
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2009 Proceedings European Conference on Information Systems
(ECIS)

2009

Applying lessons learned from counselling : On
nurturing relations in design projects
Jörg Becker
University of Muenster, joerg.becker@ercis.uni-muenster.de

Milan Karow
University of Muenster, milan.karow@ercis.uni-muenster.de

Felix Müller-Wienbergen
University of Muenster, felix.mueller-wienbergen@ercis.uni-muenster.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2009

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Becker, Jörg; Karow, Milan; and Müller-Wienbergen, Felix, "Applying lessons learned from counselling : On nurturing relations in
design projects" (2009). ECIS 2009 Proceedings. 54.
http://aisel.aisnet.org/ecis2009/54

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301359048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2009/54?utm_source=aisel.aisnet.org%2Fecis2009%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

APPLYING THEORY-BUILDING TECHNIQUES TO THE

DESIGN OF MODELING LANGUAGES

Becker, Jörg, University of Münster, Leonardo Campus 3, 4149 Münster, Germany,

joerg.becker@ercis.uni-muenster.de

Karow, Milan, University of Münster, Leonardo Campus 3, 4149 Münster, Germany,

milan.karow@ercis.uni-muenster.de

Müller-Wienbergen, Felix, University of Münster, Leonardo Campus 3, 4149 Münster, Germany,

felix.mueller-wienbergen@ercis.uni-muenster.de

Pfeiffer, Daniel, University of Münster, Leonardo Campus 3, 4149 Münster, Germany,

daniel.pfeiffer@ercis.uni-muenster.de

Seidel, Stefan, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490 Vaduz, Principality of

Liechtenstein, stefan.seidel@hochschule.li

Abstract

In their 2004 paper Hevner et. al proposed a set of guidelines for conducting design science research

projects in the IS discipline. While useful, these guidelines have a relatively high level of abstraction.

However, various IT artifacts such as models, methods, techniques and implementations require IS

researchers to apply differing methods in order to construct and evaluate purposeful artifacts

respectively. In this paper we discuss a particular class of IT artifacts: conceptual modeling

languages. As constituent parts of software development methods, a multitude of such languages has

been proposed and discussed. Yet, in the related literature on method design only little guidance is

provided on how to derive appropriate conceptual modeling languages from empirical data. We

believe that “good methods” need to be rigorously grounded in empirical findings. Taking a look at

the related literature on inductive theory building reveals that at there are prominent similarities

between the elements that constitute theories and those that constitute conceptual modeling

languages: whereas theories comprise of constructs and relationships between these, conceptual

modeling languages comprise of language constructs and relationships among these. We draw from

the body of literature on grounded theory building and propose a new approach to designing

conceptual modeling languages.

Keywords: Method Engineering, Conceptual Modeling Language, Theory Building, Grounded Theory

Method

1 INTRODUCTION

Design Science Research has emerged as a popular research area in the IS discipline. Recently, there

has been an increasing number of design science studies (cf. March & Storey, 2008; Winter, 2008) and

also several discursive papers report on the usage of design science research in the IS discipline (e.g.

Niehaves, 2007). Hevner et al. (2004) propose a set of guidelines for conducting design science

research projects in the IS discipline. These guidelines are widely accepted as being feasible and

providing guidance to an area of IS research that was often accused to not be rigorous and lack

evaluation. While useful, the guidelines have a relatively high level of abstraction. However, particular

IT artifacts such as constructs, models, methods, and instantiations require IS researchers to apply

differing methods in order to construct and evaluate purposeful IT artifacts.

One such type of artifacts subsumes conceptual modeling languages, as being part of the “methods

applied on the development and use of information systems” (Hevner et al. 2004, p. 82). The

construction of conceptual modeling languages mainly originates from the field of information

systems development (ISD). In the last two decades, a great number of modeling languages has been

developed which left software engineers facing the major problem of method evaluation and selection

(Harmsen, 1997). This problem has been addressed in a two-fold manner. First, unification efforts

have been made in order to merge the mutual aspects of prevalent methods (Jacobson et al., 1999).

Second, much effort has been devoted to the adaptation of development methodology by assembling

specific aspects of different methods in order to meet project-specific requirements. This area of

research became well-known in the ISD discipline under the notion of (Situational) Method

Engineering (Brinkkemper, 1996; Harmsen, 1997; Ralyté & Rolland, 2001).

However, these approaches tend to not consider the actual domains, or contexts, methods are

eventually applied to. The modeling languages used in this context mostly describe formal (software)

systems, i.e. their constructs are anchored with formal semantics (such as programming language, c.f.

Harmsen, 1997), thus having no denotation towards concepts of a material (“real-world”) domain.

