View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by AIS Electronic Library (AlSeL)

Scandinavian Journal of Information Systems

Volume 4 | Issue 1 Article 4

1992

DIFFUSION OF CASE: An obstacle race?

Lone Malmborg
Copenhagen Business School, LoneMalmborg@emailaddressnotknown

Follow this and additional works at: http://aisel.aisnet.org/sjis

Recommended Citation

Malmborg, Lone (1992) "DIFFUSION OF CASE: An obstacle race?," Scandinavian Journal of Information Systems: Vol. 4 : Iss. 1,
Article 4.
Available at: http://aisel.aisnet.org/sjis/vol4/iss1/4

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.


https://core.ac.uk/display/301357998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol4?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol4/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol4/iss1/4?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol4/iss1/4?utm_source=aisel.aisnet.org%2Fsjis%2Fvol4%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Malmborg: DIFFUSION OF CASE: An obstacle race?
Scandinavian Journal of Information Systems, Vol. 3, pp. 105-118, 1991

DIFFUSION OF CASE

An obstacle race?

LONE MALMBORG

Institute of Computer and Systems Sciences at Copenhagen Business School
Rosengrns Allé 31,4, DK-1970 Frederiksberg C, Denmark

Abstract

This paper provides a conceptual and discussion framework for answering
what the obstacles to diffusion of CASE-technology may be. CASE is viewed
in a tool-external context and with focus on the negative aspects of CASE-
technology, as the goal is to discuss the obstacles to diffusion of CASE. The
paper is mainly based on literature reviews and serves as a point of departure
for further empirical research.

Application of CASE-tools has consequences for the individual work pro-
cess of the systems developers and for the roles of the development team
members. These consequences may cause resistance against the use of
CASE-tools. Successful use of CASE-tools is also determined by the ba-
sic approach to development of software. Moreover CASE-tools influence
the communication between developers and end-users. Increased quality
of design and productivity of the development process depend on correctly
understanding of the requirements, which reflects the quality of this com-
munication.

An important condition of diffusion is solving of the so-called software
crisis: lack of productivity and quality increases of software development.
Productivity and quality increases necessitate efforts in the initial develop-
ment phases and better support of the user-developer communication. These
are areas, which are not seriously improved by the application of CASE-tools.

Keywords: Computer-Aided Software Engineering (CASE), systems devel-
opment, software engineering.

Published by AIS Electronic Library (AISeL), 1992



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

1 Introduction

Computer Aided Software Engineering (CASE) has been introduced to the mar-
ket as a means to solve the so-called software crisis. This crisis is exemplified by
lack of productivity increases, missing attainment of quality gains and insufficient
improvement of maintenance strategies. These factors are part of the reason why
costs of software development and maintenance have been increasing compared
to the overall costs of computer systems (Charette 1987).

There is no doubt that CASE-technology has strong advantages compared
to manual techniques. Most important through the automation of tedious, time
consuming documentation activities, some programming and configuration man-
agement activities. Colloquially the term CASE is used as a designation for very
different things, including diagraming tools with no check-facilities as well as
separate code-generators. In this paper CASE is defined from the main criteria,
that the CASE-tool includes a repository, as suggested by Gane (1990): “the
distinguishing characteristic of a CASE product is that it builds within itself a
design database, at a higher level than code statements or physical data elements
definitions.”

Despite the above mentioned promises, efforts by both vendors and researchers
have generally failed to validate the impacts of CASE-tools. According to Ke-
merer (1989) this problem stems from a number of difficulties in the CASE eval-
uation research problem. He expresses the possibility that CASE may be just
another unproved productivity nostrum.

Many evaluations and classifications of CASE-tools are based on technical as-
pects of the CASE-technology. This rests mainly on the traditions for evaluation
of software engineering environments (Firth et al. 1987, Charette 1987). By using
these aspects, you evaluate the CASE-tools by focusing on how well the activities
of the system life cycle phases are carried out. The basic approach to develop-
ment of software embedded in CASE-tools is not questioned when the evaluation
of the technology is based mainly on technical aspects, or put in another way, the
CASE-technology is evaluated on its own premises by focusing on tool-internal
aspects.

