4 APPLYING GTM PROCEDURES TO INDUCTIVELY DEVELOP 

CONCEPTUAL MODELING LANGUAGES 

4.1 Concepts of Conceptual modeling languages and of GTM 

Table 1 provides an overview of the comparison and matches the terminology of conceptual modeling 

language design and grounded theory method. 

Table 1 Relationship between concepts from GTM and conceptual modeling language design 

Modeling Language 

Design 
Description 

Grounded 

Theory Method 
Description 

Language Construct 

Candidate 

Concepts of a domain can be 

translated to constructs of the 

domain-specific language  

Code / Concept building blocks of a theory, 

abstracts descriptions of real 

world phenomena 

Language Construct Categories indicate a core concept 

of the domain, thus a language for 

describing instances of that 

domain should provide a 

dedicated representation 

 

Category Derived from concepts, 

aggregated and structured, 

constituent part of a theory’s 

statement 



Language Construct / 

Construct Property/ 

 

Properties will usually be 

translated to discrete language 

constructs, their existential 

dependency is codified in the 

language’s syntax rules 

  

Property Derived from concepts, give 

concepts/categories further 

explanation 

Language Rules Constituent relationships will be 

represented in the language’s 

syntax rules (meta model and 

context conditions) 

Hypothesis / 

Propositions 

Relationships between concepts 

may take the form of 

propositions or hypothesis. 

Language construct candidates are early abstractions from phenomena that a method designer 

perceives as relevant. These elements are part of the individual conceptualization (Guizzardi, 2005) of 

the context at hand. In grounded theory development, codes represent first cognate incidents in the 

data, which a researcher assigns to more abstract terms or themes. In further iterations, these codes are 

assembled to concepts by further clarifying the context’s structure and terminology. 

The language construct is the central element of modeling language design. In a semiotical sense, 

language constructs are types of particular signs (Genova et al., 2005), that is, they have a syntactic, a 

semantic and a pragmatic dimension (Morris, 1970). The syntactic dimension of modeling languages 

can be split into abstract and concrete syntax (Earwig, 1999). While the former describes, what 

discriminate constructs are available and how they may be combined, the latter assigns a graphical 

representation to each construct, so as to create a language primitive (Guizzardi, 2005). Techniques 

utilized in Grounded Theory Method can contribute to outline the semantic component of language 

constructs. The concepts derived from codified data yield a promising starting point for the material 

backdrop of a domain-specific modeling language. The process of refinement and abstraction to 

develop early sketched concepts to structured and well-defined categories is analogous to the 

definition of a language’s vocabulary.  

Properties are a special class of constructs that denote existential dependency on other language 

constructs. We distinguish between different types of properties. So-called intrinsic properties are 

property types of language constructs that obtain a definite value when instantiated as model elements. 

For instance, if we defined a language construct “task” an intrinsic property could be “duration”. 

Mutual properties describe property types that are shared by instances of language constructs, such as 

being in a relationship or being part of a composite concept (Shanks et al., 2008). In the process of 

theory building, properties emerge from concepts that give further explanation to particular categories 

and are therefore existentially dependent on them.  

The language rules constrain the possible combinations of language constructs and are part of the 

abstract syntax of a modeling language (Guizzardi, 2005). As language constructs denote concepts 

grounded in the domain, these combinations denote meaningful statements that must also be grounded 

in the empirical world. One major component of theory building is the exposition of such basic 

statements by revealing the relevant relationships among the concepts. 

Based on the identified analogies, we propose a process that guides the development of a special type 

of IT artifacts, namely domain-specific conceptual modeling languages. Modeling languages provide 

clear definitions of constructs and (potential) relationships between constructs. The process draws on 

techniques that stem from the literature on theory building and results in what can be referred to as 

analytic theory. The approach to building theory we consider generates substantive theory, that is, 

theory that is applicable to a certain domain. Similarly, any language developed according to the 

scheme we are presenting will depend on the context it was developed in.   

4.2 Applying GTM procedures in order to inductively design conceptual modeling languages 

In the following we describe how conceptual modeling language constructs and their relationships can 

be inductively developed based on empirical data. To illustrate the process, we have chosen examples 



from a grounded theory study that was conducted based on data from the film industry in order to 

study business processes in creative environments (Seidel et al., 2008). Thus, the language to be 

designed would be a business process modeling language tailored to that specific material domain. 

The process comprises of the following steps (cf. Fig. 1): Data Collection, Identification of concepts, 

further developing concepts, relating concepts, and concluding the design process. As has been 

indicated, alike the generation of theory the design of conceptual modeling methods is a highly 

iterative and interwoven process, which becomes particularly evident through the use of constant 

comparative analysis and theoretical sampling. 

 

 Figure 1: GTM-based Language Design Process 

Stage 1: Data collection 

At the outset, the modeling language designer must decide upon the data the language development is 

based on. Examples are the analysis of existent documentation, interviews, or observational data. 

