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Abstract 

Online consumers must burrow through vast piles of product information to find the 
best match to their preferences. This has boosted the popularity of recommendation 
agents promising to decrease consumers' search costs. Most recent work has focused on 
refining methods to find the best products for a consumer. The question of how many of 
these products the consumer actually wants to see, however, is largely unanswered. 
This paper develops a novel procedure based on signal detection theory to estimate the 
number of recommendable products. We compare it to a utility exchange approach that 
has not been empirically examined so far. The signal detection approach showed very 
good predictive validity in two laboratory experiments, clearly outperforming the 
utility exchange approach. Our theoretical findings, supported by the experimental 
evidence, indicate conceptual inconsistencies in the utility exchange approach. Our 
research offers significant implications for both theory and practice of modeling 
consumer choice behavior. 
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Introduction 

Online consumers today need to sift through vast piles of information to find the products that best match 
their preferences. This has boosted the popularity of recommendation agents which promise to decrease 
consumers' search costs. But do they? Recommendation agents certainly reduce the number of websites 
the consumer needs to search. If the agents structure product information homogeneously across a range 
of goods, they also reduce cognitive costs associated with processing that information (Montgomery et al. 
2004). These reductions, however, are often offset by increased specification costs.   

MyProductAdvisor.com, for example, lets consumers define criteria in a process consisting of up to 8 
steps, each containing several questions. Consumers who specify levels for all criteria exert quite a lot of 
effort in the attempt to circumscribe their preferences as precisely as possible. If the recommendation 
agent returns a large product set, consumers need to spend considerable time on comparing the 
recommended products or narrowing their selection criteria. Some might even decide to switch to another 
recommendation agent (Punj and Moore 2009). Large recommendation sets not only lead to higher 
decision costs but also to decreased decision quality, to declining trust in the recommendation agent and 
an increasing inclination toward choice deferral (Xiao and Benbasat 2007; Kuksov and Villas-Boas 2010). 
In effect, large sets reduce the benefits from using the recommendation agent.  

Small recommendation sets, on the other hand, do not necessarily lead to higher consumer satisfaction. 
Evidence from recent empirical studies shows that decision certainty and post-choice satisfaction can be 
adversely affected by reducing recommendation set size (Lapersonne et al. 1995; Dellaert and Häubl 
2012). White and Hoffrage (2009) dubbed this phenomenon the 'tyranny of too much choice' versus the 
'allure of more choice'. Although insights into the workings of this phenomenon are slowly forthcoming in 
informations systems research (Farag et al. 2003; Parra and Ruiz 2009; Gu et al. 2011) and marketing 
research (Häubl and Trifts 2000; Dellaert and Häubl 2012), empirical evidence is still incomplete and in 
some parts contradictory. In recent studies, context factors such as the intensity of information load 
(Farag et al. 2003; Parra and Ruiz 2009), the presence of a recommendation agent (Häubl and Trifts 
2000) and personal factors such as age or education (Farag et al. 2003) have been examined. So far, no 
single indicator or sets of indicators have been confirmed to reliably predict how many recommendations 
a consumer would like to be presented with at a specific online shopping occasion. We therefore focus on 
approaches for predicting the recommendation set size independent of contextual or personal factors.  

We develop and successfully test a novel approach to measuring and predicting optimal individual 
recommendation set sizes. Our approach is based on signal detection theory which, although it is widely 
known, has never been used before as the theoretical foundation for assessing the optimal size of 
individuals’ recommendation sets. We also adapt and empirically examine the utility exchange approach 
introduced by Butler et al. (2001). Our findings not only contribute to recent research on predicting 
consideration set size but also provides two approaches that can be integrated into existing 
recommendation agents to estimate the consumers’ willingness-to-pay. Marketing managers could 
estimate market segments more precisely if they knew individual recommendation set sizes. In this paper, 
we focus on the consumer perspective and demonstrate how accurately the two mentioned approaches 
can predict the number of recommendations a consumer will consider.  

Our paper is organised as follows. First, we give a short overview over previous research in this area. Next, 
we briefly introduce the utility exchange approach (Butler et al. 2001) which we empirically examine for 
the first time in this paper. We then describe our novel approach that we compare with the utility 
exchange approach.  Subsequently, we present our research methodology, data analysis and results. 
Finally, we point out some limitations to our research and opportunities for research and practice 
resulting from our findings. 

Literature Review 

We use the well-known two-stage model by Hauser and Wernerfelt (1990) to describe the consumer 
choice process. Consumers reduce information gathering and processing costs by first screening all 
accessible alternatives heuristically (Gilbride and Allenby 2004) and only then evaluating the remaining 
alternatives with cognitively more expensive compensatory decision rules (Bettman and Park 1980). The 
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final purchase choice is made among the consideration set which consists of all alternatives that ‘survive’ 
both stages (Hauser and Wernerfelt 1990). A perfect recommendation agent would recommend just the 
consideration set, which contains the alternatives with the highest utilities. We will use the term 
“recommendation set” throughout the article to denominate a consumer’s consideration set as identified 
by a recommendation agent (Häubl and Trifts 2000).  

Research into consumer online shopping behaviour and recommendation agents thus needs to address 
two issues. The first issue is correctly idenfying (and recommending) products which correspond to the 
consumer’s preferences. The second issue is finding the correct number of recommendations to present to 
the consumer in order to mitigate the dilemma of the ‘tyranny of choice versus the allure of more choice’ 
(White and Hoffrage 2009).  

In this paper, we propose two approaches for predicting the number of recommendations a consumer is 
willing to evaluate in depth (i.e., the consideration set). Both approaches are feasible if it is possible to 
estimate the parth-worth functions for all product attributes. This is the case for recommendation agents 
which are built on multiple attribute utility theory (MAUT). MAUT-based recommendation agents have 
received increasing attention in recent research (Huang 2011; DeBruyn et al. 2008; Theetranont et al. 
2007) because they have three major advantages over other – especially content-based and collaborative 
filtering-based (Ansari et al. 2000) – recommendation agents. First, it is not necessary to compile a 
shopping profile for the consumer before being able to give recommendations (start-up problem). Second, 
consumer preferences are up-to-date and purchase-related; other recommendation agents face the 
problems that preferences change over time and that preference estimates can be biased by gift purchases 
or purchases on behalf of someone else. Third, MAUT-based recommendation agents are able to provide 
transparent explanations to the customer why a certain product has been recommended. Consumer 
acceptance and usage of recommendation agents largely depends on whether they trust the agent. The 
transparency of the recommendation process is a major determinant of the degree of trust consumers put 
in an agent (Xiao & Benbasat 2007). Explicit preference elicitation is generally regarded as a more 
transparent task, which makes users more willing to follow the resulting recommendations (Kramer 
2007). In addition, Xiao & Benbasat (2007) cite evidence that “compensatory recommendation agents 
lead to better decision quality and higher decision effort”.  