Nevertheless these languages are increasingly used for describing material contexts, e.g. in business

process modeling (Rosemann et al., 2008) or requirements engineering (Mylopoulos et al., 1999).

In this paper we advance the construction of conceptual modeling languages by introducing a new

approach to ground the development of such methods in empirical data. The motivation for this

approach rests in the awareness that existent literature to a great extent does not address inductive

development of methods based on empirical data. Yet, the related literature on theory building reveals

that there are prominent similarities between the elements that constitute theories and those that

constitute conceptual modeling languages: whereas theories comprise of constructs and relationships

between these, conceptual modeling languages comprise of language constructs and relationships

among these. Thus, we draw from the body of literature on theory building and propose a new

approach to designing conceptual modeling languages.

The paper is structured as follows. In the next section we introduce related work on method design,

design science research and theory building. We then introduce a new approach to designing

conceptual modeling languages by transferring existent knowledge on theory building to the domain

of designing methods. We then discuss the proposed approach. The paper concludes with a brief

discussion of contributions and limitations and provides an outlook onto our future research agenda.

2 BACKGROUND

2.1 Design Science Research

Design science research aims at solving practical and theoretical problems ”by creating new and

innovative artifacts.” (Hevner et al., 2004 p. 75) The basic principles of design science research (DSR)

can be traced back to engineering and Simon’s (1996) sciences of the artificial. In contrast to

behavioral science, DSR does not seek to understand the world as it is and how it works. Rather, it

strives to develop solutions to improve the current state of affairs. DSR intends to provide IT artifacts

that are novel and useful. These IT artifacts must exceed the current state of the art and have to serve a

human purpose.

There have been several attempts in the IS community to define the IT artifact (Orlikowski & Iacono,

2001; Weber, 2003; Benbasat & Zmud, 2003; Venable, 2006). March and Smith (1995) differentiate

between four types of IT artifacts: constructs that provide language concepts in which problems are

described, methods that explicate the process of how to solve a problem, models that utilize the

constructs to represent an application domain and express the problem and solution space, and

instantiations that constitute the technical realization of constructs, models, and methods. In the

understanding of March and Smith (1995) design science research must ultimately lead to one of these

artifacts. A design science research method seeks to systematically guide the development of an

artifact.

Until now, no widely accepted research method for design science has been established in the IS

community. Even more so, there exist concerns that a general design method cannot be defined

(Hooker, 2004). It is argued that design is a creative process that cannot be fully formalized.

Nonetheless, various procedures have been suggested to methodically support the design activities

(Peffers et al., 2007; Takeda et al., 1990; Nunamaker et al., 1990; Walls et al., 1992; Cole et al., 2005).

More specifically, various approaches for the design of conceptual modeling methods and languages

have been proposed. the most prominent of which we discuss in the subsequent section.

2.2 Design of Conceptual Modeling Languages

As has been indicated, conceptual modeling languages are applied in order to represent the relevant

knowledge of a domain (Wand et al., 1995). In this paper we focus on modeling languages that are

designed in order to represent facts about material domains, meaning aspects of the physical and

social world or – more precisely – perceptions thereof, for means of communication and

understanding (Mylopoulos, 1992). Note that such methods are not ought to be used in order to specify

formal systems.

Conceptual modeling languages comprise of fundamental modeling constructs, that is, language

primitives which are called the vocabulary. For example, in the Business Process Modeling Notation

(BPMN), constructs represent activities, events or sequence flows. In addition to that, conceptual

modeling languages provide a collection of rules that describe how the constructs can be combined to

create statements about the domain of discourse. Such rules specify what constructs may be connected

to each other. For example, it can be defined that activities can be linked by a sequence flow. Usually,

rules are specified in a language’s meta-model and complementing contextual conditions (Earwig,

1999).

In the existent literature, two major approaches to the design of conceptual modeling languages can be

found: language design in method engineering and ontology-based language development.

The first approach views conceptual modeling languages as artifacts that are created as part of a

method engineering process. Thus, it is concerned with the selection, adaptation and design of

(situation-specific) conceptual modeling languages as well as their corresponding modeling

procedures. A system development method is assumed as to consist of a set of reusable fragments

(Brinkkemper et al., 1998; Harmsen, 1997). Ralyté et al. (2004) describe different strategies for

method engineering projects that differ regarding the degree of fragment reuse. However project

specifics may, require the method engineer to derive novel language constructs from the problem

domain at hand. While method engineering literature provides comprehensive directions on how to

prepare method fragments for tool-supported integration and assembly, little guidance is given to the

challenge of approaching a problem domain in order to derive feasible modeling language constructs.

Furthermore, the concept of domain has primarily been perceived as the formal target systems in

earlier ISD modeling language development, such as programming languages or paradigms.

Consequently, the resulting languages are mostly anchored to formal semantics.