Generally, a multitude of data sources can be considered, a process that is often referred to as 

triangulation across methods (Orlikowski, 1993). As triangulation across methods is typical for GTM 

studies (Glaser & Strauss, 1967), we suggest method designers to consider different data sources so as 

to allow for multiple vantage points for identifying what is relevant in a particular domain of interest. 

The result of this stage is a clear outline on what data sources will be used according to the intended 

scope of the modeling language to be designed. 

Stage 2: Identifying concepts 

The method designer starts with the identification of concepts being relevant in a certain context and 

for a certain modeling purpose. This identification of concepts draws on the process of open coding 

(Glaser & Strauss, 1967). Thus, the researcher opens up the text in order to identify what may be 

relevant in the data. By comparing incident to incident, the method designer comes up with first 

concepts which share certain characteristics and comes up with various concepts. Even though much 

of what will be needed may be found in the interview or observational data, the method designer may 

want to work with other techniques than simple comparisons. One such strategy that has also been 

proposed by Strauss & Corbin (1998) is that of making theoretical comparisons. Thus, the method 

designer enhances her “theoretical sensitivity” (Glaser, 1978), e. g. by evaluating existent modeling 

languages for reusable conceptualizations. The result of this stage is a quantity of domain-relevant 

concepts that are candidate language constructs.  

Stage 3: Further developing concepts 

It is not uncommon that the researcher ends up with generating a large number of concepts (Strauss & 

Corbin, 1998). To further integrate concepts, they are grouped under more abstract concepts called 

categories. By using categories the method designer reduces the number of items she works with. This 

process depends on the modeling purpose as well as of the individual perspective of the method 

designer. The result of this stage is a reduced list of categories, which comprises the elements of the 

first draft on the modeling language model (the meta model). 

Stage 4: Relating Concepts 



When starting to analyze the data, the researcher will recognize first relationships between concepts. 

Eventually, these relationships result in the formation of hypothesis or propositions. Similarly, when 

designing conceptual modeling languages, the method designer identifies potential relationships 

between language constructs. As has been indicated, depending on the type of language that is 

constructed it may be possible to distinguish different types of categories. By grouping categories 

accordingly, relationships emerge. Thus, the result of this stage is a first model of the domain-specific 

modeling language (the meta model) that comprises the quantity of language constructs and the typed 

relationships among them. These relationships represent allowed connections between instances of the 

involved constructs. 

Stage 5: Concluding the design process, development of the concrete syntax 

The iteration between analyzing data and generating language constructs and relationships can be 

concluded when additional data analysis does not provide any further insight. In GTM, this stage in 

the process is referred to as “theoretical saturation” (Glaser & Strauss, 1967). This highly iterative 

process rests in the application of procedures that were discussed earlier, namely the making of 

comparisons and theoretical sampling. During the conclusion of the theoretical development, the meta 

model will reach a state where no more substantially changes to the language core will be made. At 

this point, the language designer will assign a visual representation to each component the abstract 

language model (Guizzardi et al., 2002). Conclusively, the result of this stage is a domain-specific 

language prototype. This prototype can be used to further evaluate the underlying conceptualization, 

as well as to analyze the lucidity of the chosen representation (concrete syntax). 

It is vital for the claim of traceability of language design and thus for the feasibility of language 

evaluation to rigorously document all decisions and their basis in the empirical data. As indicated, we 

propose to make extensive use of memoing (Miles & Huberman, 1994). There are different types of 

memos that can be used in order to provide a comprehensive method rationale: Codes notes, for 

example, accompany the process of conceptualizing based on constant comparison and theoretical 

sampling, whereas operational notes help to guide the researcher in deciding on what data to collect 

next, etc.(Strauss & Corbin, 1998). 

4.3 Example Case 

In the following, we illustrate the application of the proposed approach by developing exemplary 

language constructs based on data collected in a exploratory study on organizational creative 

processes. (c.f. Seidel, 2009). 

Data collection: Data has been collected in three organizations with over 30 interviewees using semi-

structured interview and process modeling techniques. 

Concept identification: While studying the concept of CIP, the people conducting the tasks within 

these processes emerged as important context concepts. Example codes identified in the data were 

“visual effects artist”, “editor” or “sound editor”. 

Further development of concepts: The roles identified within the CIP context were further investigated 

and mutual properties could be identified in the data. All these individuals share a certain process 

expertise that is necessary to carry out creative tasks, e.g. the ability to break down a creative problem 

in order to find a solution strategy to it. Furthermore they share the property of creative skills, i.e. the 

ability to generate novel artifacts and to judge solution on aesthetic aspects. As another important 

property with influence to CIP, the working location has been identified. The concepts have 

accordingly been generalized into the category artist. 

The modeling language aims to provide for means to describe the processes within the domain. The 

category artist is codified as an element type within the language. 

