
Scandinavian Journal of Information Systems

Volume 7 | Issue 1 Article 4

1995

Prototyping and Specifying: Principles and
Practices of a Mixed Approach
Lars Mathiassen
Aalborg University, Denmark, larsm@cs.auc.dk

Thomas Seewaldt
Bran & Luebbe, Germany, ThomasSeewaldt@emailaddressnotknown

Jan Stage
Aalborg University, Denmark, JanStage@emailaddressnotknown

Follow this and additional works at: http://aisel.aisnet.org/sjis

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of
Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Mathiassen, Lars; Seewaldt, Thomas; and Stage, Jan (1995) "Prototyping and Specifying: Principles and Practices of a Mixed
Approach," Scandinavian Journal of Information Systems: Vol. 7 : Iss. 1 , Article 4.
Available at: http://aisel.aisnet.org/sjis/vol7/iss1/4

http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol7?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol7/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol7/iss1/4?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol7/iss1/4?utm_source=aisel.aisnet.org%2Fsjis%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

© Scandinavian Journal of Information Systems, 1995, 7(1):55–72

Abstract
Which approaches to software development
should be used in which situations? This fun-
damental question is explored based on expe-
riences from nine comparable small-scale
software projects using prototyping and spec-
ifying.

An empirical interpretation suggests that
mixed approaches to software development
will benefit from the strengths of both specify-
ing and prototyping. On functionality, robust-
ness, ease of use, and ease of learning mixed
approaches led to products of a quality that
was at least comparable to the products of
specialized approaches based on either spec-
ifying or prototyping. Moreover, the Spiral

Model was experienced as a useful frame-
work for combining specifying and prototyp-
ing approaches to software development.

A theoretical interpretation relates these
practical lessons to The Principle of Limited
Reduction. This principle suggests that effec-
tive software development must cope with
both complexity and uncertainty. This re-
quires a systematic effort combining analyti-
cal and experimental approaches, independ-
ently of whether specifications or prototypes
are used.

Key words: prototyping, specifying, spiral
model, complexity, uncertainty.

Prototyping and Specifying:
Principles and Practices of a Mixed Approach

Lars Mathiassen
Department of Mathematics and Computer Science, Aalborg University

Fredrik Bajers Vej 7, DK-9220 Aalborg Øst, Denmark

Thomas Seewaldt
Bran & Luebbe

Hans-Bunte-Strasse 8-10, FRG-6900, Heidelberg, Germany

Jan Stage
Department of Mathematics and Computer Science, Aalborg University

Fredrik Bajers Vej 7, DK-9220 Aalborg Øst, Denmark

1

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 56

1. Introduction
Software design situations are character-
ized by complexity and uncertainty. The
degree of complexity represents the
amount of relevant information that is
available in a given situation as a basis
for making design decisions. In contrast,
the degree of uncertainty represents the
availability and reliability of information
that could be relevant for the same pur-
pose (Mathiassen & Stage 1990, 1992).
Software developers are advised to cope
with design complexity through abstrac-
tion and decomposition (DeMarco 1979,
Dijkstra 1972, Langefors 1966, Wirth
1973, Wulf 1977, Yourdon 1982). This
approach is often referred to as specify-
ing because it involves extensive use of
specifications. Software developers are
also concerned with uncertainty, and
new experimental approaches based on
prototypes have emerged as means to
cope with software design uncertainty
(Boehm 1988, Budde et al. 1992, Davis
1982, Floyd 1984, Gomaa & Scott 1981,
Gould & Lewis 1985).

In this article, we discuss the use of
specifying and prototyping approaches
from both a practical and a theoretical
point of view. Empirically, our discus-
sion is based on two software engineer-
ing experiments in which nine compara-
ble small-scale projects used different
approaches to develop the same applica-
tion software product. In addition, the
practical lessons are interpreted in the
light of a general theory of software de-
velopment called The Principle of Limit-
ed Reduction, cf. Mathiassen & Stage
(1990, 1992). This principle suggests
that effective software development
must cope with both complexity and un-
certainty. This requires a systematic ef-

fort combining analytical and experi-
mental approaches, independently of
whether specifications or prototypes are
used. The conclusion, which is consist-
ent with the practical lessons as well as
the theoretical interpretation, is that soft-
ware engineers should rely on mixed ap-
proaches to software design.

The first small-scale experiment,
which has been reported earlier in Boe-
hm et al. (1984), was conducted at
UCLA in 1982. Different development
teams used either a specifying or proto-
typing approach in the whole develop-
ment process. Below, we refer to this as
the UCLA experiment. The results of
this experiment were used to compare
the relative strengths and weaknesses of
the two specialized approaches. As a
consequence of their findings, the au-
thors suggest that for most large projects,
and many small ones, a mix of prototyp-
ing and specifying is preferable to the ex-
clusive use of either approach by itself.
In particular, they suggest to use risk
management as an effective means to de-
sign and manage the specific mix of pro-
totyping and specifying that is necessary
to cope with the complexity and uncer-
tainty of a given design situation.