In the remainder of this paper I will discuss what the obstacles for the diffusion
of CASE-tools—and with that software engineering principles—could be. I will
focus on some aspects from a context external to tools. This means that the
CASE-technology is discussed and evaluated not only on its own premises, but
also by viewing CASE in a context external to tools. I will primarily focus on
the negative aspects of CASE-technology as my goal is to make a conceptual
discussion of the obstacles to diffusion of CASE-technology.

What is the so-called software crisis, and which influence will use of CASE-
tools and use of engineering principles have on this? An outline of this situation
will be presented in Section 2.

In Section 3 I look at probable obstacles from a sociological perspective. This

106

http://aisel.aisnet.org/sjis/vol4/iss1/4



Malmborg: DIFFUSION OF CASE: An obstacle race?

perspective is divided further into two sub-perspectives, one looking at individual
factors, and one looking at the group or organizational factors.

Obstacles for a successful diffusion of software engineering principles through
application of CASE-tools may be a question of a basic approach used in devel-
opment of software. One approach is primarily concerned with problems related
to the construction of the very system. Another is also concerned with problems
and consequences related to the basis and environment of the system. This is
discussed in Section 4.

In Section 5 I add proposals for further research and some concluding remarks.

2 Influence on the Software Crisis

The use of CASE-tools supports the methods used in the software engineer-
ing process. An engineering approach means disciplined application of scientific
knowledge to resolve problems of immediate, practical significance. The engineer-
ing discipline relies on codifying scientific knowledge about a specific technological
problem domain, in a form that is directly useful to the practitioner, thereby pro-
viding answers for questions that often occur in practice. When the practitioner
uses engineering problem solving principles he does not work as a virtuoso, but
applies earlier obtained—and operationalized—knowledge and insight. In that
way greater efficiency, standardization, and measurability is obtained.!

2.1 A Historical Perspective on Software Engineering

Consider development of software as an engineering discipline Shaw claims: “In
current software practice, knowledge about techniques that work is not shared
effectively with later projects, nor is there a large body of knowledge about
development of software organized for ready reference. Computer science has
contributed some relevant theory, but practice proceeds largely independently of
this organized knowledge” (Shaw 1990, p. 16). This claim leads me to question
why the engineering approach is not more diffused through the area of software
development, as the use of engineering principles through application of CASE-
tools is seen as a means to solve the software crisis.

When introducing the waterfall model, Boehm (1976) proposed a definition of
the concept software engineering: “the practical application of scientific knowl-
edge in the design and construction of computer programs and the associated
documentation required to develop, operate, and maintain them.” This definition
is consistent with the traditional definition of engineering, although Boehm was
aware of the lack of sufficient scientific technological premises. Due to Boehm’s
insights, a lot of attempts to establish systematic procedures to support design
and analysis activities in the software life cycle, were introduced. The work of
Yourdon & Constantine (1979) and DeMarco (1978) probably exerted the great-
est influence on these attempts.

107

Published by AIS Electronic Library (AISeL), 1992



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

Not until the emergence of CASE-technology in the mid eighties, was an at-
tempt made to provide a complete and integrated computer support of software
development. Scientific knowledge, economic rationality and established proce-
dures are combined in tools which support (and partly automate) all activities of
the entire software life cycle. Now it would seem that the basis for an engineering
approach would seem to exist.

2.2 Improvement of Productivity

Findings in an empirical measure on the productivity of structured methods re-
ported in Cerveny & Joseph (1988) suggest that structured techniques are more
labour intensive than those non-structured techniques that are assumed to be
inferior. However Cerveny & Joseph (1988, p. 250) concludes that “structured
techniques still hold a promise for more productive systems analysis and pro-
gramming. The development of CASE technology may dramatically change the
productivity of these methods, by automating the tedious, time consuming docu-
mentation activities associated with structured analysis, as well as by eliminating
the need for programming support.”

Despite these questionable effects on productivity,? purchase and use of CASE-
technology to support development of software is most often motivated by con-
cerns regarding increasing and measuring productivity in development of com-
puter systems, although there seem to be only a few indications of immediate
productivity increases (Kemerer 1989), (Aaen & Sgrensen 1991a). Productivity
may even decrease during the introduction process as a result of the learning
curve involved in starting to use the CASE-tool (Aaen & Sgrensen 1991a).

It seems that with the application of CASE-tools, as with the application of
structured techniques, the advantages are mainly in the maintenance costs due
to a reduction of errors in the coding phase and to a higher degree of standard-
ization. But these are not the most essential reasons for lack of productivity and
management of costs in software development projects.