The two approaches we discuss here are extensions for existing MAUT-based recommendation agents 
(e.g. Dell Advisor, Online Insight, My Product Advisor, Plan Smart Choice) for predicting individual 
consumers’ optimal recommendation set size.  

While there are many methods for approaching the first issue of correctly identifying attractive products 
(see Xiao and Benbasat 2007 for a comprehensive survey), estimating the correct size of the 
recommendation set is a largely unsolved problem. Previous studies have shown that consumers who are 
confronted with large product assortments may suffer from “choice overload” (Iyengar and Lepper 2000). 
They defer their purchase decision because product comparisons become more difficult and time-
consuming (Fasolo et al. 2009) or for fear of making suboptimal decisions (Iyengar et al. 2006). The 
recommendation agent extension we propose alleviates this problem. It chooses the most attractive 
products from the entire assortment but only presents the most promising options to the consumers. 
Since consumers have individual consideration set sizes (Farag et al. 2003), presenting a fixed-size 
recommendation set would decrease consumer satisfaction with the recommendation agent. Researchers 
in information systems and marketing have explored to which extent information systems, personal 
attributes and attitudes1 determine consideration set size. Häubl & Trifts (2000) found that consumers 
using a recommendation agent have smaller consideration sets of higher quality, i.e. non-dominated 
alternatives with higher subjective utilities, than those who do not. This finding was confirmed by Parra 
and Ruiz (2009), but not supported by Pedersen (2000). Product expertise (also referred to as 
experience), age, gender, and the stages of the decision process have been shown to influence consumers’ 
perceptions of product attributes (Farag et al. 2003; Gilbride and Allenby 2004; Karjaluoto et al. 2005; 
Ranjbarian and Kia 2010). Assuming that consumer preferences for products are aggregates of 

                                                             

1 More complex constructs (e.g. Chakravarti and Janiszweski 2003; Paulssen and Bagozzi 2005; Kuksov and Villas-Boas 2010) 
require a very high level of effort and disclosure of very personal information from consumers. If they were implemented as 
mandatory precursors to the search process, consumer dissatisfaction with and distrust toward the recommendation agent would 
likely increase (Xiao and Benbasat 2007). This renders them ineligible for our purposes. 
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preferences for attribute levels (Keeney and Raiffa 1993), these factors determine the contents of the 
consideration set. The studies did not, however, provide conclusive evidence that these factors also 
determine the size of the consideration set.  

Researchers in decision analysis examine the problem from another angle. They try to determine whether 
a product is a 'correct selection' (in our case, considerable) by applying procedures for statistical ranking 
and selection (Butler et al. 2001; Chick and Gans 2009). Most of them define a so-called indifference 
zone, which contains all products that are most likely to be the best product. The lower boundary of the 
indifference zone corresponds to the last product that looks attractive enough to the consumer to warrant 
the effort of evaluating it in detail. Although indifference zone procedures are usually used to find only 
one (best) product, the parameter �∗is a very convenient means to estimating the (best) number of 
recommendations. All products in the indifference zone are, per definition, considerable in the eyes of the 
consumer. Butler et al. (2001) couple the indifference zone approach with multiple attribute utility theory 
(MAUT, Keeney and Raiffa 1993), which they use to compute product and attribute utilites. The 
indifference zone �∗ can then be expressed in terms of utility units. Consumers state �∗ in terms of easily 
comprehensible attribute units such as costs, which are subsequently converted into utility differences.  

The utility exchange approach has, to the best of our knowledge, never been examined empirically before. 
We compare it to our own approach to determining the best number of recommendations for a consumer, 
which is based on signal detection theory. This is an entirely novel approach based on the observation that 
deciding whether a particular product is within the indifference zone is similar to discerning signal and 
noise. How well a consumer performs on this decision task depends both on the difficulty of the task, i.e. 
how similar an unattractive and an attractive product are to each other, and on the ability of the consumer 
to correctly identify an attractive product as such (Tanner and Swets 1954). Like Butler et al. (2001), we 
used MAUT to obtain product utilities and specify �∗ in terms of utilities. In contrast to (Butler et al. 
2001), our signal detection approach does not require consumers to go through the steps of the utility 
exchange, i.e. specifying the magnitude of perceived product differences in terms of costs.  

Theoretical Foundations 

At the core of all MAUT-based recommendation agents lies the method with which consumer-specific 
utility functions for all interesting product attributes are elicited. Recent research has investigated the 
applicability of methods such as direct specification (Cao and Li 2007), choice-based conjoint analysis (De 
Bruyn et al. 2008), SMARTER (Huang 2011) or radial basis function networks (Huang 2011) in 
recommendation agents. Although these methods are mathematically distinct, they share the same 
theoretical foundation (MAUT) which we will discuss in the next subsection. The two approaches we 
propose for estimating recommendation set size are also based on MAUT. Neither depends on the 
recommendation agent implementing any particular preference elicitation method. Both approaches are 
thus an extension of recent research into MAUT-based recommendation agents. In the next subsection 
but one, we present a theoretical framework of MAUT extensions for identifying the optimal numbers of 
decision objects (i.e. recommendable products) for individuals. 

Multiple Attribute Utility Theory 

Multiple attribute utility theory (MAUT) is one of the most frequently applied decision analysis 
instruments (Wallenius et al. 2008). Decision objects are analysed in a two-step procedure: their 
attributes are first evaluated in single-attribute (SAU) functions which are then combined into a multi-
attribute (MAU) function. In our case, the prospective digital camera purchaser is asked to perform 
attribute or product comparisons. The recommendation agent then computes SAU and MAU functions. 
Based on the digital camera utility estimates which the MAU function yields, the recommendation agent 
finally sorts the digital cameras according to our consumer’s preferences. 

Let u��x�� be the SAU function for attribute i, x� the outcome or level of attribute i, and w� the weight for 
attribute i. We can formally express the additive function for assessing product utility u�X� as 
 u�X� � ∑ 	���� w�u��x�� (1) 
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where 0 � w� � 1  and ∑ 	ni�1 wi � 1 . The MAU function is usually assumed to be additive. Although 
additive MAU functions seem somewhat unrealistic, they have been shown to be very robust in most 
situations (Butler 1997).  