Most contemporary writers agree
with the main conclusion of the UCLA
experiment. It is generally suggested that
different situations in software develop-
ment calls for different approaches in-
volving both specifications and proto-
types (Andersen et al. 1990, Boehm et
al. 1984, Davis 1982, Floyd 1987, Stage
1989). Yet there are only few authors
who provide a systematic framework for
selecting and mixing these approaches.
Some authors claim that a combination is
possible and they mention a number of
advantages and disadvantages of each

2

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 57

approach. They do, however, give very
little advice on how to actually combine
them, e.g. Fairley (1985) or Pressman
(1987).

Boehm’s (1988) Spiral Model han-
dles the mixing of specifying and proto-
typing more systematically. Each cycle
of the spiral includes a re-evaluation of
risks and subsequent development of
prototypes and specifications, cf. Figure
1. The main emphasis is on resolving
sources of risk. In effect, the Spiral Mod-
el is a constructive attempt to dynamical-
ly combine and mix specialized ap-
proaches during a development effort.

The second small-scale experiment,
reported in this article, replicates, as far
as possible, the research method and re-
sults of the UCLA experiment. Two de-
velopment teams used a mixed approach,
based on the Spiral Model, to develop
the same application software product.
The experiment was carried out at Aal-
borg University in 1990. Below, it is re-
ferred to as the AU experiment. It was
designed to investigate the following
questions:
• How does a mixed approach to soft-

ware development compare to spe-
cialized approaches based on either
specifications or prototypes?

• Does the Spiral Model provide a
useful framework for managing soft-
ware projects based on a mixture of
specifications and prototypes?

Section 2 of this article summarizes the
UCLA projects, involving seven teams,
and it describes, in detail, the AU
projects, involving two teams. Section 3
surveys the major experiences of the AU
projects, compares them to the experi-
ences of the UCLA projects, and
presents a supplementary interpretation

of the use of the Spiral Model. Finally,
Section 4 provides a theoretical interpre-
tation that relates the findings of the
projects to The Principle of Limited Re-
duction.

2. The Experiments
The AU experiment involved two stu-
dent teams developing the same product
as in the UCLA experiment. These soft-
ware projects constituted the practical
part of the students' second graduate se-
mester study project (Larsen et al. 1990).
Such study projects account for half of
the time in that semester and half of the
major subject grade. Two of the authors,
L. Mathiassen and J. Stage, were super-
visors.

This section describes the key as-
pects of the AU software projects: the
product developed, the Spiral model that
was applied in the development of the
product, the development environment,
the organization and staffing of the two
teams, the experimental data collection
procedures, and the main similarities and
differences between this experiment and
the UCLA experiment. To enable com-
parison, we provide a brief summary of
the results from the UCLA experiment.

2.1. The UCLA Projects
In the UCLA experiment (Boehm et al.
1984), seven teams of students devel-
oped the same application software
product. The product was an interactive
computer system supporting the COCO-
MO software cost estimation model
(Boehm 1981). The systems and the re-
lated documentation were developed
over 10 weeks and comprised roughly
3000 lines of Pascal source instructions.

3

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 58

All teams were required to collect data
on their efforts and products during the
whole experiment.

Four out of the seven teams applied a
specifying approach. They produced a
requirements specification, a design
specification, and a final product that in-
cluded operational code, user manual,
and maintenance manual. The remaining
three groups applied a prototyping ap-
proach. They produced the same final
product, but they were required to pro-
duce and exercise a prototype by the
midpoint of the 10 weeks for which the
experiment lasted.

The main conclusion was that each
approach focuses only on some of the
properties that characterize software of
high quality. The specifying approaches
produced more coherent designs and
software that was easier to integrate. The
products were rated higher on function-
ality and robustness and lower on ease of
learning and ease of use. The prototyping
approaches yielded products with rough-
ly the same performance, but with about
40 percent less code and 45 percent less
effort. The products were rated higher on
ease of learning and ease of use and
somewhat lower on functionality and ro-
bustness. For this reason, the authors
concluded that the specifying and proto-
typing approaches seem to complement
each other.

2.2. The AU Projects
The AU experiment involved two stu-
dent teams. Each team should develop
the same application software product as
in the UCLA experiment, i.e., an interac-
tive computer system supporting the
COCOMO software development cost
estimation model. In this model, calcula-
tions are based on computer system com-

ponents being described tentatively in
terms of size and ratings with respect to
16 specific cost-driver attributes, e.g.
hardware constraints, database size, per-
sonnel skills and experience, and use of
tools and modern programming practic-
es. These attributes are used to calculate
the amount of time and effort required to
develop each of the components as well
as the overall system.

The algorithms and tables of the
model were provided in Boehm (1981)
but each team was to design its own user
interface and file system. The user inter-
face of this product is considerably more
extensive than the calculation algorithm.
It must support selective creation, modi-
fication, and deletion of the cost-driver
parameters describing each component
of a software product. It must support the
generation and formatting of selected
output including overall cost, effort,
schedule estimates, and their breakdown
by component, phase, and activity. Final-
ly, it must detect and provide messages
for erroneous input and provide some
level of on-line help facilities.

The design of the interface involves
decisions on a further variety of options
and alternatives including the use of
menus, commands, tables, and forms for
input as well as the selection of different
output.