2.3 Communication Between End-users and Developers

Despite the relatively large amount of maintenance costs due to errors in the
coding phase, most maintenance costs are caused by changes in the original re-
quirements specification (Charette 1987). In (Yourdon 1989, p. 466) it says that
there exists “an on-going misunderstanding between the end user and the sys-
tems analyst... This is important, because we know that 50% of the errors in
a typical systems development project today are due to misunderstandings be-
tween the end user and the systems analyst; 75% of the cost of error removal
in an operational system is associated with errors that originated in the systems
analysis phase.” '

These statements indicate that the most essential problem in relation to de-
velopment of computer systems is not at all affected by the application of CASE-

108

http://aisel.aisnet.org/sjis/vol4/iss1/4



Malmborg: DIFFUSION OF CASE: An obstacle race?

tools. When CASE-tools do not grasp the nettle, it is because they do not
support the aspect of the development process that contains the embryo for the
difficulties in management of costs and increasing of productivity: by the use of
CASE-tools the user-developer communication in the initial phases and thereby
the understanding of the users requirements are still haphazard and individually
done. This question is explored later in Section 4.

2.4 Improved Communication Through Prototyping

However the CASE-tools may indirectly contribute to a solution of the above men-
tioned problem, because they can make prototyping possible, as they facilitate the
rapid development of example systems. As a software development approach pro-
totyping is essentially a technology-driven approach, which has matured through
the appearance of CASE-tools. A prototype may in many situations constitute a
basis for a much better communication between users and developers than usual
diagrams from the structured methods may do. Ehn says that “prototypes can
be used as alternatives or complements to traditional textual or graphic more
or less formalized detached descriptions. Integrated with scenarios of future use,
the experimental use of prototypes in design may be an important technique in
playing the language-game of design, a game of involvement and by doing, that
defeats some of the limits of formalization” (Ehn 1988, p. 206).

3 The Systems Developers’ Work Processes

If a productivity increase is to be obtained by application of CASE-technology,
it will also require a high degree of standardization. Because one of the most
important aspects of CASE-tools is that they permit small parts of the system
to be done by different people and integrated in the end.

In my opinion systems developers are not prepared to be governed by a very
tight set of rules and procedures fhroughout the development process. The in-
teresting question here is whether software developers will ever be ready for this
way of organizing their work. The methodological basis for most CASE-tools is
structured methods (Jarvenpaa et al. 1990). One of the most widely mentioned
advantages of CASE is that CASE will automate much of the tedious work em-
bodied in structured techniques.

But although structured methods are in widespread use, both theoretical crit-
icism (Naur 1985) of the methods and empirical surveys (Bansler & Bgdker 1989)
indicate that the way in which systems developers use the tools of the method is
quite individual. There is a wide gap between the way systems development is
portrayed in the normative scientific and technical literature, and the way it is
carried out in real life (Bansler & Bgdker 1989).

Application of CASE-tools has consequences for both the individual work
process of the systems developers as well as for the roles of the development
team members. If we view software development projects as projects of a very

109

Published by AIS Electronic Library (AISeL), 1992



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

unique character, it is not easy to apply earlier obtained—and operationalized—
knowledge and insight. Tom DeMarco, who has influenced the software analysis
and design area with standardized, operationalized techniques (and thus also
has attempted to introduce an engineering practice) claims that a model for a
software development project should be viewed “as a specification of one project.
A methodology, by analogy, is a specification of all projects. The notion that
there could ever be a single general-purpose specification of all projects is about
as credible as the idea of writing a single general-purpose specification for all
systems” (DeMarco 1982, p. 131). General guidance and common rules for the
organization of the systems developers’ work is not playing the most important
role: Intuition, individualism, and autonomy are central values for the systems
developers.

3.1 The Individual ‘Theory Building’ of Systems Developers

With CASE-technology the stage seems set for standardization of both product
(the goal system) and process (the systems development process from generation
of ideas to use of the system). It was a question of the same matter when
the software life cycle approach (process) and structured methods (process and
product) were introduced in the end of the 70’s. But how can we explain that
this standardization has not taken place despite the support from methods and
tools.