In MAUT u��x��  refers to the SAU function of attribute i. One simple form of a SAU function is 
 u��x�� � a� � b�x� (3) 

A linear relation between the attribute utility u� and the attribute level x� is often imprecise. A popular 
alternative expression that also covers attribute utility functions with diminishing or increasing utilities is 

 u��x�� � a� � b�e����  (4) 

where c� is the consumers risk tolerance and a� and b� are scaling constants. In contrast to equation 3, 
equation 4 is more flexible and allows modelling concave as well as convex functions. Both types of SAU 
functions can be estimated with various methods such as multiple regression, AHP or direct trade-offs 
(see Schoemaker and Waid (1982) and Pöyhönen and Hämäläinen (2001) for an overview and 
comparison of some). 

Selection Framework 

Let us assume a set of K products �X�, X , . . . , X"� that are ranked according to their expected utility values E$u�X��% & E$u�X �% &. . . & E$u�X"�%. Each product’s expected utility is computed based on the MAUT as 
described above. Due to elicitation errors and consumer uncertainty in specifying utility parameters, we 
cannot assume the best expected products to be a “correct selection”. Recent literature suggests defining 
an indifference zone of products having a probability greater than 0 to be the best product (Butler et al. 
2001, Branke et al. 2007). All products k for which E$u�X(�% & E$u�X��% � δ∗  holds true are within the 
indifference zone (i.e., recommendable). The difference between the best expected product and the 
indifference value �∗ defines the utility threshold u∗ each product must surpass to be recommendable.  
For example, let us assume digital cameras that are described by photo resolution and price. Each 
attribute’s utility ranges between 0 and 1. If we assume a utility threshold of u∗ � 1.4 for a particular 
consumer, all products with a utility higher than 1.4 are in the indifference zone and hence 
recommendable (see Figure 1). 

 

 

Figure 1. Indifference Zone and Utility Threshold 

 

In the next sections, we discuss two approaches – the well-known utility exchange approach and signal 
detection approach – that both estimate the number of recommendable products by computing an 
indifference zone. The goal of both approaches is arriving at an estimate for the indifference value  �∗. 
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Utility Exchange Approach 

The basic idea of utility exchange is measuring �∗ in terms of attribute units instead of utility units (Butler 
et al. 2001). Consider a consumer in the process of purchasing a digital camera, for instance. He would be 
asked which price difference (between the actual price and a hypothetical price for the digital camera in 
question) would leave him feeling indifferent towards purchasing the digital camera at either price. This 
price difference is then transformed into a utility difference which is the consumer's �∗  value. The 
approach  assumes that consumer are willing and able to specify a difference in terms of attribute units 
following the same train of thought as they would when specifying a difference in terms of utility units.  

In the following subsections, we describe how δ∗ is predicted by using the utility exchange approach as 
proposed in (Butler et al. 2001). The section concludes with a discussion on the theoretical advantages 
and disadvantages of the utility exchange approach. 

Predicting +∗ 
Having computed the expected utility of each product	Xk, products are ranked in order of their expected 
utilities. All products with an expected utility equal to or greater than the best product's expected utility 
E$u�X��%	minus the indifference value δ∗ are recommendable. Our digital camera purchaser would be 
shown a list of cameras sorted in descending order of their utilities by the recommendation agent. The last 
digital camera to be displayed is the one which he is just slightly favorably disposed towards; the next 
one’s (which is not displayed anymore) utility is just too low to be of interest to our consumer. No 
assumptions about the form of the MAU and SAU functions used to estimate the expected utility values 

are necessary. We merely need to know attribute i
∗
 and the constant levels of the other attributes.  

Computing Utility Equivalents 

Butler et al. (2001) suggest choosing cost or price as attribute	i∗ for scale transformation since they are 
most easily understood by consumers. All other attributes are set to constant levels. The level of  i∗ may 
become negative if unfortunate choices of values for constant levels lead to low utility values. We avoid 
this by using the best expected product's attribute levels for all other products. 

Let i∗ be the first attribute (i � 1). After estimating MAU and SAU functions, the level  x′ 	(�	  for attribute i∗ 
and product X( can be computed by transforming the utility difference between the best expected product X� and X( into a difference in terms of the units used to measure	i∗. Given the level for i∗ and for each 
product, we can prompt the consumer to specify an indifference zone δ�∗  for i∗ if all other attributes are 
kept constant. If the levels of attributes other than i∗ equal the best expected product's (x′��) levels, the 
indifference zone is bounded by the best expected product's level of i∗ and the indifference zone parameter δ�∗  as specified by the consumer. The utility indifference zone parameter δ∗ is given by 

 δ∗ � u�X�� � u��x�� � δ�∗� (5) 

where u��x��� is the utility estimated for the first attribute (i.e. i∗) of the best expected product. 
Discussion 

The utility exchange approach is theoretically sound and applicable to all forms of MAU and SAU 
functions. All invertible functions can be used for modelling attribute utilities. Compared to measuring 
utility values directly, the additional effort involved for the consumer is marginal. He is only asked to 
specify which level of attribute i∗ constitutes an imperceptible difference to the best product's level for i∗. 
But the assumption that attribute level intervals can be transformed into utility intervals directly is 
problematic. Let price be the attribute  i∗. The consumer is asked to give a price toward which he feels 
indifferent when comparing it to the price of the best expected product. The resulting indifference interval 
is transformed into utility units without regard to the possibility that the consumer's sensitivities for price 
and utility values differ. Although the slope of the price SAU is taken into account for the transformation, 
there is no evidence that a consumer defines equal consideration set sizes when defining indifference 
zones based on prices and entire product utilities (third assumption of the utility exchange approach). If 
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this is the case, the number of considerable products does not only depend on interval size, but also on the 
sensitivity for i∗, and the utility exchange approach will not give correct estimates. 
Another problem is the fact that rational consumers feel indifferent only if both prices are exactly equal. If i∗ is neither price nor cost, reliable measurements of δ�∗  are difficult to obtain. There may be few or no 
other attributes that are important to all consumers. Using the utility exchange approach with other 
attributes instead of price or cost is likely to distinctly limit its scope and usefulness. 

Signal Detection Approach 

Deciding whether a particular product is inside or outside the boundaries of the indifference zone is 
similar to discerning signal and noise. Signal detection theory states that a certain value exists for which a 
person is unable to decide whether it is a signal or noise. This value is equivalent to E$u�X��% � δ∗ as 
previously defined. In the digital camera purchasing situation, the consumer tries to discern cameras that 
meet his preferences (signals) and unattractive cameras (noise). In order to estimate δ∗ based on signal 
detection theory, the following assumptions must hold:  

    •  Utility probability distribution functions (PDF) are given for all products X(.  
    •  Consumers rate products according to their individual δ∗.  
In the next subsection, we present the theoretical foundations of signal detection theory and describe a 
novel procedure for predicting	δ∗, which is based on the estimation of a utility value perceived to be 
'neutral' by the consumer, followed by the estimation of utility PDFs. We conclude with a discussion on 
the advantages and disadvantages of our signal-detection-based approach. 