Finally, the teams were encouraged
to develop a graphical user interface. The
main reason for this difference to the
UCLA experiment, where line oriented
terminals were used, was that it seemed
unnecessary to ignore the technical op-
tions that had become available since
1982.

4

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 59

2.3. The Spiral Model
The purpose of the AU experiment was
to investigate software design based on
both specifying and prototyping ap-
proaches. This mixing of approaches
may be achieved in several, different
ways. In both projects, development was
based on Boehm’s (1988) Spiral Model.
This model introduces a systematic way
of mixing specifying and prototyping ap-
proaches. The choice of either of these
approaches is based on an analysis of the
risk factors that are significant to the de-
velopment project considered. With the
Spiral Model, software development is
generally divided into a number of cy-
cles where each cycle involves a pro-
gression and comprises the same types
and sequence of activities. Taken togeth-

er, the cycles comprise a spiral move-
ment as shown in Figure 1. In the figure,
the radial dimension represents the cu-
mulative costs of the activities carried
out. The angular dimension represents
the progress made in each cycle of the
spiral.

A typical cycle starts with determina-
tion of the outcome of this cycle. This in-
volves objectives, alternatives, and con-
straints of the products being elaborated
in this cycle. The key issue in the next
step of the cycle is to identify uncertain-
ties that contribute significantly to
project risk. This is done through evalu-
ation of alternatives relative to objec-
tives and constraints. Finally, this step
includes formulation of a strategy for re-
solving the main sources of risks. The

FIGURE 1. The Spiral Model of software development, from Boehm (1988)

5

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 60

third step comprises development and
verification of the product of the cycle. If
the risk is high, some effort is made to re-
solve the sources of uncertainty. This
may involve specifying as well as proto-
typing. When all the main sources of risk
have been resolved, development fol-
lows the waterfall model. The purpose of
the fourth step is to develop plans for the
next cycle. This may include division of
the product into components to be devel-
oped separately. Finally, the transforma-
tion from one cycle to the next is based
on a review of the products of the present
cycle and the plans for the next cycle.

2.4. The Development Environment
The final products were mainly pro-
grammed in Modula-2 on Sun-3 work
stations under the Unix operating sys-
tem. Compared to the version of Pascal
used in the UCLA experiment, the main
advantages of Modula-2 are better facil-
ities for input/output, string handling,
and separate compilation with strong
type checking. During development no
debugger to Modula-2 was available.

The graphical user interfaces were
programmed in a graphical tool chosen
independently by the two teams. One
team used Suntools and the other team
used Tooltool.

Finally, the teams had the opportuni-
ty to use Hypercard for the Macintosh for
development of early prototypes. Only
one of the two teams used this environ-
ment. The other team used Tooltool for
the early prototypes.

2.5. Team Organization and Staffing
During the design of the experiment, the
5 participating students were divided
into two teams according to their own

choice. Below, the two teams are re-
ferred to as SM1 and SM2.

Both teams were given the opportu-
nity to organize their work in whatever
way they found appropriate. The team
with three members (SM1) conducted
formal meetings and the rest of the time
they worked as separately as possible.
The team with two members (SM2)
worked more closely together except
when developing different prototypes
and during programming and implemen-
tation.

2.6. Acceptance Test
In the UCLA projects, the performance
rating was made by the authors of (Boe-
hm et al. 1984). Firstly, they exercised
each student team's product together to
check its performance. Secondly, they
independently exercised each product in
more detail and rated it on a scale of 0 to
10 with respect to the following four per-
formance criteria:
1. Functionality: The functional capa-

bility of the product, i.e., the relative
utility of the various computational,
user interface, output, and file man-
agement functions.

2. Robustness: The degree of protec-
tion from aborts, crashes, and loss of
data provided by the product.

3. Ease of Use: The degree of user con-
venience when performing desired
functions, the degree of conceptual
clearness and coherence in the user
interface, and the avoidance of over-
constrained or unexpected program
behaviour. Boehm et al. (1984) also
characterize this property as lack of
frustration when using the product.

4. Ease of Learning: The ease with
which new users can master the

6

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 61

product's workings and make it do
what they wish. The rating on this
property also included an evaluation
of the user manual and other kinds of
documentation supporting the use of
the product.

The acceptance tests of the AU projects
were carried out by all three authors of
this article. L. Mathiassen and J. Stage
exercised the products together and dis-
cussed their capabilities. Afterwards,
they exercised the products independent-
ly and rated them with respect to the four
performance criteria used in the UCLA
experiment. T. Seewaldt exercised and
rated the products independently.

2.7. Limitations
The AU projects were designed to re-
semble the UCLA projects as much as
possible. T. Seewaldt participated both in
the design of the AU experiment and in
the evaluation of the systems that were
developed. He also took part in the orig-
inal UCLA experiment as well as in the
reporting of it.

The detailed description of the
UCLA projects, cf. (Boehm et al. 1984),
and the involvement of T. Seewaldt facil-
itated a comparable design of the AU
projects. In both experiments, the task
was to develop a product with exactly the

same functionality, the organization and
staffing of teams was almost the same,
the participants had comparable pro-
gramming experience, cf. Table 1, and
both experiments applied the same rating
procedure and performance criteria in
the acceptance test. Besides, both exper-
iments involved use of specifications
and prototypes.