Naur (1985) provides one possible theoretical answer to why systems devel-
opment cannot be subjugated formalisms and methodological rules. Under the
title Programming as Theory Building he argues in favour of the fact that the
essential activity of the systems development process® is to “build a theory” of
the actual domain—irrespective of whether the development process is conducted
by individuals or a collective. Naur uses the word ‘theory’ in the sense of Gilbert
Ryle* to denote something like understanding, enabling us to give qualified an-
swers to questions pertaining to specific domain of interest, to act intelligently in
relevant situations, and to take decisions concerning our actions. Theory is not
simply taken to mean developing or having a command of abstract theorems on
some complex domain. On the contrary: Theory building, in Ryle’s sense also
takes place in everyday situations. Also one can be said to have a theory when
one is in a position to relate abstract knowledge to situations encountered in real
life and to apply it fruitfully.

The guidance and control implied in structured methods and CASE-tools
based on structured methods do not support the theory building and problem
understanding that Naur advocates. Naur stresses as an essential part of this
theory building the importance of the use of direct intuition in all areas; also in
development and understanding of computer systems.

He considers it a fundamental mistake to underestimate the value of intuition,
and to regard intuition as an unreliable factor. Tt should never, Naur continues,
be replaced by a rule-based system of formalisms, such as the structured methods

110

http://aisel.aisnet.org/sjis/vol4/iss1/4



Malmborg: DIFFUSION OF CASE: An obstacle race?
and most CASE-tools. The more a process is controlled by rule-based systems,
the less influence intuition will get. In CASE-tools, which follows a certain Sys-
tems development method, there will be very little latitude for intuition.

In some CASE-tools, analysis of the application domain is supported in a way,
such that the systems developer is offered a pre-completed matrix with standard
business concepts, so the systems developer just checks off this matrix. In this
way a standardization of the problem understanding is forced and the quality of
individual, intuitive understanding is ignored.

Furthermore Naur claims that there will never be one right method for systems
development in terms of theory building, and that there exist no formal methods
or sequences of method steps which can be defined definitively in advance and be
utilized for systems development.

Although Naur’s idea about programming as theory building is influential and
useful in relation to the understanding of how systems developers work with
CASE-tools, 1 must state some critical objections. One critical objection is,
that systems developers will intend to be very rational (and idealistic) in their
approach, whereas the average developer is as best average (Parnas & Clements
1985). As a second objection to Naur’s claim it could be stated that individual
experience and intuition might co-exist with formal methods. Especially when
the developer is a novice in his area, some degree of formalization as a kind of
guidance might be helpful in performance of complicated systems development
activities.

However there seem to be some empirical evidence, that (at least in Den-
mark) systems developers work in a more individual way. In a survey of systems
developer values in Denmark and Canada (Kumar & Bjgrn-Andersen 1990), it
was found that strong values to the Danish systems developers meant auton-
omy in planning and performance of tasks, while the Canadian developers put
stronger emphasis on reliability and operating costs. Another survey (Hgrliick
1985) points in the same direction. Hgrliick’s survey reports about a low degree of
formalization in software development in Danish enterprises compared with soft-
ware industries in two other industrialised countries (Holland and The United
Kingdom).

Both of these surveys indicate that a more flexible way of solving problems
takes place in Denmark (and Scandinavia) than in the other industrialized coun-
tries. This fact points in the direction that application of engineering principles
in software development, would have difficulties establishing in Denmark (Scan-
dinavia). This indicates that Danish design values and traditions will not favour
the adoption and use of CASE-tools. It seems that informal work procedures
have a strong position in Denmark as well as that there is a widespread resis-
tance against the increased formalization which the use of structured methods
implies.

This resistance can presumably be traced back to Naur’s claim that program-
ming is theory building where theory building in this context is to be understood
as the individual unfolding of creativity. The programmer’s skill and intuition is

111

Published by AIS Electronic Library (AISeL), 1992



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

the pivot upon which the activity turns, and the use of specific techniques, tools
and rules plays a minor, secondary role.

3.2 Method Guidance in CASE-Tools

Naur’s assumptions about theory building in the context of systems development
and the two empirically based surveys point in the direction of two matters: first
it seems that the very nature of the design process puts obstacles in the way of a
completion of a professional engineering approach. Because this fact must mean,
at least for Scandinavian systems developers, that a successful adoption and use of
CASE-tools depend on whether the CASE-tools are flexible enough with respect
to methods and leave room for individual creativity and use of intuition in the
design process.