The second approach aims to overcome the deficiencies of those languages to describe real-world-

phenomena: to anchor modeling languages to material domains, it draws on the concept of ontologies

as a theoretical foundation. Wand and Weber (1993) utilized a top-level ontology (Bunge, 1977) to

evaluate existing modeling languages with regard to precision and completeness by matching the

language elements with ontological concepts. Guizzardi (2005) developed an own ontological

foundation for structural conceptual modeling languages and suggested an approach to derive

language constructs based on this ontology. Although ontologies represent feasible anchoring systems

for modeling language constructs (Harmsen, 1997), relying on this concept merely shifts the problem

of how to identify useful constructs from language design to ontology design. Although one can find

the notion of ontology engineering (Devedžić, 2002) and examples for the construction of particular

domain ontologies (e.g. Fernández-López et al., 1999), the body of research work on this approach

lacks generalized guidance on how to derive a conceptualization from empirical data.

Taking off from this discussion, in this paper we suggest an empirically-based approach to designing

conceptual modeling languages. It is hoped that the inductive development of such languages based on

empirical data can contribute to the languages’ usability and adequateness.

3 ON THE APPLICABILITY OF THEORY BUILDING

PROCEDURES TO DESIGN SCIENCE RESEARCH

In the IS discipline, there have been attempts to classify theories and develop a more narrow

understanding of what theory is. Gregor (2006) distinguishes between theories for analysis,

explanation, prediction, explanation and prediction and design and action. Theory for analysis “does

not extend beyond analysis and description. No causal relationships among phenomena are specified

and no predictions are made” (p. 620). Similarly, conceptual modeling languages provide an analysis

and description of a problem domain. Thus, we argue that conceptual modeling languages can be

compared to analytic theory: they provide clear definitions of constructs that are relevant in a certain

problem domain and describe relations among these.

The most general term that describes the building blocks of a theory is called a concept (Strauss &

Corbin, 1998). Concepts represent phenomena and can be grouped into more abstract concepts that are

then referred to as categories (Strauss & Corbin, 1998). Categories have properties, which describe

certain characteristics that objects of the same category share. For example, if one category was

“actor” objects belonging to this category could share the property of “position”. Thus, different actors

could be placed on a dimensional range describing various positions, such as producer or director.

Generally, the scientific process comprises of the stages of observation, induction, and deduction

(Eisenhardt, 1989; Handfield & Melnyk, 1998; Wallace, 1971). Thus, it can be argued that the

scientific process starts with the inductive development of theory that is then deductively applied to

incoming data and thus validated. This process of validation may lead to new or revised theory. There

are various approaches of how to inductively develop theories, for example case study research

(Eisenhardt, 1989), or Grounded Theory Method (GTM) (Glaser & Strauss, 1967; Strauss & Corbin,

1998). In this paper we particularly draw on the literature on GTM. As indicated, GTM aims at

inductively develop theory based on empirical data. GTM is thought to ground the emergent theory in

the data. It is not preconceived or forced upon the data but rather emerges from it (Glaser & Strauss,

1967).We argue that GTM offers the researcher a set of procedures that can be beneficial in order to

inductively develop conceptual modeling languages. Our argument rests in the following observations:

• The process of building grounded theories is highly iterative. Theory and data are constantly

compared (Glaser & Strauss, 1967). This process can be referred to as comparative analysis.

Similarly, DSR processes are highly iterative and constantly compare the evolving artifact with

its purpose (Hevner et al., 2004).

• Glaser and Strauss (1967) further introduce the term theoretical sampling as a process of ”data

collection for generating theory whereby the analyst jointly collects, codes, and analyzes his data

and decides what data to collect next and where to find them, in order to develop his theory as it

emerges” (p. 45). When designing a modeling method, the method designer will start to identify

what concepts may be relevant in a certain context. In order to advance the construction, he or she

will further investigate the domain at hand by decisively choosing locations and respondents he or

she talks to.

• Grounded theory studies typically start with a stage called open coding (Glaser & Strauss, 1967).

In open coding the researcher identifies a set of themes or categories that appear to be relevant in

order to describe and explain a phenomenon under investigation. Similarly, when designing a

modeling method, the method designer has to identify those language constructs that are relevant

and applicable to a particular domain.

• Grounded theory provides procedures that support the researcher in identifying relationships

between concepts. For example, Strauss and Corbin (Strauss & Corbin, 1998) suggest to classify

emergent categories by whether they represent (a) phenomena, (b) conditions, (c)

actions/interactions, or (d) consequences. Thus, conditional structure is identified. Likewise, the

method designer seeks to identify relationships among language constructs.