Both experiments involved a small
number of teams. The UCLA experiment
involved four and three teams, respec-
tively, and the AU experiment involved
two. The empirical findings are, for this
reason, not conclusive; they should be
seen as systematic interpretations of the
results and experiences from a small
number of comparable projects. In addi-
tion, the specific setting of the AU exper-
iment introduced some experimental
limitations. These limitations must be
taken into account in comparing the
UCLA and the AU experiments and in
evaluating the general relevance of the
results. The main differences between
the UCLA and AU experiments can be
summarized in the following way:

Development Environment: The pro-
gramming languages, programming en-
vironment, and computing resources
were more powerful in the AU experi-
ment. One should expect this to increase
the productivity in the AU experiment.

TABLE 1. Average programming experience (in months) of the teams in the UCLA
and AU experiments.

UCLA AU

Specifying teams Prototyping teams Spiral Model teams

Programming 36 53 26

Pascal/Modula-2 7 18 11

Unix 5 3 11

7

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 62

On the other hand, the new and richer
possibilities for designing graphical in-
terfaces introduced more complexity
which should decrease productivity in
the AU experiment.

Development Approach: In the
UCLA experiment each team had a spe-
cific procedure for performing their
project. These procedures were based on
either a specifying or a prototyping ap-
proach. In the AU experiment, the teams
had the general description of the Spiral
Model (Boehm 1988), and a definite
deadline for delivery of the final product.
There were no intermediate deadlines
and no predefined procedure. Combined
with the nature of the Spiral Model itself,
this required more management and
communication activities.

In the AU experiment, the Spiral
Model was used in a disciplined but in-
formal way, not enforcing formal re-
views and other kinds of external control
or interaction. Each group worked as an
autonomous unit, conducting only infor-
mal reviews when they found it neces-
sary. In addition, the Spiral Model is
open to individual interpretation and the
two groups turned out to interpret the
model differently.

Motivation and Stress: The AU stu-
dents had only moderate course activity
in parallel with the experiment, whereas

the UCLA students took two or three
other courses in parallel with their partic-
ipation in the experiment. The AU stu-
dents were also involved in designing
and evaluating the experiment, whereas
the UCLA students did the experiment as
part of a predesigned course without par-
ticipating in the evaluation of the experi-
ment. Consequently, one should expect
the AU students to be less stressed and
more motivated than the UCLA students.

Data Collection Procedures: In both
experiments, product size was measured
in terms of delivered source instructions
(DSI), and it was determined by means
of the definition in (Boehm 1981). Deliv-
ered source instructions include all lines
of program code created by the project
team. A source instruction is one line of
program code except that comments,
blanks, and unmodified utility software
components are excluded. If more than
one statement or only part of a statement
is placed on the same line, it still counts
as one source instruction.

The collection of data on develop-
ment effort was in both experiments
based on the same predefined categories
of activity. Yet some uncertainty is intro-
duced due to individual interpretations
of these categories by each person and
team. The AU students’ high interest in
the experiment itself may have resulted

TABLE 2. Average product size and development effort in the UCLA and AU experiment
teams

UCLA AU

Specifying
teams

Prototyping
teams

Spiral Model
teams

Characteristics
Program Size 3391 2064 4786

Manhours 584 325 743

Productivity Overall 5.8 6.3 6.4

8

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 63

in a more accurate collection of experi-
mental data.

The above differences between the
UCLA and AU projects make it difficult
to compare the absolute values of the de-
velopment effort, the size of the prod-
ucts, and their performance ratings. On
the other hand, the distributions of rela-
tive effort and product performance on
the four criteria allow some interesting
conclusions, as we shall see below.

3. Practical Results
A comparison of the AU and UCLA
projects illustrates some of the relative
advantages and disadvantages of mixed
versus specialized approaches to soft-
ware development. Below, we only dis-
cuss points on which we find a compari-
son possible and relevant. On other
points, interesting experiences have been
obtained. Some of these are briefly men-
tioned at the end of this section.

3.1. Product Size and Development
Effort
The product size and development effort
are illustrated in Figure 2 and Table 2. In
the AU experiment, the two teams devel-
oped final products with a size of 4114
and 5457 delivered source instructions
(DSI). Most of the code was in Modula-
2 and the rest in the language of the
graphical tool applied for the user inter-
face.

It is difficult to compare the absolute
size and effort with the results of the
UCLA experiment because of the differ-
ences mentioned in Section 2.7. on page
61. Some of these differences could be
expected to increase and other to de-
crease productivity. But a comparison of
the ratio is possible and relevant.

The productivity of the two teams in
the AU experiment were 4.6 and 9.3
DSI/hour with an average on 6.4 DSI/
hour. In the UCLA experiment the aver-
age productivity of the specifying teams
was 5.8 DSI/hour and the prototyping

FIGURE 2. Product size and development effort

0

1

2

3

4

5

6

0 200 400 600 800 1000

6.3 DSI/MH

Size (KDSI)

Effort (Manhours)

Prototyping Specifying

Mixed
Approach

P1
P3

P
P2

S

S4

S3

S2

S1

SM1

SM2
SM

9

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 64

teams 6.3 DSI/hour. These figures sug-
gest that despite the differences in devel-
opment approach and technology, and
the individual variations between teams
a simple measure of lines produced/ef-
fort gives similar results in all three types
of projects.