Theoretical Background  

Signal detection theory (SDT) was developed by Tanner and Swets to overcome the inability of traditional 
psychophysical methods to discriminate between sensitivity d and specificity τ (Tanner and Swets 1954; 
Macmillan and Creelman 2004). Sensitivity describes how difficult it is to distinguish between signal and 
noise, or attractive and unattractive products. The consumer’s tendency to classify a product as signal or 
noise is called specificity. Both variables must be taken into account simultaneously, sensitivity being 
independent of specificity. The consumer evaluates for each product which of the two hypotheses - H0: 
product is attractive or H�: product is unattractive - is more likely to be valid. Product attractiveness for 
each product X( is expressed in terms of utility u�X(�. 
The decision depends on the fraction p�u�X(�|H��/p�u�X(�|H0�, which is called likelihood ratio L�u�X(��. 
In the simplest case, H� is always supported if L�u�X(�� & 1, and H0 is always supported if L�u�X(�� 5 1. 
The ratio p�H��/p�H0� is called specificity τ and equals 1 if the subject is risk neutral. Risk-averse subjects 
have specificities τ greater than 1 because avoiding false alarms is paramount to them. The measurement 
level u that denotes τ is called the critical point

 
u�. Let us assume that p�u�X(�|H0� and p�u�X(�|H�� are 

given as normal distributions. The greater the difference between signal and noise and the smaller the 
standard deviation of both distributions, the greater is the sensitivity d. In the general case, where σ�H0� 7 σ�H��, sensitivity is given as: 

 d � 8�9:�;8�9<�
=>�?:�@A>�?<�@@

 (6) 

The specificity point is equal to the point where p�H0� and p�H�� cross if and only if τ � 1. Otherwise, the 
point of specificity is to the left of the intersection point for risk-seeking and to the right for risk-averse 
subjects. Subjects will respond with H�  if L�u�X(�� & τ, and with H0  if L�u�X(�� 5 τ. If we know both 
probability functions p�H0� and p�H��, we can estimate the probabilities for hit, miss, correct rejection 
and false alarm. A recommendation agent using the signal detection theory approach tries to find a 
balance between hits and false alarms that best meets the preferences of a particular consumer. This has 
the practical implication for recommendation agents such as MyProductAdvisor.com of narrowing the 
recommendation set for risk-averse consumers and expanding it for risk-seeking consumers. The 
procedure explained in the following sections determines whether a consumer is risk-averse or risk-
seeking by computing a consumer’s specificity. The final result of the proposed procedure is a utility 
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threshold that indicates which products are unattractive and therefore to be excluded from the 
recommendation set. 

Predicting +∗ 
We assume that the products X( are ranked according to their utilities. Comparing two products XB and XC 
with E$u�XB�% D E$u�XC�% is similar to comparing signal and noise. The closer to each other the products 
(stimuli in the previous section) are, the higher the probability that a respondent cannot distinguish 
between signal and noise. u is defined as a utility value, and the probability functions of signal and noise 
are defined by the utility PDF Θ of XB and XC, respectively. 
If Θ$u�XB�% and Θ$u�XC�% are given, their intersection defines the critical point u�  if and only if τ � 1. 
Otherwise, the critical point is defined such that the following equation holds 

 
F�GH|IJ�
F�GH|IK� � τ (7) 

Before estimating τ, we need to specify XB and XC. Since we expect the best expected product X� to be 
recommendable, we set XB � X�. The product most likely to be not considerable is interpreted as noise. A 
particular subject's specificity τ gives us the correct critical point u�, which is the utility value any product 
must exceed to be regarded as considerable. To estimate τ, we suggest evaluating the product X� closest to 
the critical point u� for τ � 1. The evaluation of X� allows us to recalculate τ and find the real critical point u�, which we will call utility threshold u∗. δ∗ corresponds to the distance between the expected utility of 
the best product and the utility threshold. δ∗ is predicted as follows:  

    1.  Rank all products in order of their expected utilities.  

    2.  Set Θ$u�X"�% as Θ�L�MN and Θ$u�X��% as ΘM�O�BP.  
    3.  Compute u� for τ � 1.  
    4.  Select the product X� nearest to u�.  
    5.  Let the consumer evaluate X� with Q � R ∈ $�r; r%.  
    6.  Recalculate τ as a;V with a as scaling constant.  
    7.  Compute the critical point as utility threshold u∗ for recalculated τ.  
    8.  Estimate δ∗ as E$u�X��% � u∗.  
 

 

Figure 2. Signal Detection Approach 

 

Like the utility exchange approach, this approach uses MAUT for assessing the expected utility values. 
Our approach requires, at the very least, information about the utility distributions of the two products 
which are estimated to be the best and worst product. We assume normally distributed utilities and refer 
to them as Θ$u�X(�% � �E$u�X(�%, σ(�. Figure 1 visually demonstrates all variables that need to be computed 
for normally distributed utilities. The value range of u∗ depends on the utility of the indifference product  X�, the scaling constant a and the evaluation scale of h. If the indifference product X� is exactly between  
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X�and X" (i.e. σ� � σ"), u∗ is scaled between E$u�X��% and E$u�X"�%. The location of X� in turn depends on 
the expected utilities of X�and X" as well as of their standard deviations. 
As demonstrated in Figure 2, signal detection theory provides a theoretical framework for 1) predicting a 
utility threshold that a product should surpass in order to be considered by a risk-neutral consumer and 
2) re-scaling the utility threshold for consumers that either are risk-averse or risk-aware. The validity of 
correctly estimating u∗ depends on the validity of the utility distributions assessed for the best and the 
worst product and on the sensitivity of the evaluation of X�. The more close the expected utilities of the 
best and the worst product, the lower the sensitivity d and thus the harder the evaluation of X�. In the next 
section, we describe how u� is computed (steps 3 and 7). We suggest a method for approximating E$u�X(�% 
and σ( in the subsequent subsection. 
Estimating XY 
Given Θ$u�X��% and Θ$u�X"�%, we can estimate the critical point u� under the assumption that τ � 1. In the 
case of normally distributed utilities, we have 

 Z�E$u�X��%, σ�� � Z�E$u�X"�%, σ"� (8) 

If τ � 1, the consumer is indifferent towards a product with E$u�X��% � u�. We propose selecting that 
product X� for evaluation for which the distance between its expected utility and u� is smallest. Based on 
the evaluation h of X�, we can compute τ as follows 

 τ � a;V (9) 

where a is a scaling constant. With h � R ∈ $�r; r%, we can compute a  such that evaluation of Q � �r 
results in the best expected product, and evaluation of Q � r in the worst expected product. 
If the utility of the products is normally distributed and σ� � σ", the utility threshold u∗ (critical point u�) 
is given as 

 u∗ �  P��B[�\<@;]$^�I<�%@_]$^�I`�%@
 ]$^�I`�%; ]$^�I<�% . (10) 

We can compute the utility threshold u∗ as follows if σ� 7 σ" 
 u∗ � � a

 � =ba c
 � q, (11) 

 where  

 p �  ]$^�I`�%\<@; ]$^�I<�%\@̀
\@̀;\<@  

and  

 q � ]$^�I<�%@\@̀;]$^�I`�%@\<@; P�e>`K[>< f\<@\@̀
\@̀;\<@ . 