• Grounded theory relies on a technique called memoing (Miles & Huberman, 1994). Memos are

used to document the researcher’s conceptual thoughts that eventually lead to the generation of

theories. Memos are constantly written, re-written, and integrated (Strauss & Corbin, 1998).

Thus, the process of memoing is conducive to the iterative nature of DSR projects, such as the

development of methods. This concept is similar to what is referred to as a method rationale

(Rossi et al., 2000).

In the following section we compare the basic elements of conceptual modeling languages to the basic

elements of grounded theories. We then describe how the above outlined procedures of building

theory can be applied to generate conceptual modeling languages.

4 APPLYING GTM PROCEDURES TO INDUCTIVELY DEVELOP

CONCEPTUAL MODELING LANGUAGES

4.1 Concepts of Conceptual modeling languages and of GTM

Table 1 provides an overview of the comparison and matches the terminology of conceptual modeling

language design and grounded theory method.

Table 1 Relationship between concepts from GTM and conceptual modeling language design

Modeling Language

Design
Description

Grounded

Theory Method
Description

Language Construct

Candidate

Concepts of a domain can be

translated to constructs of the

domain-specific language

Code / Concept building blocks of a theory,

abstracts descriptions of real

world phenomena

Language Construct Categories indicate a core concept

of the domain, thus a language for

describing instances of that

domain should provide a

dedicated representation

Category Derived from concepts,

aggregated and structured,

constituent part of a theory’s

statement

Language Construct /

Construct Property/

Properties will usually be

translated to discrete language

constructs, their existential

dependency is codified in the

language’s syntax rules

Property Derived from concepts, give

concepts/categories further

explanation

Language Rules Constituent relationships will be

represented in the language’s

syntax rules (meta model and

context conditions)

Hypothesis /

Propositions

Relationships between concepts

may take the form of

propositions or hypothesis.

Language construct candidates are early abstractions from phenomena that a method designer

perceives as relevant. These elements are part of the individual conceptualization (Guizzardi, 2005) of

the context at hand. In grounded theory development, codes represent first cognate incidents in the

data, which a researcher assigns to more abstract terms or themes. In further iterations, these codes are

assembled to concepts by further clarifying the context’s structure and terminology.

The language construct is the central element of modeling language design. In a semiotical sense,

language constructs are types of particular signs (Genova et al., 2005), that is, they have a syntactic, a

semantic and a pragmatic dimension (Morris, 1970). The syntactic dimension of modeling languages

can be split into abstract and concrete syntax (Earwig, 1999). While the former describes, what

discriminate constructs are available and how they may be combined, the latter assigns a graphical

representation to each construct, so as to create a language primitive (Guizzardi, 2005). Techniques

utilized in Grounded Theory Method can contribute to outline the semantic component of language

constructs. The concepts derived from codified data yield a promising starting point for the material

backdrop of a domain-specific modeling language. The process of refinement and abstraction to

develop early sketched concepts to structured and well-defined categories is analogous to the

definition of a language’s vocabulary.

Properties are a special class of constructs that denote existential dependency on other language

constructs. We distinguish between different types of properties. So-called intrinsic properties are

property types of language constructs that obtain a definite value when instantiated as model elements.

For instance, if we defined a language construct “task” an intrinsic property could be “duration”.

Mutual properties describe property types that are shared by instances of language constructs, such as

being in a relationship or being part of a composite concept (Shanks et al., 2008). In the process of

theory building, properties emerge from concepts that give further explanation to particular categories

and are therefore existentially dependent on them.

The language rules constrain the possible combinations of language constructs and are part of the

abstract syntax of a modeling language (Guizzardi, 2005). As language constructs denote concepts

grounded in the domain, these combinations denote meaningful statements that must also be grounded

in the empirical world. One major component of theory building is the exposition of such basic

statements by revealing the relevant relationships among the concepts.

Based on the identified analogies, we propose a process that guides the development of a special type

of IT artifacts, namely domain-specific conceptual modeling languages. Modeling languages provide

clear definitions of constructs and (potential) relationships between constructs. The process draws on

techniques that stem from the literature on theory building and results in what can be referred to as

analytic theory. The approach to building theory we consider generates substantive theory, that is,

theory that is applicable to a certain domain. Similarly, any language developed according to the

scheme we are presenting will depend on the context it was developed in.

4.2 Applying GTM procedures in order to inductively design conceptual modeling languages

In the following we describe how conceptual modeling language constructs and their relationships can

be inductively developed based on empirical data. To illustrate the process, we have chosen examples

from a grounded theory study that was conducted based on data from the film industry in order to

study business processes in creative environments (Seidel et al., 2008). Thus, the language to be

designed would be a business process modeling language tailored to that specific material domain.