3.2. Distribution of Effort by Phase
Again, the absolute amount of total effort
cannot be compared due to the differenc-
es discussed in Section 2.7. on page 61.
But the distribution of effort on phases or
categories of activity is comparable.

The distribution of effort in the Spiral
Model teams combines essential charac-
teristics of the effort distribution of the
specifying and prototyping teams, cf.
Figure 3. In the early phases of develop-
ment, they have a design peak that is
similar to the specifying teams, cf. Fig-
ure 3(a). Due to prototype development,
they also have early programming peaks

that are similar to the prototyping teams,
cf. Figure 3(b). This indicates that the
Spiral Model leads to a real combination
of activities from both the specifying and
prototyping approaches.

Furthermore, the Spiral Model seems
to support early commencement of de-
sign and prototype development, cf. Fig-
ure 3(a) and (b), and a more even distri-
bution of effort by phase in the whole
duration of the project, cf. Figure 3(c).

3.3. Product Quality
The performance rating of the products
in the AU experiment was carried out in
the same way as in the UCLA experi-
ment. A comparison of these ratings
leads to the following conclusions:
1. The specifying approaches seem to

emphasize functionality and robust-
ness at the expense of ease of use
and ease of learning.

2. The prototyping approaches and the

FIGURE 3. Distribution of effort by phase

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

 Mixed Approach

 Specifying

 Prototyping

Week

Week Week

(a) Design (b) Programming

(c) Total Effort%

% %

10

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 65

mixed approaches seem to be more
equally concerned with all four per-
formance criteria.

3. The mixed approaches seem to
strongly emphasize robustness,
thereby avoiding the weakest per-
formance aspect of the prototyping
approaches.

In the UCLA experiment, cf. (Boehm et
al. 1984) and Table 3, the specified prod-
ucts have a higher average performance
score on functionality and robustness
than the prototyped products. On ease of
use and ease of learning, the prototyped
products rated higher than the specified
products.

Comparing the AU and UCLA
projects, cf. Table 3 and Table 3, the
mixed approaches were at least rated at
the same level as the two specialized ap-
proaches. Furthermore, the mixed ap-
proaches have quite an even distribution
of scores on the four performance crite-
ria.

The four aspects considered in the
performance rating all stress external
properties of the product. They represent
the users' point of view. An important
question is whether the products of the
mixed approaches had the same techni-
cal quality as the products of the special-
ized approaches. In the UCLA experi-
ment this question was handled in the
following way: Each student was asked

TABLE 3. Average performance scores in the UCLA experiment

UCLA

Specifying teams Prototyping teams

Functionality 6.08 4.78

Robustness 5.13 3.89

Ease of Use 3.25 4.67

Ease of Learning 3.71 4.89

Sum 18.17 18.23

TABLE 4. Average performance scores in the AU experiment

AU

Spiral Model teams

SM1 SM2 Average

Functionality 6.00 8.33 7.17

Robustness 8.00 7.67 7.84

Ease of Use 6.67 7.33 7.00

Ease of Learning 6.33 5.67 6.00

Sum 27.00 29.00 28.00

11

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 66

to rate each of the other teams' products
in the order in which they would prefer
to maintain the product.

In the AU experiment, this procedure
was impossible as there were only two
teams. Instead, both products were eval-
uated by T. Seewaldt. His conclusion
was that the maintainability of the prod-
ucts were comparable between the two
experiments. In the AU experiment, the
maintenance manuals were far better but
the programs contained fewer comments
than the programs developed in the
UCLA experiment.

3.4. Distribution of Code
In the UCLA experiment, each group
built a user interface from scratch using
a character-oriented terminal as the pri-
mary input/output device. Contrary to
this, the teams in the AU experiment de-
veloped their systems for a graphic work
station and they used a powerful graphic
library. Due to this, one should anticipate
the relative amount of code devoted to
the user interface would be lower com-
pared to the UCLA experiment. This ex-
pectation did not hold. Despite the tech-
nological differences, the distribution of
code by function is roughly the same in
the UCLA and AU experiments, cf.
Table 5.

These figures indicate that the distribu-
tion of code by function depends prima-
rily on the characteristics of the product:
A small cost estimation system with an
extensive user interface. The distribution
of code by function seems to be inde-
pendent of the development approach
and the applied technology.

3.5. Experiences with the Spiral Model
The AU projects were designed to make
a comparison with the UCLA projects
possible, but also to learn about the
strengths and weaknesses of the Spiral
Model as a practical framework for soft-
ware development. For the latter pur-
pose, each team of the AU experiment
wrote a diary, cf. (Jepsen et al. 1989), to
record their experiences and evaluations
during the project. On the basis of these
diaries and the other recordings made,
the following lessons were learned about
Spiral Model, cf. (Larsen et al. 1990):
• The Spiral Model must be inter-

preted and adapted to the specific
conditions of a project.

• The Spiral Model encouraged the
teams to emphasize design consider-
ations before developing the final
system.