One of the main figures behind a well-known CASE-tool was very promising
about the company’s CASE philosophy: “We wanted to build houses of worship
and not religions back in 1984. We wanted to provide a set of tools within an
environment. We weren’t going to constrain people. We didn’t want to be in the
religion business” (Chris Grejtak, Index Technologies, in Jarvenpaa et al. (1990,
p. 2)).

The major part of all CASE-tools follows the procedures and rules of struc-
tured methods, but an American survey (Jarvenpaa et al. 1990) of those PC-based
CASE-tools that provide support of structured analysis and design, shows that
there are clear differences in the flexibility of the tools. The survey categorizes
the tools into three types in respect of method support: restrictive, guided, or
flexible. The three categories can be described by an example:

The restrictive approach will force the developers to conduct a top-down
decomposition of dataflow diagrams. The systems developers will not be able to
choose to start constructing a dataflow on a lower level in the hierarchy. With
a guided approach the systems developers will be prompted to use the above
procedure. During the whole process the CASE-tool will give advices instead
of directives. With a flexible approach the systems developers can choose by
themselves which approach they want to use, and whether they want verifications
of their procedures later on.

The method support can in the actual situations be of two different kinds:
automated control or informative feedback on methodological violations.

A notable issue in (Jarvenpaa et al. 1990), which lies in continuation of Naur’s
idea of ‘theory building,’ is that although structured analysis results in a number
of hierarchical specifications, design does not necessarily take place in a top-down
way. According to Jarvenpaa et al. true experts rather behave opportunistically
in responding to conditions as they arise during the design process. Experts tend
to apply a top-down balanced decomposition approach when they are familiar
with the problem, but work at different levels of abstraction when they are less
familiar with the problem.

112

http://aisel.aisnet.org/sjis/vol4/iss1/4



Malmborg: DIFFUSION OF CASE: An obstacle race?

3.3 The Development Team

A different aspect of CASE-technology, which affects the systems developer’s way
of working, and which can constitute an obstacle to a widespread use of CASE-
technology, is the changed division of labour that occurs in the development team
when using CASE.

In other areas there is a historical evidence that application of engineering
principles causes resistance among the involved groups. A specialization often
means dequalification, because there will be areas of the profession, that there
will no longer be a need for. It can either be because the technology automates
manual procedures, or it can be because tasks are placed in the hands of other
groups or professions. In the last case, it will possibly also cause a change in
power relations.

Wanda Orlikowski has made a survey of the social implications of the use
of CASE-tools. The survey is described in (Orlikowski 1988, 1989). The final
conclusions of the findings are that the use of CASE-tools results in “structural
changes due to modification of the systems development division of labour and
shifts in patterns of dependency among project team coalitions. These changes
triggered a polarization among the systems developers which was evinced in acts
of coercion and rebellion, the display of territorialism, resentment, and stereotyp-
ing, as well as the enactment of subcultures” (Orlikowski 1989, p. 199). These
structural changes might be the natural, short-term result of power shifts that
follow most revolutionary technologies. In the long term this means that the re-
sistance among the involved groups will disappear, when a new division of labour
has existed for a while. A changed division of labour will probably only be a
provisional obstacle for diffusion of CASE-tools.

4 The System and the Surroundings

The point of viem that the engineering approach to software development is too
narrow in its approach to development of information systems could be another
possible obstacle for widespread use of CASE-tools.

This problem is reflected in the relationship between the fields of (or ap-
proaches implied in) software engineering and systems development. This distinc-
tion between software engineering and systems development is made by Bansler
& Clausen (1989). The latter is also sometimes denoted information systems
development, software development or computer systems development. The two
fields have many points of contact: project management, introduction of methods
and tools for supporting the development of software etc. But the subjects of the
two areas are nevertheless distinctively different from each other.

With an engineering approach to software development we are by convention
primarily concerned with problems related to the construction of the very system
and not with problems and consequences related to the basis and environment
of the system (Bansler & Clausen 1989). We should carefully distinguish devel-

113

Published by AIS Electronic Library (AISeL), 1992



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

opment projects that are commenced from a computer systems viewpoint, from
those that are commenced from a computer-based systems viewpoint. The dis-
tinction is subtle, but critical in understanding the developer’s frame of mind.
While software engineering typically is concerned about computer systems, sys-
tems development typically is concerned about computer-based systems.