 

In the last step, δ∗ is computed as E$u�X��% � u∗. All products with utility values greater than u∗ are inside 
the boundaries of the indifference zone defined by δ∗, and ought to be recommended to the consumer. 
Approximating g$h�ij�% and kj 
In the previous sections, we assumed knowledge of the expected utilities and standard deviations of at 
least X� and X". Traditional MAUT offers an approach to computing crisp numbers but not distribution 
functions. We use triangular fuzzy numbers to capture the importance of attributes w� (Cao and Li 2007).  
A triangular fuzzy number ql  is denoted as ql � 〈q�, q , qn〉  where q� , q  and qn  are real numbers with q� � q � qn. Real numbers in the interval $q�; qn% are characterised by a grade of membership to q which 
is greater than 0. As proposed by Cao and Li (2007), we compute q�  and qn  by decrementing 



Engaged Scholarship through Design and Action 
 

10 Thirty Third International Conference on Information Systems, Orlando 2012  

(incrementing) w� by one unit where a rating scale is applied for measuring w�. If a ranking method is 
used, we suggest using ranks ra, ra � 1 and ra � 2 for computing the weight w� of attribute i ranked on 
position ra. 
Based on the fuzzy weights, we compute overall fuzzy product utilities u�X(� � 〈u�X(��, u�X( �, u�X(n�〉 by 
extending the SAU functions. Each fuzzy utility consists of the 0.0 and 1.0 fractiles and the mode. We can 
now approximate expected utilities and standard deviations with three-point approximation methods. We 
chose the extended Pearson-Tukey approach, which Keefer and Bodily (1983) found to be more precise 
than other methods. We use the 0.05, 0.50 and 0.95 fractiles of one product's utility range to compute its 
expected utility and standard deviation: 

 E$u�X�% � 0.63u�X�0.s0 � 0.185$u�X�0.0s � u�X�0.vs% (12) 

 σ" � ^�I�:.wx;^�I�:.:x
n. v;0.0�yn. s z

{�|�:.wx}{�|�:.:x~
 (13) 

where Δ � u�X�0.vs � u�X�0.0s � 2u�X�0.s0. 
Discussion 

The signal detection approach is theoretically well-founded and can be adopted to different MAU and SAU 
functions. For estimating τ, we need to define the scaling interval $�r; r%. The larger r, the more levels of τ 
are possible and the better the prediction of δ∗. Compared to the utility exchange approach, the number of 
parameters specified in advance is virtually equal (a and r for the signal detection approach; attribute i∗ 
and levels of other attributes than i∗ for the utility exchange approach), but signal detection theory is 
based on more assumptions and consists of more processing steps. Thus the signal detection approach 
theoretically provides more possibilities for incorrect estimates of recommendation set sizes. 

The effort required of the consumer is lower than or equal to the effort of using the utility exchange 
approach. Butler et al. (2001) suggest specifying more than one indifference zone, i.e. using more than 
one attribute. This would likely improve predictions at the cost of prolonging the recommendation 
process and requiring more effort on part of the consumer. The signal detection approach could be 
extended iteratively. We decided to focus on keeping the effort down to a minimum and used only one 
iteration (one product evaluation) in this paper. In contrast to the utility exchange approach, there are no 
conceptual inconsistencies between the task presented to the consumer and the computation of δ∗.  
Empirical Investigation 

We conducted two laboratory experiments, both with a within-subject design, to compare the utility 
exchange and signal detection approaches. In the first experiment, we used a product set with 
heterogeneous utility differences between products. In the second experiment, we chose a product set 
with homogeneous utility differences.  

We designed a recommendation agent for the experiments that implements the two-stage decision 
process by Hauser and Wernerfelt (1990), measures utilities with an additive MAU function, and 
recommends a number of digital cameras. We chose conjunctive rules for the screening stage. The 
restrictions placed on the attribute levels by the participants during conjunctive screening were used to 
generate the stimuli set. The revealed attribute weights determined the order in which the stimuli 
attributes were presented. Three different attribute levels were generated for each attribute. We used the 
minimum and maximum acceptable attribute levels to compute the average as the third attribute level, 
which resulted in a 6x3 D-optimal conjoint design with 18 stimuli for the evaluation stage. We computed 
the attribute weights w� with rank-ordered centroids (ROC) that have been shown to be the most precise 
weighting method for attribute ranking (Barron and Barret 1996). The fuzzy weight for an attribute 
ranked at position ra was assessed as w� � 〈ROC�ra�, ROC�ra � 1�, ROC�ra � 2�〉. 
Procedure 

The participants were instructed to search for digital cameras with our recommendation agent. They used 
it both for initial non-compensatory screening (task A in Table 1) and subsequent evaluation (tasks B and 
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C). Each participant was first asked to specify upper and lower bounds for each attribute interval (photo 
resolution, video resolution, zoom factor, monitor size, weight, price). In task B, the participants were 
asked to rank these six attributes according to their importance and, in task C, to conduct a conjoint 
analysis by ranking the 18 stimuli.  

Task D consisted in rating a number of digital cameras recommended by the system on a 7-point scale 
ranging from -3 (not considerable) to 3 (considerable). The product list the participants were shown in 
task D differed between the two experiments. In the first experiment, the participants were presented with 
product X�, the best, the worst, and 8 randomly selected products (the product base contained 100 digital 
cameras). In the second experiment, we created a result set consisting of products with more 
homogeneous utilities by showing the participants the 10 best products and product X�. We decided to 
show 10 products plus the product X� because we found – in another experiment with 285 participants 
searching for a digital camera at Amazon.com – that approximately 90% of participants considered 11 or 
less products (mean=7.07, SD=3.44) before making their purchase decision. Our participants were told 
that the 11th product had the lowest utility value. Based on the product ratings of task D, we estimated the 
individually optimal recommendation set size with the signal detection approach. 