The process comprises of the following steps (cf. Fig. 1): Data Collection, Identification of concepts,

further developing concepts, relating concepts, and concluding the design process. As has been

indicated, alike the generation of theory the design of conceptual modeling methods is a highly

iterative and interwoven process, which becomes particularly evident through the use of constant

comparative analysis and theoretical sampling.

 Figure 1: GTM-based Language Design Process

Stage 1: Data collection

At the outset, the modeling language designer must decide upon the data the language development is

based on. Examples are the analysis of existent documentation, interviews, or observational data.

Generally, a multitude of data sources can be considered, a process that is often referred to as

triangulation across methods (Orlikowski, 1993). As triangulation across methods is typical for GTM

studies (Glaser & Strauss, 1967), we suggest method designers to consider different data sources so as

to allow for multiple vantage points for identifying what is relevant in a particular domain of interest.

The result of this stage is a clear outline on what data sources will be used according to the intended

scope of the modeling language to be designed.

Stage 2: Identifying concepts

The method designer starts with the identification of concepts being relevant in a certain context and

for a certain modeling purpose. This identification of concepts draws on the process of open coding

(Glaser & Strauss, 1967). Thus, the researcher opens up the text in order to identify what may be

relevant in the data. By comparing incident to incident, the method designer comes up with first

concepts which share certain characteristics and comes up with various concepts. Even though much

of what will be needed may be found in the interview or observational data, the method designer may

want to work with other techniques than simple comparisons. One such strategy that has also been

proposed by Strauss & Corbin (1998) is that of making theoretical comparisons. Thus, the method

designer enhances her “theoretical sensitivity” (Glaser, 1978), e. g. by evaluating existent modeling

languages for reusable conceptualizations. The result of this stage is a quantity of domain-relevant

concepts that are candidate language constructs.

Stage 3: Further developing concepts

It is not uncommon that the researcher ends up with generating a large number of concepts (Strauss &

Corbin, 1998). To further integrate concepts, they are grouped under more abstract concepts called

categories. By using categories the method designer reduces the number of items she works with. This

process depends on the modeling purpose as well as of the individual perspective of the method

designer. The result of this stage is a reduced list of categories, which comprises the elements of the

first draft on the modeling language model (the meta model).

Stage 4: Relating Concepts

When starting to analyze the data, the researcher will recognize first relationships between concepts.

Eventually, these relationships result in the formation of hypothesis or propositions. Similarly, when

designing conceptual modeling languages, the method designer identifies potential relationships

between language constructs. As has been indicated, depending on the type of language that is

constructed it may be possible to distinguish different types of categories. By grouping categories

accordingly, relationships emerge. Thus, the result of this stage is a first model of the domain-specific

modeling language (the meta model) that comprises the quantity of language constructs and the typed

relationships among them. These relationships represent allowed connections between instances of the

involved constructs.

Stage 5: Concluding the design process, development of the concrete syntax

The iteration between analyzing data and generating language constructs and relationships can be

concluded when additional data analysis does not provide any further insight. In GTM, this stage in

the process is referred to as “theoretical saturation” (Glaser & Strauss, 1967). This highly iterative

process rests in the application of procedures that were discussed earlier, namely the making of

comparisons and theoretical sampling. During the conclusion of the theoretical development, the meta

model will reach a state where no more substantially changes to the language core will be made. At

this point, the language designer will assign a visual representation to each component the abstract

language model (Guizzardi et al., 2002). Conclusively, the result of this stage is a domain-specific

language prototype. This prototype can be used to further evaluate the underlying conceptualization,

as well as to analyze the lucidity of the chosen representation (concrete syntax).

It is vital for the claim of traceability of language design and thus for the feasibility of language

evaluation to rigorously document all decisions and their basis in the empirical data. As indicated, we

propose to make extensive use of memoing (Miles & Huberman, 1994). There are different types of

memos that can be used in order to provide a comprehensive method rationale: Codes notes, for

example, accompany the process of conceptualizing based on constant comparison and theoretical

sampling, whereas operational notes help to guide the researcher in deciding on what data to collect

next, etc.(Strauss & Corbin, 1998).

4.3 Example Case

In the following, we illustrate the application of the proposed approach by developing exemplary

language constructs based on data collected in a exploratory study on organizational creative

processes. (c.f. Seidel, 2009).

Data collection: Data has been collected in three organizations with over 30 interviewees using semi-

structured interview and process modeling techniques.

Concept identification: While studying the concept of CIP, the people conducting the tasks within

these processes emerged as important context concepts. Example codes identified in the data were

“visual effects artist”, “editor” or “sound editor”.

Further development of concepts: The roles identified within the CIP context were further investigated

and mutual properties could be identified in the data. All these individuals share a certain process

expertise that is necessary to carry out creative tasks, e.g. the ability to break down a creative problem

in order to find a solution strategy to it. Furthermore they share the property of creative skills, i.e. the

ability to generate novel artifacts and to judge solution on aesthetic aspects. As another important

property with influence to CIP, the working location has been identified. The concepts have

accordingly been generalized into the category artist.