Taking computer systems as a starting point implies that you are interested
in constructing computer systems. A usual assumption about this approach to
software development is that a clear and definite description of the problem is
given in advance. Most likely, you are often only concerned about the technical
problems that occur when the system is implemented. By taking this approach
to software development, you remove the problem which is often seen as the
most important reason for lack of productivity and bad management of costs in
software development. This problem concerns changes in the original requirement
specifications. Such changes can be traced back to the misunderstanding of the
user organization’s problems and needs. These changes are also related to the
poor communication and misunderstanding between users (or user organizations)
and developers.

Taking computer-based systems as a starting point implies that your are also
interested in the problems and changes that introduction and use of computer
systems in organizations will cause. With this starting point the development
process is also a process of getting the users to understand, formulate, and de-
fine their problems and needs, instead of letting the managers or consultants
formulate a number of fixed problems—and requirements—as input to the devel-
opers: “A primary goal of CASE products is to automate much of the clerical
work involved in applying the techniques, so that the analyst can devote more
time to understanding the user’s requirements and produce a more complete and
consistent specification” (Lejderman 1987, p. 80).

4.1 Problem Solving or Problem Definition

If the method built into the CASE-tool views the design process as a problem
solving process—where the problems are defined and presented in advance by
the managers—and not as a problem definition process, and if the CASE-tool
is guided or restrictive (in Jarvenpaa’s terms) with regard to this method it
cannot be assumed that the use of CASE-tools automatically means improved
understanding of the users’ need. The reason for this is that the most important
argument for managers of software development projects to buy CASE-tools is
reduction of costs in the entire development process. Thus, the time saved is not
used for better communication with end users, but to increase productivity.
CASE-tools appear to support the construction of computer systems and not
the understanding of the problems and changes the system will cause for the user
organization. Indeed, CASE-tools can put more focus on the technical aspects
of systems development, because most CASE-tools take for granted that the

114

http://aisel.aisnet.org/sjis/vol4/iss1/4

10



Malmborg: DIFFUSION OF CASE: An obstacle race?

problem to be solved is well structured and defined. Thus, the design process is
viewed as a problem solving activity instead of as a problem definition process.

Malhotra et al. (1980) proposes that instead of viewing the design process
as a problem solving process, we split the process into three iterative processes:
goal elaboration, design generation and design evaluation, because in “real-world
design situations, the goals are, typically, fuzzy and poorly articulated and cannot
be mapped directly into properties of the design. Thus, exact configuration
of the final state is not prescribed. A part of the design process consists of
formalizing and refining the design. Even so, it is usually difficult to tell how well
a design meets a particular functional requirement. In addition, the functional
requirements often cover different dimensions and the trade-offs between them
are rarely well specified” (Malhotra et al. 1980, p. 120).

As mentioned before, CASE-tools take for granted that there exists a well-
defined problem (and goal). They do not support this aspect of the systems
development process. This partly constitutes the reason why CASE is an obstacle
to management of costs and productivity. CASE-tools still give far too little
priority to the communication with the users and a better understanding of the
application domain and the user organization. The same can be said about the
structured techniques on which most CASE-tools are based.

Some CASE-tools can be used in ways that get around the problem noted
by enabling a rapid prototyping approach. In this way the prototype serves as a
kind of specification, instead of the usual written specification. This prototype
can constitute a basis for a better communication between users and developers
than the traditional diagrams from the structured methods. The diagrams will in
most cases be an unsatisfying basis for a discussion between users and developers
about to which degree the specification meet the users’ need. Unfortunately, it
seems that prototyping is not applied to any greater extent with the introduction
of CASE-tools (Cerveny & Joseph 1988, Aaen & Sgrensen 1991).

I am convinced that the diagrams of the structured methods are supplied with
additional authority, because they are presented as more perfect and completed.
Thereby they will be less receptive for proposals for change, than the former
handdrawn diagrams were. In my opinion, CASE-tools will—to a much higher
degree than the structured methods alone—shift the user-developer communica-
tion to a mode of communication clearly founded on the developers’ premises
alone.

5 Concluding Remarks

In the preceding I sketched some obstacles for diffusion of CASE-tools.