Table 1. Experimental Procedure 

 Screening Evaluation Consideration Set Cost Evaluation 

T
a
sk
  

A B C D E 

S
y
st
em
  Select Products 

with Minimal 
and Maximal 
Attribute Levels 

Present 
Attributes in 
Random Order 

Generate 6x3 D-
optimal Stimuli 

Generate Product 
List 

Select Best Four 
Products 

U
se
r 
 

Restrict 
Attributes 

Rank Attributes Rank Stimuli Rate Products 
Specify Cost-
Differences 

M
et
h
o
d
 

Conjunctive 
Model 

Rank-Ordered 
Centroids 

Ranking-based 
Conjoint 
Analysis 

Signal Detection 
Approach 

Utility Exchange 
Approach 

 

Finally, the participants were asked (task E): 'At which price p would you perceive a product to be 
significantly better than an identical product for the (reference) price of ... ?' This corresponds to a utility 
exchange approach with the attribute 'price' as i∗. We used the best four products' recalculated prices as 
reference prices. All other attributes were set to the levels of the best expected product X�  and the 
products' ranks were updated. The input of task E formed the basis for estimating the individually optimal 
recommendation set size with the utility exchange approach. 

Pretest and Sample 

We conducted one-on-one pre-tests with 8 students who did not take part in the final experiments. We 
used the think-aloud method for eliciting the participants' opinions of and thoughts on every step of the 
experiment. After the experiment, we interviewed each participant, asking specifically for suggestions to 
improve the prototype. All suggestions made by at least 2 participants were implemented. 

For the first experiment, 93 students from the University of Passau were invited to a lab and given 
instructions how to proceed. For each participant’s conjoint analysis results (task C), we computed a R² 
value indicating how well the estimated utility functions explained the participant’s revealed stimuli 
ranking. Both the utility exchange and the signal detection approach assume that participants’ preferences 
are consistent and reliable. High R² values indicate that this assumption holds true. We conducted an F-
test on the R² value in order to identify participants that did not rank the 18 stimuli in task C consistently. 
80 of the 93 participants passed the F-test. 88 other students from the same university were invited to the 
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second experiment. 68 of these passed the F-test. Each participant was paid US$10. All participants who 
failed the F-test, thus violating both approaches’ basic assumption, were excluded from further analysis. 
In total, 68.5% of the participants were female and average age was 23 years, ranging from 19 to 36. No 
significant differences between the participants of either experiment were explained by gender or age. 

Analysis and Results 

We first checked the reliability and validity of the product utilities’ estimates to make sure that the 
assumption of products being ordered by their utility values (required by both approaches) holds. We 
then estimated an indifference zone parameter δ that fit the product ratings best. Having obtained the 
individual product utilities and δ values, we then compared the δ∗ values predicted by both approaches to δ. We also used precision and recall to evaluate both approaches. 
Utility Elicitation 

Price was restricted most severely in both experiments, followed by zoom. Photo resolution displayed the 
lowest average restriction intensity in both experiments. After tasks B and C (ranking the attributes and 
conducting conjoint analysis), price emerged as the most important attribute, followed by photo 
resolution and zoom. All average weights and average non-standardized utility parameters for each 
attribute are presented in Table 2. 

Table 2. Utility Parameters 

Parameter min (x�) max (x�) 
Experiment 1 Experiment 2 

Estimate Weight Estimate Weight 

Mean SD Mean SD Mean SD Mean SD 

Intercept - - 15.02 118.94 - - 19.37 101.38 - - 

Photo Res. 5.00 15.90 4.97 6.46 0.20 0.18 5.00 5.86 0.23 0.21 

Video Res. 0.31 2.07 5.40 11.61 0.09 0.12 4.78 13.43 0.09 0.14 

Zoom 1 35 1.25 1.57 0.17 0.19 1.30 1.53 0.18 0.16 

Display Size 2.40 3.50 1.67 19.32 0.05 0.05 0.01 13.23 0.04 0.03 

Weight 114 732 -0.03 0.05 0.09 0.11 -0.02 0.05 0.08 0.10 

Price 49 800 -0.21 0.22 0.40 0.24 -0.21 0.22 0.38 0.25 

 

Average R  was 0.90 (adj. R � 0.84) in the first and 0.90 (adj. R � 0.85) in the second experiment, 
indicating reliable utility measurements. This alone, however, does not necessarily imply that participants 
are satisfied with the constructed utility functions. We measured predictive validity by comparing the 
predicted product ranks with observed product ratings. The results, with first-choice hit rates2 of 0.71 
(first experiment) and 0.74 (second experiment) and rank correlations of 0.57 and 0.52 respectively, were 
very satisfactory, especially when compared to other conjoint studies. (Green et al. 1993) report 
correlations between 0.53 and 0.67, and first-choice hit rates between 0.37 and 0.44. (Moore 2004) 
reports first-choice hit rates between 0.37 and 0.78. In addition, we found a high correlation between a 
product’s estimated rank of and its observed rating (0.47 in the first and 0.57 in the second experiment).  

We may safely conclude that the assumption that products are ordered according to their expected 
utilities holds for our experiments, and that we can use the utility PDF of the best expected product as 
signal PDF. Table 3 shows that Θ$u�X��% � ΘM�O�BP and Θ$u�X"�% � Θ�L�MN hold: the best expected product 
was evaluated as most considerable and the worst expected product as least considerable.    

                                                             

2 The first-choice hit rate indicates what proportion of participants would like to purchase the best expected product. 
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Although the best expected product has the highest average rating, the first-hit choice rates of 0.71 and 
0.74 respectively indicate that for more than 25% of each experiment’s participants the best expected 
product was not a 'correct selection'. This underlines the importance of computing a set of 
recommendable products larger than 1.  

Table 3. Average Ratings of Products in the Result List (Maximum=3, Minimum=-3) 

Expected Rank 
Experiment 1 Experiment 2  

Mean(Rating) SD(Rating) Mean(Rating) SD(Rating) 

1 1.45 1.53 1.57 1.30 

2 0.70 1.50 0.29 1.46 

3 0.10 1.60 -0.09 1.30 

4 -0.25 1.46 -0.28 1.35 

5 -0.53 1.56 -0.47 1.34 

6 -1.06 1.45 -0.79 1.53 

7 -1.46 1.39 -0.84 1.42 

8 -1.48 1.39 -1.03 1.43 

9 -1.96 1.31 -1.29 1.60 

10 -2.28 1.04 -1.44 1.49 

11 -2.47 0.92 -1.90 1.35 

 

We found sensitivities of d �2.25 (sd=1.47) in the first and d �1.45 (sd=1.22) in the second experiment, 
indicating that it was much harder for the participants in the second experiment to distinguish between 
signal and noise than for the participants in the first experiment. This is due to the fact that the products 
each participant was asked to rate (in addition to the best product) were selected randomly in the first 
experiment and in descending order of their expected utility values in the second experiment.  