TABLE 5. Relative distribution of code by function.

UCLA AU

Specifying Prototyping Spiral Model\

User Interface 67% 74% 75%

Model Computations 7% 5% 6%

File Management 12% 10% 9%

Miscellaneous 13% 10% 9%

12

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 67

• The Spiral Model supported the
teams in developing code to learn
from and with the intension of
throwing it away.

• The Spiral Model supported the
teams in distributing the effort more
evenly over phases. More specifi-
cally, it supported them in starting
more actively by spending available
time efficiently already from the
start of the project.

• It was difficult to use the Spiral
Model as an explicit means to man-
age time resources during the
project.

• Risk analysis was mainly based on
intuition and experience. No
detailed, quantitative analysis of
risks was made by any of the two
teams.

• During risk management, new risks
were identified and the conception of
the original risks was modified and
changed.

• The spiral is, in some situations, a
misleading metaphor for a develop-
ment process; in several situations,
the teams found it necessary to initi-
ate new spirals in parallel to deal
with emerging problems and new
risks.

Both teams were highly motivated and
experienced in project work. Under these
conditions, the Spiral Model was, in
summary, evaluated as a useful frame-
work for software project management,
even if some minor questions suggesting
further development of the framework
were raised.

4. Theoretical Reflection
Software development projects of any
reasonable size should use variations or
combinations of approaches based on
specifications and prototypes. This ad-
vice is supported by the experiments and
other sources, cf. (Boehm et al. 1984,
Davis 1982). But why is this so? If this
general advice is the solution, then what
is the problem? What are the fundamen-
tal challenges and conditions for soft-
ware development that make this advice
valid and useful? In the following, we
will introduce a theoretical framework
and a fundamental principle for software
development that provides us with gen-
eral answers to these questions.

4.1. A Simple Model
The UCLA experiment was designed to
learn about the relative strengths and
weaknesses of different approaches to
software development. The inquiry was
based on a distinction between specify-
ing and prototyping as two broad catego-
ries of approaches, cf. (Boehm et al.
1984). This distinction suggests a simple
relation between the situational charac-
teristics and the recommended approach
of a software project.

In some situations, software develop-
ment is based on a more or less formal
specification of requirements. This spec-
ification is then transformed into the fi-
nal system through a number of phases.
In each phase, a new specification or de-
scription is developed through transfor-
mation of the description produced in the
previous phase. The use of specifications
is closely related to an analytical mode of
operation. Systems developers are ad-
vised to take advantage of abstraction to
reduce complexity. This approach has

13

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 68

some basic limitations. It relies primarily
on available information, it assumes that
the available information is reliable, it
implies serious simplification, and it re-
stricts the ways in which organizational
actors can communicate and learn about
the future system. There have been at-
tempts to modify the use of specifica-
tions in a more experimental manner.
However, the basic problems still re-
main.

In other situations, software develop-
ment is based on design, implementa-
tion, and evaluation of prototypes model-
ling part of the total system. The design
of the system is then developed based on
more or less realistic use of the proto-
types. This prototyping approach to soft-
ware development is closely related to an
experimental mode of operation. System
developers are advised to take advantage
of the possibility of learning through ex-
periments. The prototyping approach is a
constructive response to some of the
problems and weaknesses of the specify-
ing approach. But with the emphasis on
prototypes, learning, and involvement of
users other types of problems arise.

Considering specifying versus proto-
typing and only including this one dis-

tinction leaves us with a simple and one-
dimensional understanding of approach-
es to software development. This frame-
work is too simple.

4.2. Reframing the Issue
The practical and basic question we are
concerned with is: “Which approach to
software development should we use in
which situation?” In the following, we
propose a more elaborate, but still quite
simple framework for understanding and
explaining the relation between ap-
proaches and situations in software de-
velopment, cf. Mathiassen & Stage
(1990, 1992). The basic concepts of this
framework are illustrated in Figure 4.

Software development situations are,
on the one hand, described in terms of
the degree of complexity and the degree
of uncertainty that the systems develop-
ers are facing. As noted above, the de-
gree of complexity represents the
amount of relevant information that is
available in a given situation as a basis
for making design decisions. In contrast,
the degree of uncertainty represents the
availability and reliability of information
that could be relevant for the same pur-
pose.

FIGURE 4. Situational characteristics and basic approaches to software development

Low

High

Low

High

Analytical

Experimental

Specifications

Prototypes

Complexity

Uncertainty

Mode of Operation

Means of Expression

Situation

Approach

14

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 69

Approaches to software development
are, on the other hand, characterized in
terms of their basic mode of operation
and means of expression. The mode of
operation defines how system develop-
ers are advised to process information in
order to make design decisions. The
mode of operation may, in one extreme,
be analytical and, in the other, experi-
mental. When system developers operate
in an analytical mode they simplify the
available information through abstrac-
tion. In contrast, when operating in an
experimental mode, they learn from ex-
periences thereby generating new infor-
mation.

In addition, each approach is charac-
terized by the means of expression that
are used for describing and documenting
design proposals and decisions. Specifi-
cations can be used as means of expres-
sion to abstractly describe the properties
and behaviour of a system. As opposed
to this, different models such as proto-
types and mock-ups can be used as
means of expression to illustrate the con-
crete behaviour of a system.