I claimed that one important obstacle is that CASE-tools have negative influ-
ence both on the systems developers’ individual way of performing their work as
well as on the division of labour in the development team. To me the most im-
portant obstacle is that CASE will not have distinctive impacts on a very central

115

Published by AIS Electronic Library (AISeL), 1992

11



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

barrier for productivity: understanding the users’ need by establishing a better
communication between users and developers. Finally, I claimed that CASE need
to support a problem definition process instead of a problem solving process.

But when these negative aspects of CASE are mentioned, I must stress that
I believe that there is no doubt about the fact that CASE-technology has come
to stay in software development. But rather than letting the CASE-tools guide
the process of developing software, the CASE-tools should be part of the systems
developer’s tool box. This tool box can supply the systems developer’s intuitive
and creative activities in understanding the users’ essential needs. And rather
than a means to productivity increase, the CASE-tools may be viewed as a means
to increase quality of both the process and the product: give the systems devel-
oper tools that can be integrated, that remove tedious working procedures, that
help to document the process, that offer alternative ways of performing activities
and useful advice, that render the possibility for several approaches to problem
solving and for prototyping.

5.1 Further Research

As this paper is mainly based on literature reviews it should be followed up by
some empirically based research on how system developers work with CASE-tools.
Orlikowski’s surveys are among the very few research projects of this sociological
kind (Orlikowski 1988, 1989). Most research projects until today are focusing
on technical aspects of the tools in order to categorize existing tools (Jarvenpaa
et al. 1990), or are in a quantitative way focusing on diffusion of CASE-tools
in terms of which kind of companies use the tools, on how many projects and
for which kind of tasks (Aaen and Sgrensen 1991b). The research in the area of
CASE-technology need studies with focus on qualitative consequences for aspects
from a context external to the tools such as communication between users and
developers, problem definition and problem structuring, and division of labour
among developers.

This paper has served as motivation for further work with my Ph.D. disserta-
tion and expresses a stage in evolution of my own thinking. Since the first version
of this paper was written I have carried out a project (B4CASE®), in which it
was studied how user-developer communication and the problem definition pro-
cess could be improved. As part of the project we developed a front-end for
CASE-tools. The aim of this front-end was to support the problem structuring
process preceding the traditional analysis phase and communication in general in
systems development.

Acknowledgements

I would like to thank Carsten Sgrensen, Pasi Kuvaja, Liam Bannon and the
reviewers of Scandinavian Journal of Information Systems for useful comments
on earlier versions of this paper.

116

http://aisel.aisnet.org/sjis/vol4/iss1/4

12



Malmborg: DIFFUSION OF CASE: An obstacle race?

Notes

1. This definition of the engineering discipline is inspired by Shaw (1990).

2. It can be very difficult to measure the effects in terms of increased productivity,
as discussed in (Kemerer 1989). The most commonly used productivity metric,
according to Kemerer, is source lines of code (SLOC) per labour unit. This pro-
ductivity metric suffers from two distinct sets of problems. First there is a general
difficulty in capturing comparable SLOC metrics, and second there is a problem
getting agreement on whether increasing this ratio is desired, and how it can be
used to assess new CASE tools that directly affect the numerator by changing the
language level or by automatically creating the SLOC, as in code generators.

3. In Peter Naur’s paper Programming as Theory Building he does not use the term
‘systems development.’ Instead he is talking about ‘programming’, here not in the
sense of ‘coding’ as it most often is used. When he uses the word ‘programming’, he
denotes “the whole activity of design and implementation of programmed solutions.
What I am concerned with is the activity of matching some significant part and
aspect of an activity in the real world to the formal symbol manipulation that can
be done by a program running on a computer. With such a notion follows directly
that the programming activity I am talking about must include the development
in time corresponding to the changes taking place in the real world activity being
matched by the program execution, in other words program modifications” (Naur
1985, p. 253).

4. Naur uses the work of the English philosopher, Gilbert Ryle: The Concept of Mind.
5. The results of the project is reported in Malmborg & Pries-Heje (1991).

References

Bansler, J. & H. Clausen, (1989). Fire perspektiver pd systemudvikling. DIKU-Report
89/15. Institute of Computer Science, Copenhagen University.

Bansler, J. & K. Bodker, (1989). A Reappraisal of Structured Analysis. Roskilde Uni-
versity.

Boehm, B. W., (1976). Software Engineering. IEEE Transactions on computers, C-
25(12):1226-1241.

Cerveny, R. P. & D. A. Joseph, (1988). Effects of Software Engineering on Productivity.
Information & Management, (14):243-251.