The modeling language aims to provide for means to describe the processes within the domain. The

category artist is codified as an element type within the language.

Relating concepts: Artists represent a specialized type of task owner in CIPs. Thus, they can be

associated to creativity-intensive (sub-)processes. The property location has significant influence to

the collaboration with supervisors and clients, thus it will be modeled as an attribute of artist (c.f.

Figure 2).

 jobTitle: String

 description: Text
 location: Location

 assignedTo[]: CIP

Artist
 label: String
 creativeSupervisor: creativeSupervisor

 artist[]: artist
 parent: CIP

CIP

0,* 0,*

Figure 2: Meta model detail

Concluding design process: In this last step, a representation of the element type has to be developed.

The CIP might be described in a form-based model where assigned artists can be added in a list and

implemented into a modeling tool. To conclude the DSR process, the resulting language must be

evaluated with appropriate measures (e.g. Recker, 2008).

5 DISCUSSION

In order to evaluate the approach we have suggested in this paper, we consider the guidelines proposed

by Hevner (2004). Table 2 provides an overview.

Table 2: Evaluation with Guidelines as proposed by Hevner (2004)

Guidline Our Approach

Guideline 1: Design as an artifact The process we proposed in this paper aims at developing conceptual

modeling languages. Thus, the process results in what is considered

to be purposeful IT artifacts.

Guideline 2: Problem relevance It lies in the responsibility of the method designer that the problem

that is to be targeted by the conceptual modeling language is relevant.

Guidline 3: Design evaluation Evaluation is an integral part of the suggested process. By applying

the principles of constant comparative analysis and theoretical

sampling, the researcher constantly compares concepts and

relationships to incoming data.

Guideline 4: Research contributions It is hoped that methods designed based on the approach described in

this paper are both “clear and verifiable” as Hevner (2004) states. It is

suggested to accomplish this by constantly iterating between

inductively generating categories and relationships that are then

deductively applied.

Guideline 5: Research rigor The process we introduced aims at providing a set of procedures that

can be applied in order to design conceptual modeling languages. It is

hoped that by following and documenting these procedures, the

method designer makes the process of method development

transparent and traceable. It cannot be claimed that a particular

method is complete or correct – however, it can be argued that the

process of method development is plausible.

Guideline 6: Design as a search process The development of conceptual modeling languages based on

constant comparative analysis and theoretical sampling is a highly

iterative search process that in every stage is highly dependent on the

substantive area in which it is grounded.

Guideline 7: Communication of research Applying rigorous procedures of documenting the research process

can contribute meaningfully to successful and appropriate

communication of results.

Note that the perspective we presented in this paper largely differs from that of those approaches to

method engineering that stem from the discipline of software engineering. Whereas these streams of

literature seek to technically sound developing conceptual modeling languages and focus on syntactic

integrity, our approach focuses on the identification of relevant language constructs and relationships.

It is our belief that the appropriateness of modeling languages is determined by the context in which

they are used. Of course, the development of software systems requires methods that enable to

construct syntactically correct models. Thus, in many cases it will be necessary to combine formal

procedures with empirically-based, inductive methods to identifying concepts and relationships that

are relevant and applicable to a particular domain.

6 CONCLUSION

This research contributes to the IS body of knowledge by proposing a rigorous, empirically-based

approach to inductively develop conceptual modeling languages methods based on well-established

techniques known from the domain of theory building. It is our belief that there is need for detailed

approaches supporting both researchers and practitioners in developing purposeful IT artifacts. Our

argument rests in the observation that (a) there are similarities between basic elements of conceptual

modeling languages and the elements that constitute theory, and (b) that the GTM offers researchers a

set of procedures that can also be applicable to the development of such languages.

6.1 Limitations

Inductively developing theory or modeling methods limits the scope of the artifact to a so-called

substantive area (Urquhart, 2001; Strauss & Corbin, 1998). Thus, they may be very practical but are

also limited to a particular scope. Thus, the approach we have advanced in this paper is limited to

developing modeling languages that are applicable to particular domains. The study so far limits the

discussion on the development of the language elements as constituent parts of a modeling method.

However, a functional method also has to provide for a modeling process that guides modelers on how

to use the language constructed. Although we believe that an empirically grounded language will

assist the efficient elicitation of information in its aspired domain, one can argue that the process of

modeling is also dependent on the context of application.

Furthermore, it must be noted that the result of any method design process is highly dependent on both

the method designer as well as the intended purpose of the language. A possible strategy to achieve a

more independent view on the domain is triangulation (Eisenhardt, 1989). For instance a researcher

might employ a colleague to develop an own conceptualization based on the same data.