Relating concepts: Artists represent a specialized type of task owner in CIPs. Thus, they can be 

associated to creativity-intensive (sub-)processes. The property location has significant influence to 



the collaboration with supervisors and clients, thus it will be modeled as an attribute of artist (c.f. 

Figure 2). 

 jobTitle: String

 description: Text
 location: Location

 assignedTo[]: CIP

Artist
 label: String 
 creativeSupervisor: creativeSupervisor

 artist[]: artist
 parent: CIP

 

CIP

0,* 0,*

 

Figure 2: Meta model detail 

Concluding design process: In this last step, a representation of the element type has to be developed. 

The CIP might be described in a form-based model where assigned artists can be added in a list and 

implemented into a modeling tool. To conclude the DSR process, the resulting language must be 

evaluated with appropriate measures (e.g. Recker, 2008).  

5 DISCUSSION 

In order to evaluate the approach we have suggested in this paper, we consider the guidelines proposed 

by Hevner (2004). Table 2 provides an overview. 

Table 2: Evaluation with Guidelines as proposed by Hevner (2004) 

Guidline Our Approach 

Guideline 1: Design as an artifact The process we proposed in this paper aims at developing conceptual 

modeling languages. Thus, the process results in what is considered 

to be purposeful IT artifacts. 

Guideline 2: Problem relevance It lies in the responsibility of the method designer that the problem 

that is to be targeted by the conceptual modeling language is relevant. 

Guidline 3: Design evaluation Evaluation is an integral part of the suggested process. By applying 

the principles of constant comparative analysis and theoretical 

sampling, the researcher constantly compares concepts and 

relationships to incoming data. 

Guideline 4: Research contributions It is hoped that methods designed based on the approach described in 

this paper are both “clear and verifiable” as Hevner (2004) states. It is 

suggested to accomplish this by constantly iterating between 

inductively generating categories and relationships that are then 

deductively applied. 

Guideline 5: Research rigor The process we introduced aims at providing a set of procedures that 

can be applied in order to design conceptual modeling languages. It is 

hoped that by following and documenting these procedures, the 

method designer makes the process of method development 

transparent and traceable. It cannot be claimed that a particular 

method is complete or correct – however, it can be argued that the 

process of method development is plausible. 

Guideline 6: Design as a search process The development of conceptual modeling languages based on 

constant comparative analysis and theoretical sampling is a highly 

iterative search process that in every stage is highly dependent on the 

substantive area in which it is grounded. 

Guideline 7: Communication of research Applying rigorous procedures of documenting the research process 

can contribute meaningfully to successful and appropriate 

communication of results. 



Note that the perspective we presented in this paper largely differs from that of those approaches to 

method engineering that stem from the discipline of software engineering. Whereas these streams of 

literature seek to technically sound developing conceptual modeling languages and focus on syntactic 

integrity, our approach focuses on the identification of relevant language constructs and relationships. 

It is our belief that the appropriateness of modeling languages is determined by the context in which 

they are used. Of course, the development of software systems requires methods that enable to 

construct syntactically correct models. Thus, in many cases it will be necessary to combine formal 

procedures with empirically-based, inductive methods to identifying concepts and relationships that 

are relevant and applicable to a particular domain. 

6 CONCLUSION 

This research contributes to the IS body of knowledge by proposing a rigorous, empirically-based 

approach to inductively develop conceptual modeling languages methods based on well-established 

techniques known from the domain of theory building. It is our belief that there is need for detailed 

approaches supporting both researchers and practitioners in developing purposeful IT artifacts. Our 

argument rests in the observation that (a) there are similarities between basic elements of conceptual 

modeling languages and the elements that constitute theory, and (b) that the GTM offers researchers a 

set of procedures that can also be applicable to the development of such languages. 

6.1 Limitations 

Inductively developing theory or modeling methods limits the scope of the artifact to a so-called 

substantive area (Urquhart, 2001; Strauss & Corbin, 1998). Thus, they may be very practical but are 

also limited to a particular scope. Thus, the approach we have advanced in this paper is limited to 

developing modeling languages that are applicable to particular domains. The study so far limits the 

discussion on the development of the language elements as constituent parts of a modeling method. 

However, a functional method also has to provide for a modeling process that guides modelers on how 

to use the language constructed. Although we believe that an empirically grounded language will 

assist the efficient elicitation of information in its aspired domain, one can argue that the process of 

modeling is also dependent on the context of application.  

Furthermore, it must be noted that the result of any method design process is highly dependent on both 

the method designer as well as the intended purpose of the language. A possible strategy to achieve a 

more independent view on the domain is triangulation (Eisenhardt, 1989). For instance a researcher 

might employ a colleague to develop an own conceptualization based on the same data. 

Conclusively, any new guideline, theory, method, or approach must be tested in practice. Thus, we 

motivate researchers and method designers to applying those principles we presented in this paper. 
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