Charette, R. N., (1987). Software Engineering Environments. Concepts and Technology.
McGraw-Hill, New York.

DeMarco, T., (1978). Structured Analysis and System Specification. New York.

DeMarco, T., (1982). Controlling Software Projects. Yourdon Press, New York.

Ehn, P., (1988). Work-Oriented Design of Computer Artifacts. Arbetslivscentrum,
Stockholm.

Firth, R., V. Mosley, R. Pethia, L. Roberts & W. Wood, (1987). A Guide to the Classifi-
cation and Assessment of Software Engineering Tools. Technical Report, Software
Engineering Institute, Carnegie-Mellon University.

Gane, C., (1990). Computer-Aided Software Engineering-—— The Methodologies, the Prod-
uct, and the Future. Prentice-Hall, Great Britain.

117

Published by AIS Electronic Library (AISeL), 1992

13



Scandinavian Journal of Information Systems, Vol. 4 [1992], Iss. 1, Art. 4

Hgrliick, J., (1985). A study of the Actual Usage of Methods and Techniques and a
Discussion of their Productivity. In M. Lassen & L. Mathiassen, editors, Report of
the Eighth Scandinavian Research Seminar on Systems Engineering, Part I. Dept.
of Computer Science, Aarhus University. Pages 100-116.

Jarvenpaa, S. L., N. Tractinsky & I. Vessey, (1990). FEwvaluation of Vendor Products:
CASE Tools as Methodology Companions. University of Texas at Austin.

Kemerer, C. F., (1989). An Agenda for Research in the Managerial Evaluation of

"~ Computer-Aided Software Engineering (CASE) Tool Impacts. Proceedings of the
22nd Hawaii International Conference on System Sciences. Pages 219-228.

Kumar, K. & N. Bjgrn-Andersen, (1990). A Cross-Cultural Comparison of IS Designer
Values. Communications of the ACM, 33(5):528-538.

Lejderman, J., (1987). A Look at the Case for CASE. Canadian Data Systems, 6:80-81.

Malhotra, A., J. C. Thomas, J. M. Carroll & L. A. Miller, (1980). Cognitive Processes
in Design. International Journal of Man-Machine Studies, 12:119-140.

Malmborg, L. & J. Pries-Heje, (1991). B4CASE. En metode og et verktgj til prob-
lemstrukturering i systemudvikling. Working paper. Institute of Computer and
Systems Sciences, Copenhagen Business School.

Naur, P., (1985). Programming as Theory Building. Microprocessing and Microprogram-
ming, 15:253-261.

Orlikowski, W. J., (1988). CASE Tools and the IS Workplace. Proceedings of the 1988
ACM SIGCPR Conference on the Management of Information Systems Personnel,
April 7-8, College Park, Maryland. Pages 88-97.

Orlikowski, W. J., (1989). Division Among the Ranks: The Social Implications of CASE
Tools for System Developers. Proceedings of the Tenth International Conference
on Information Systems, December 4-6, Boston. Pages 199-210.

Parnas, D. L. & P. C. Clements, (1985). A Rational Design Process: How and Why to
Fake it. In G. Goos & J. Hartmanis, editors. Lecture Notes in Computer Science,
No. 186, Springer-Verlag, Berlin. Pages 81-100.

Shaw, M., (1990). Prospects for an Engineering Discipline of Software, IEEE Software,
11:15-24.

Yourdon, E. & L. L. Constantine, (1979). Structured Design. Yourdon Press/Prentice-
Hall, Englewood Cliffs.

Yourdon, E., (1989). Modern Structured Analysis. Prentice-Hall, Englewood Cliffs.

Aaen, I. & C. Sgrensen, (1990). The TEQ-project—Tools for Efficiency and Quality. A
project outline. Draft, Aalborg University.

Aaen, I. & C. Sgrensen, (1991a). A CASE of Great Expectations. Scandinavian Journal
of Information Systems, Vol. 3:3-23.

Aaen, I. & C. Sgrensen, (1991b). CASE i Praktisk Brug—Resultater fra CASE Monitor
Projektet. Aalborg University.

118

http://aisel.aisnet.org/sjis/vol4/iss1/4

14



	Scandinavian Journal of Information Systems
	1992

	DIFFUSION OF CASE: An obstacle race?
	Lone Malmborg
	Recommended Citation


	vol4.pdf