In the simpler framework based on
the distinction between specifying and
prototyping we tend to take for granted
that an analytical mode of operation and
the use of specifications go hand in hand
just like experimentation and prototypes,
cf. (Mathiassen & Stage 1990, 1992). We
also tend to relate the two basic ap-
proaches to each their situational charac-
teristic, i.e., specifying is considered ef-
fective when facing complexity, and
prototyping when facing uncertainty. A
fundamental premise for such a theory is
that complexity and uncertainty are inde-
pendent characteristics of a design situa-
tion. It is, however, difficult to find evi-
dence supporting this viewpoint. On the

contrary, behaving in an analytical way
we have to rely on an imaginary simpli-
fied world, thereby introducing new
sources of uncertainty as to what extent
this view is in accordance with the com-
plex real world. Correspondingly, behav-
ing in an experimental way we produce
information as we go along, thereby in-
troducing new sources of complexity.

In our more elaborate framework, il-
lustrated in Figure 4, the assumption is
that complexity and uncertainty are in-
trinsically related. As a consequence,
there is no simple way of relating means
of expression to modes of operation.
When we consider complexity and un-
certainty as closely related, we cannot
hope to reduce one of these without af-
fecting the other. This is expressed in the
following basic principle of software de-
velopment, cf. (Mathiassen & Stage
1990, 1992):

The Principle of Limited Reduction:
Relying on analytical behaviour to
reduce complexity introduces new
sources of uncertainty requiring ex-
perimental countermeasures. Corre-
spondingly, relying on experimental
behaviour to reduce uncertainty in-
troduces new sources of complexity
requiring analytical countermeas-
ures.

The Principle of Limited Reduction de-
scribes the relationship between a situa-
tion and the mode of operation applied. It
does not take into account the different
means of expression. Instead, it is sug-
gested that application of any of the two
basic means of expression require a cer-
tain mixture of an analytical and an ex-
perimental mode of operation.

15

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 70

Plans are examples of analytical
countermeasures to an experimental ap-
proach based on prototypes. Likewise,
quality assurance activities such as walk-
throughs and reviews are examples of
experimental countermeasures, per-
formed intellectually rather than practi-
cally, to an analytical approach. They are
designed to compensate for the sources
of uncertainty, introduced through ab-
straction and specification, by exploring
issues like: Is the proposed design a use-
ful and sound basis for implementation
and maintenance?

Another example illustrating the
above principle is provided by the radi-
cal view of software design recommend-
ed by Parnas and Clements (1986). They
argue that the analytical mode of opera-
tion should be considered only as an ide-
al for software development. In practice,
descriptions and specifications have to
be developed, reviewed, extended, and
modified in an experimental mode.

4.3. Qualitative Interpretation of the
Experiments
In both the UCLA and the AU experi-
ments, the task of the software teams was
to develop an interactive computer sys-
tem supporting the COCOMO software
development cost estimation model.
Even though the COCOMO model con-
tains many parameters (16) and compli-
cated procedures, the problem domain is
quite structured and the complexity of
the task is at most moderate. In designing
the key data structures and algorithms,
the project teams got substantial support
from the COCOMO model. The main
challenge is the design of the user inter-
face. In addition to requirements related
to functionality and robustness, the sys-

tem had to be easy to learn and easy to
use.

Considering the task of the projects,
we conclude that the complexity was
moderate while the uncertainty was
somewhat higher. In the specific situa-
tions of the involved projects, other char-
acteristics were important as well. But
this general analysis suggests that an ef-
fective approach should include experi-
ments with prototypes as a key element.
A traditional approach based on specifi-
cations is not suited to the challenges at
hand. This provides one interesting ex-
planation of the observed differences be-
tween the performance of the specifying
approach as opposed the performance of
the prototyping and mixed approaches,
cf. Section 3.3. on page 64.

More generally, the experiments sug-
gest that it is worthwhile to pursue the
idea of combining different means of ex-
pression in the same development effort,
and that the Spiral Model is a useful
framework for combining specifications
with prototypes, even if it requires high
management competence:
• A key result of comparing the two

experiments is that the mixed ap-
proaches seem to combine the
strengths of the two specialized ap-
proaches. On each of the properties
considered, the mixed approaches
led to products of a quality that was
at least comparable to the products
of the two specialized approaches.

• A key result of the AU experiment is
that the Spiral Model provides a use-
ful framework for combining speci-
fying and prototyping approaches in
software development. The Spiral
Model is, however, not a simple pro-
cedure to be followed. It is rather a

16

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

L. Mathiassen, T. Seewaldt & J. Stage 71

general framework for understand-
ing and managing software projects
and it is quite open to individual
interpretations.

The experiments have, in this way, illus-
trated the practical advice implied by the
Principle of Limited Reduction: Analyti-
cal and experimental modes of operation
should not be understood and used inde-
pendently of each other. Effective soft-
ware design requires a systematic effort
combining analytical and experimental
modes of operation.

Acknowledgement
This research has been partially spon-
sored by the Danish Natural Science Re-
search Council, Programme No. 11-
8394.