Conclusively, any new guideline, theory, method, or approach must be tested in practice. Thus, we

motivate researchers and method designers to applying those principles we presented in this paper.

Acknowledgements

This paper was written in the context of the research project ManKIP (Manangement of Creativity-

Intensive Processes). The project is funded by the German Federal Ministry of Education and

Research (BMBF) and by the European Social Fund of the European Union, promotional reference

01FM07061. We gratefully acknowledge the support of the Project Management Agency as part of the

German Aerospace Center (PT-DLR).

References

Benbasat, I. and Zmud, R. W. (2003) The identity crisis within the is discipline: Defining and

communicating the discipline's core properties. MIS Quarterly 27 (2), 183-194.

Brinkkemper, S. (1996) Method engineering: Engineering of information systems development

methods and tools. Information and Software Technology 38 (4), 275-280.

Brinkkemper, S., Saeki, M. and Harmsen, F. (1998) Assembly techniques for method engineering. In

10th International Conference on Advanced Information Systems Engineering (CAiSE 1998)

(Pernici, B. and Thanos, C., Eds), pp 381-400, Springer, Pisa, Italy.

Bunge, M. (1977) Ontology i: The furniture of the world. D. Reidel Publishing Company, Dordrecht.

Cole, R., Purao, S., Rossi, M. and Sein, M. (2005) Being proactive: Where action research meets

design research. In 26th International Conference on Information Systems (ICIS 2005) (Avison, D.

E. and Galletta, D. F., Eds), pp 1-12, Las Vegas, NV.

Devedžić, V. (2002) Understanding ontological engineering. Communications of the ACM 45 (4), 136-

144.

Earwig, M. (1999) Visual graphs. 15th Symposium on Visual Languages.

Eisenhardt, K. M. (1989) Building theories from case study research. Academy of Management Review

14 (4), 532-550.

Fernández-López, M., Gómez-Pérez, A., Pazzos-Sierra, A. and Pazzos-Sierra, J. (1999) Building a

chemical ontology using methontology and the ontology design environment. IEEE Intelligent

Systems & their applications., 37-46.

Genova, G., Valiente, M. C. and Nubiola, J. (2005) A semiotic approach to uml models. In 1st

Workshop on Philosophical Foundations of Information Systems Engineering (PHISE'05).

Glaser, B. G. (1978) Theoretical sensitivity: Advances in the methodology of grounded theory. The

Sociology Press, Mill Valley, CA.

Glaser, B. G. and Strauss, A. L. (1967) The discovery of grounded theory: Strategies for qualitative

research. de Gruyter, Hawthorne.

Gregor, S. (2006) The nature of theory in information systems. MIS Quarterly 30 (3), 611-642.

Guizzardi, G. (2005) Ontological foundations fo structural conceptual models. Centre for Telematics

and Information Technology, Telematica Istitute, Enschede.

Guizzardi, G., Pires, L. F. and Van Sinderen, M. J. (2002) On the role of domain ontologies in the

design of domain-specific visual modeling languages. In 2nd Workshop on Domain-Specific Visual

Languages at the 17th Annual ACM Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA 2002) (Tolvanen, J.-P. and Gray, J. and Rossi, M., Eds), pp

1-14, Seattle, WA.

Handfield, R. and Melnyk, S. A. (1998) The scientific theory-building process: A primer using the

case of tqm. Journal of Operations Management 16, 321-339.

Harmsen, A. F. (1997) Situational method engineering. University of Twente, Enschede, The

Netherlands.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004) Design science in information systems

research. MIS Quarterly 28 (1), 75-105.

Hooker, J. N. (2004) Is design theory possible? Journal of Information Technology Theory and

Applications 6 (2), 73-83.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The unified software development process. Addison-

Wesley, Reading, Mass.

March, S. T. and Smith, G. F. (1995) Design and natural science research on information technology.

Decision Support Systems 15 (4), 251-266.

March, S. T. and Storey, V. C. (2008) Design science in the information systems discipline: An

introduction to the special issue on deisgn science research. MIS Quarterly 32 (4), 725-730.

Miles, M. B. and Huberman, M. A. (1994) Qualitative data analysis: An expanded sourcebook. Sage,

California.

Morris, C. W. (1970) Foundations of the theory of signs. University of Chicago Press, Chicago, IL.

Mylopoulos, J. (1992) Conceptual modelling and telos. In Conceptual modelling, databases and case

(Loucopoulos, P. and Zicari, R., Eds), pp 49-68, Wiley.

Mylopoulos, J., Chung, L. and Yu, E. (1999) From object-oriented to goal-oriented requirements

analysis. Communications of the ACM 42 (1), 31-37.