Indifference Zone + 
Products rated at least 4 out of 7 were interpreted as positive ratings (0), and all others as negative ratings 
(1). This coding permitted us to use logistic regression analysis for estimating each participant's δ value 
separating considerable (0) from not considerable (1) products. 

We examined δ by means of evaluating precision, recall, and F-measures. We used precision to measure 
the fraction of products in the recommendation set that were rated 'considerable', obtaining a value of 
0.77 in the first and the surprisingly high value of 0.78 in the second experiment. Recall, indicating the 
fraction of considerable products the consideration set contained, reached the high level of 0.81 in the 
first and the acceptable level of 0.67 in the second experiment. The F-measure amounted to 0.79 in the 
first and 0.72 in the second experiment, which points to an outstanding balance between precision and 
recall. The estimated threshold values are evidently appropriate for predicting whether a product is 
considerable for a consumer. 

Indifference zone values δ were normalized to the interval [0;1] as follows for comparing δ between all 
participants: 

 δ�L��N� � 1 � ]$^�I<�%;�
]$^�I<�%;]$^�I`�% (14) 

The first experiment produced a mean δ�L��N� value of 0.30 (sd=0.22) and the second experiment of 0.18 
(sd=0.20). Participants tended to consider a significantly larger number of products when the utilities 
were broadly distributed (p 5 0.001). High standard deviations for δ�L��N� support the assumption that 
consumers have individual utility thresholds. 
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 Predictive Validity of +∗ 
We computed precision, recall, and the F-measure for each approach and experiment based on the 
participant's ratings and the δ�L��N�∗  values from each approach. Additionally, we computed error values 
as the distance between δ�L��N�  and δ�L��N�∗ , which is 1 � �E$u�X��% � δ∗�/�E$u�X��% � E$u�X"�%� . The 
results (Table 4) show that the signal detection approach outperforms the utility exchange approach on all 
indicators for both heterogeneously and homogeneously distributed product utilities. The only case where 
the utility exchange approach proved superior was the recall value (with identical error values, p=0.29) 
for homogeneously distributed product utilities. In the case of heterogeneously distributed product 
utilities, we found a significant difference between the error values (p<0.01). 

Table 4. Predictive Validity of Experiment 1 and 2 

 
Precision Recall F-Measure Mean(Error) SD(Error)  

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 

Utility Exchange 0.59 0.49 0.52 0.56 0.55 0.52 0.27 0.23 0.23 0.25 

Signal Detection 0.70 0.77 0.59 0.47 0.64 0.58 0.20 0.21 0.18 0.15 

Reference 0.77 0.78 0.81 0.67 0.79 0.72 -- -- -- -- 

  

The utility exchange approach tended to underestimate δ∗ (Figure 3). The effect was more pronounced in 
the case of heterogeneously distributed product utilities. Figure 3 also demonstrates that signal detection 
theory fitted the δ values better on average, but that the δ∗ produced larger variance than the reference 
and δ∗ values predicted by the utility exchange approach.   
If δ∗ → 0, only the best expected product is part of the consideration set. In the first (second) experiment, 
80% (81%) gave the best expected product a rating of at least 4 points, indicating that this product was 
considerable. Thus, if δ∗ → 0, a precision value of around 0.8 is predicted. The utility exchange approach 
did not consistently underestimate δ∗. We found a negative correlation between underestimation of δ∗ and 
the reference price (r=-0.18, p=0.001) in the first but not in the second experiment (r=0.04, p=0.552). A 
monotonically descending convex SAU function would improve the prediction of δ∗  in the first 
experiment, but not in the second experiment. Convex utility functions for price point to irrational 
behaviour on part of the consumers. Compared to linear utility functions, they lead to larger utility 
differences between small prices and to smaller differences between large prices. This leads us to suspect 
that conceptual inconsistencies between defining price differences and specifying utility thresholds may 
exist. 

 

 

Figure  3. Boxplot of Normed Thresholds 
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Application 

Our experiments revealed higher accuracy for the signal detection approach. In this section, we illustrate 
how this approach could be integrated into an existing MAUT-based recommendation agent. We consider 
the computer advisor at Dell.com (Figure 3). In a first step (i.e. screening phase), consumers can specify 
the price range for their new computer and select the type of computer they are planning to buy. In a 
second step (i.e. evaluation phase), consumers can use sliders to define their importance w�  for 6 
attributes. Given a predefined relationship between an attribute’s outcome level x� and its utility u��x��, we 
can compute each product’s utility with equation 1. The utility of the best outcome for an attribute i is then 
defined as 1, and the utility of the worst outcome 0. 

Based on the information imparted to Dell’s computer advisor by a consumer, we can compute the best 
expected product X�  and the worst expected product X"  as well as the expected utilities and utility 
deviations with equations 12 and 13. We can then use equation 10 (if σ� � σ") or equation 11 (if σ� 7 σ") 
to estimate the utility u� of the indifference product. Finally, we can select the computer X� whose utilities 
are closest to u� . The consumer using Dell’s advisor will not have discerned any alterations to the 
recommendation process so far. The only novel step we now introduce to the process is asking the 
consumer to evaluate X�. Once we have this last bit of information to feed to equation 10 or 11, we can 
compute the utility threshold u∗ that a computer has to surpass to be included in the recommendation set. 
If Dell were to extend its advisor to allow consumers to specify the importance of the price attribute, it 
would become possible to compute each consumer’s willingness-to-pay. In Figure 4, we see that the 
consumer has rated the attribute “Email, Social Networking, Photo Sharing” with 3, “Mobility, Portability” 
with 4 and so on. If we knew how this consumer had rated price (let us say with 3), we would be able to 
estimate the utility for any computer. Let us assume that a hypothetical computer’s attribute utilites  u��x�� are the following: u]�B�P � 0.5, u�LC�P�G� � 0.6, u�N��B � 0.3, u��LGL � 0.4, u9L�N�L�( � 0.8, u�B���O �0.2, u����N � 0.6. By multiplying the attribute’s weightings from Figure 4 with their utilities, we get a total 
utility of 9.5. If the utility threshold u∗ were, for example, 9.3, we could increase the price of the computer 
until the utility of the price attribute has decreased to 0.4. Let us say that the maximal price of our 
hypothetical computer is US$2,500 and the minimal price US$500. The utility for the price attribute is 
then computed by ua���N � �0.0005price � 1.25. A decrease of 0.2 utility units equals, in this example, a 
price increase of US$400. We can therefore increase the price to up to US$1,700 for this particular 
consumer, for whom a price utility of 0.6 equals US$ 1,300. 