We wish to thank Troels Larsen,
Sanne Liebmann, Casper Millum, Helge
Solberg and Frank Tolstrup for their ef-
fort and cooperation during the experi-
ment. In writing this article, we have re-
ceived valuable comments and
suggestions from Barry Boehm, Kaj
Grønbæk, Karlheinz Kautz, Andreas
Munk-Madsen, Peter Axel Nielsen,
Carsten Sørensen, Ivan Aaen, and the
three anonymous reviewers.

References
Andersen, N. E., F. Kensing, J. Lundin, L.

Mathiassen, A. Munk-Madsen, M. Ras-
bech, & P. Sørgaard (1990). Professional
Systems Development. Experience, Ideas,
and Action. Prentice-Hall, Englewood
Cliffs, New Jersey.

Boehm, B. W. (1981). Software Engineering
Economics. Prentice-Hall, Englewood
Cliffs, New Jersey.

Boehm, B. W. (1988). A spiral model of soft-
ware development and enhancement.
Computer, May.

Boehm, B. W., T. E. Gray, & T. Seewaldt
(1984). Prototyping versus specifying: A
multiproject experiment. IEEE Trans.
Software Eng., SE-10(3):290-303, May.

Budde, R., K. Kautz, K. Kuhlenkamp & H.
Züllighoven (1992). Prototyping – An
Approach to Evolutionary Systems Devel-
opment. Springer-Verlag, Berlin.

Davis, G. B. (1982). Strategies for informa-
tion requirement determination. IBM Sys-
tems Journal, 21(1):4-30.

DeMarco, T. (1979). Structured Analysis and
System Specification. Yourdon Inc. &
Prentice-Hall, Englewood Cliffs, New
Jersey.

Dijkstra, E. (1972). Notes on structured pro-
gramming. In: Structured Programming,
pp. 1-82. Academic Press, London.

Fairley, R. (1985). Software Engineering
Concepts. McGraw-Hill.

Floyd, C. (1984). A systematic look at proto-
typing. In: R. Budde et al., (editors),
Approaches to Prototyping, pp. 1-17.
Springer-Verlag, Berlin.

Floyd, C. (1987). Outline of a paradigm
change in software engineering. In: G.
Bjerknes et al., (editors), Computers and
Democracy, pp. 191-210. Aldershot,
Avebury.

Gomaa, H. & D. B. H. Scott (1981). Prototyp-
ing as a tool in the specification of user
requirements. In: Proc. 5th IEEE Int.
Conf. Software Eng., pp. 333-342.

Gould, J. D. & C. Lewis (1985). Designing
for usability: Key principles and what
designers think. Comm. ACM, 28(3):300-
311, March.

Jepsen, L. O., L. Mathiassen, & P. A. Nielsen
(1989). Back to thinking mode – diaries as
a medium for effective management of
information systems development. Behav-
iour and Information Technology, 8.

17

Mathiassen et al.: Prototyping and Specifying

Published by AIS Electronic Library (AISeL), 1995

L. Mathiassen, T. Seewaldt & J. Stage 72

Langefors, B. (1966). Theoretical Analysis of
Information Systems. Studentlitteratur,
Lund.

Larsen, T., S. Liebmann, C. Millum, H. Sol-
berg, & F. Tolstrup (1990). Spiralmodel-
len i en praktisk systemudvikling (The spi-
ral model used in practical system
development). Master's thesis, Institute for
Electronic Systems, Aalborg University.

Mathiassen, L. & J. Stage (1990). Complex-
ity and uncertainty in software design. In:
Proceedings of the IEEE International
Conference on Computer Systems and
Software Engineering, pp. 482-489. IEEE
Computer Society Press, Washington
DC.

Mathiassen, L. & J. Stage (1992). The princi-
ple of limited reduction in software
design. Information Technology & Peo-
ple, 6(2-3):171-185.

Parnas, D. L. & P. C. Clements (1986). A
rational design process: How and why to
fake it. IEEE Trans. Software Eng., SE-
12(2):251-257, February.

Pressman, R. S. (1987). Software Engineer-
ing. A Practicioner's Approach. McGraw-
Hill, second edition.

Stage, J. (1989). Mellem tradition og nyska-
belse. Analyse og design i systemud-
vikling (Between Tradition and Tran-
scendence. Analysis and Design in
System Development). Institute for Elec-
tronic Systems, Aalborg University, 1989.

Wirth, N. (1973). Systematic Programming.
An Introduction. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Wulf, W. (1977). Languages and structured
programs. In: R. T. Yeh, (editor), Current
Trends in Programming Methodology.
Prentice-Hall, New Jersey.

Yourdon, E. (1982). Managing the System
Life Cycle. Yourdon Inc., New York.

18

Scandinavian Journal of Information Systems, Vol. 7 [1995], Iss. 1, Art. 4

http://aisel.aisnet.org/sjis/vol7/iss1/4

	Scandinavian Journal of Information Systems
	1995

	Prototyping and Specifying: Principles and Practices of a Mixed Approach
	Lars Mathiassen
	Thomas Seewaldt
	Jan Stage
	Recommended Citation

	Mathiassenetal