Niehaves, B. (2007) On epistemological diversity in design science: New vistas for a design-oriented

is research? In 28th International Conference on Information Systems (ICIS 2007), pp 1-13,

Montréal, Canada.

Nunamaker, J. F., Chen, M. and Purdin, T. D. M. (1990) Systems development in information systems

research. Journal of Management Information Systems 7 (3), 89-106.

Orlikowski, W. and Iacono, C. (2001) Desperately seeking the 'it' in it research: A call to theorizing

the it artifact. Information Systems Research 12 (2), 121-134.

Orlikowski, W. J. (1993) Case tools as organizational change: Investigating incremental and radical

changes in systems development. MIS Quarterly 17 (3), 309-340.

Peffers, K., Tuunanen, T., Rothenberger, M. A. and Chatterjee, S. (2007) A design science research

methodology for information systems research. Journal of Management Information Systems 24

(3), 45-77.

Ralyté, J. and Rolland, C. (2001) An assembly process model for method engineering. In 13th

International Conference on Advanced Information Systems Engineering (CAiSE 2001) (Dittrich,

K. R. and Geppert, A. and Norrie, M. C., Eds), pp 267-283, Interlaken, Switzerland.

Ralyté, J., Rolland, C. and Deneckère, R. (2004) Towards a meta-tool for change-centric method

engineering: A typology of generic operators. In 16th International Conference on Advanced

Information Systems Engineering (CAiSE 2004) (Persson, A. and Stirna, J., Eds), pp 202-218, Riga,

Latvia.

Recker, J. (2008) Understanding process modelling grammar continuance: A study of the

consequences of representational capabilities. Faculty of Information Technology, Queensland

University of Technology, Brisbane, Australia.

Rosemann, M., Dreiling, A., Aalst, W. V. D. and Sadiq, W. (2008) From conceptual process models to

running systems: A holistic approach for the configuration of enterprise system processes. .

Decision Support Systems 45 (2), 189-207.

Rossi, M., Tolvanen, J.-P., Ramesh, B., Lyytinen, K. and Kaipala, J. (2000) Method rationale in

method engineering. In 33rd Annual Hawaii International Conference on System Sciences (HICSS

2000), pp 1-10, Maui, HI.

Seidel, S. (2009) A theory of managing creativity-intensinve processes. Doctoral Thesis, Chair for

Information Systems and Information Management, University of Muenster, Muenster, Germany.

Seidel, S., Rosemann, M. and Becker, J. (2008) How does creativity impact business processes? 16th

European Conference on Information Systems 2008, Galway, Ireland.

Shanks, G., Tansley, E., Nuredini, J., Tobin, D. and Weber, R. (2008) Representing part-whole

relations in conceptual modelling: An empirical evaluation. MIS Quarterly 32 (3), 553-573.

Simon, H. A. (1996) The sciences of the artificial. The MIT Press, Cambridge, MA.

Strauss, A. L. and Corbin, J. (1998) Basics of qualitative research. Techniques and procedures for

developing grounded theory. Sage, London.

Takeda, H., Veerkamp, P., Tomiyama, T. and Yoshikawa, H. (1990) Modeling design processes. AI

Magazine 11 (4), 37-48.

Urquhart, C. (2001) An encounter with grounded theory: Tackling the practical and philosophical

issues. In Qualitative research in is: Issues and trends (Publishing, I., Ed), Hershey, PA.

Venable, J. R. (2006) The role of theory and theorising in design science research. In 1st International

Conference on Design Science Research in Information Systems and Technology (DESRIST 2006)

(Chatterjee, S. and Hevner, A. R., Eds), Caremont, CA.

Wallace, W. (1971) The logic of science in sociology. Aldine Atherton, Chicago, IL.

Walls, J., Widmeyer, G. and El Sawy, O. (1992) Building an information system design theory for

vigilant eis. Information Systems Research 3 (1), 36-59.

Wand, Y., Monarchi, D. E., Parsons, J. and Woo, C. C. (1995) Theoretical foundations for conceptual

modelling in information systems development. Decision Support Systems 15 (4), 285-304.

Wand, Y. and Weber, R. (1993) On the ontological expressiveness of information systems analysis

and design grammars. Journal of Information Systems 3 (4), 217-237.

Weber, R. (2003) Still desperately seeking the it artifact. MIS Quarterly 27 (2), iii-xi.

Winter, R. (2008) Guest editorial: Design science research in europe. European Journal of

Information Systems (17), 470-475.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	Applying lessons learned from counselling : On nurturing relations in design projects
	Jörg Becker
	Milan Karow
	Felix Müller-Wienbergen
	Recommended Citation

	Microsoft Word - $ASQ5947240_File000000_88091188.doc