 

 

Figure  4. Screenshot of Dell’s Computer Advisor 
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Discussion 

Catering to consumer needs is not only a matter of capturing product preferences, but also of estimating 
how many products will be considered in a purchase decision. This paper introduces a novel approach – 
signal detection - for predicting the number of products a recommendation agent ought to present to a 
consumer. Another approach - utility exchange – is proposed as an alternative to estimating the number 
of recommendable products. Our empirical results indicate that the signal detection approach is better at 
predicting the number of recommendable products than the utility exchange approach.  

Implications for Practice and Research 

Our main theoretical contribution is the development of a novel approach that is based on the well-known 
signal detection theory. Our approach showed good predictive validity in two laboratory experiments. We 
also shed light on how the utility exchange approach by (Butler et al. 2001), which produced merely 
acceptable level of predictive validity, may be adapted in future research. We believe that by developing 
the utility exchange approach further, estimates of consumers’ willingnes-to-pay3 (WTP) could be vastly 
improved. They can be carried out if reliable and valid estimates of consumer MAU functions and utility 
thresholds are available (Jedidi and Zhang 2002).  

From a recommendation agent provider's point of view, several of our findings hold interesting 
implications. Instead of being forced to overhaul their products to integrate consideration set size 
prediction, all they need to do is integrate an add-on to existing MAUT-based recommendation agents. 
We suggest adding the signal detection-based extension, which our experiments showed to have higher 
predictive validity than the utility exchange. The effort involved in the search process remains virtually 
constant. Our approach is a solution to the dilemma between the 'tyranny of too much choice' and the 
'allure of more choice' (White and Hoffrage 2009). Let us consider MyProductAdvisor.com. This 
extension would change the recommendation process only very slightly. The 8 previous (optional) steps in 
the criteria specification process would be supplemented by a ninth step where the consumer is prompted 
to rate the product for which he is indifferent if τ � 1. This would 1) decrease consumer information 
overload, 2) improve consumer perception of MyProductAdvisor.com as a recommendation agent that 
correctly identifies consumer preferences and therefore 3) improve MyProductAdvisor.com's credibility. 

Our findings also benefit brand managers, product developers, and marketing managers. Previous 
research has shown that extending market models to include segment-level utility thresholds can 
significantly improve the accuracy of market share and market structure predictions (Jedidi et al. 1996). 
These models, however, assumed that the consumer attributes determining choice behaviour also 
determine consideration set formation. This assumption is as yet untested and, since previous findings (as 
indeed our own) show that attributes like gender or experience may have no impact on consideration set 
formation, will likely not hold in many scenarios. Our recommendation agent provides the information 
necessary for testing the old models’ accuracy and for developing new models of market prediction. We 
believe that combining choice and consideration processes will improve segment-level based market 
estimates dramatically.  

Popular market share prediction models use conjoint-based choice simulation. The widely used multi-
nomial rule (Schön 2010) uses segment-based variables to estimate market shares. Each product is 
assigned a probability to be a consumer segment’s choice. Even products that consumers in this segment 
would not even consider, let alone choose, are assigned a nonzero probability. Our research can help 
increase the accuracy of such models by improving choice rules. If one were to include information on 
individual-level thresholds, the models’ accuracy would likely increase. Inconsiderable products could be 
identified and be (correctly) assigned a zero choice probability. Our recommendation agent provides this 
information. 

                                                             

3Methods for estimating consumers' willingness to pay that are based on the prediction of a utility threshold have 

been compared in Miller et al. (2011). 
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Limitations 

First, the utility exchange approach produced surprisingly high error levels in our experiments. These 
results lead us to suspect that the utility exchange approach is based on a faulty assumption: specifying a 
difference in terms of attribute units and specifying a difference in terms of utility values are apparently 
not identical tasks in the eyes of consumers. We are, however, not able to explain (yet) what exactly 
constitutes the difference between cost/price units and utility units and how they may be made to feel 
more similar. This is a major obstacle towards practical implementations of this approach. We think that 
translating cost/price units and utility units in two distinct thresholds could improve the approach’s 
validity. We will explore this and other possibilites in future research. 

Second, we used digital cameras as products in our experiments and linear SAU functions for computing 
product utilities. This limits the generalizability of our findings somewhat. We will conduct further 
empirical studies on both approaches with non-linear SAU functions and other products (experience 
goods in particular).  

Third, the recommendation process we implemented for our experiments allows only one iteration. This 
makes it very efficient to use for consumers but may not be ideal in terms of predictive accurary of  δ. The 
signal detection approach could be adapted to allow multiple, iterative evaluations of product X�. The 
utility threshold predicted in step 7 of the signal detection approach can be used as reference for another 
product X�, to be evaluated by the consumer in a second iteration. We can then narrow the interval 
around the real δ by adapting ΘM�O�BP or Θ�L�MN.  

Appendix 

Table of Notations 

u��x�� SAU function for attribute i 
x� outcome or level of attribute i 
w� weight for attribute i 
u�X� product utility 

c�   consumers’ risk tolerance 

a� and b� scaling constants 

Xk 

X� 
product k 

product for which a risk neutral consumer is indifferent 

δ∗ indifference value 

x′ 	(�	   level for attribute i∗ and product X( �X�, X , . . . , X"� 
E$u�X(�% expected utility of product X( 
 τ  specificity of a consumer (tendency to classify a product as signal or noise) 

u� critical point (measurement level � that denotes �) 
d sensitivity (degree of difficulty of distinguishing between signal and noise) 

Θ$u�XB�%  utility PDF of XB 
h evaluation of the product at u� 
u∗ utility threshold 
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Proof for Equation 10 

1
σ�√2π e
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σ�√2π e

;0.sy^∗;]$^�I`�%\< ~@
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2ln��V�σ� � �u∗ � E$u�X��%� � ��u∗ � E$u�X"%� 	

u∗ � 2ln�aV�σ� � E$u�X��% � E$u�X"�% 2E$u�X"�% � 2E$u�X��% 	
Proof for Equation 11 
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 b^∗;]$^�I<�%\< c � 2ln�σ�� � b^∗;]$^�I`�%\` c � 2ln�aVσ"� 

u∗ � u∗ e2E$u�X(�σ� � 2E$u�X��%σ" σ" � σ� f � E$u�X��% σ" � E$u�X"�% σ� � 2ln yσ"aVσ� ~ σ� σ" 
σ" � σ� � 0 

Since  

 
a
 5 =ba c

 � q								∀E$u�X��%, E$u�X"�%, σ�, σ" D 0 
the only meaningful solution is  

 u∗ � � a
 � =ba c

 � q. 
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