View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by AIS Electronic Library (AlSeL)

Scandinavian Journal of Information Systems

Volume 10 | Issue 1 Article 7

1998

The Art and Craft of Hacking

Gisle Hannemyr
University ofOslo, gisle@iji.uio.no

Follow this and additional works at: http://aisel.aisnet.org/sjis

Recommended Citation

Hannemyr, Gisle (1998) "The Art and Craft of Hacking," Scandinavian Journal of Information Systems: Vol. 10 : Iss. 1, Article 7.
Available at: http://aisel.aisnet.org/sjis/vol10/iss1/7

This material is brought to you by the Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Scandinavian Journal of

Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://core.ac.uk/display/301357933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol10?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol10/iss1?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol10/iss1/7?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/sjis/vol10/iss1/7?utm_source=aisel.aisnet.org%2Fsjis%2Fvol10%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Hannemyr: The Art and Craft of Hacking

The Art and Craft of Hacking

Gisle Hannemyr

gisle@ifi.uio.no
University of Oslo

|
Abstract

“Hackers” are identified as software devel-
opers sharing a specific work practice. The
process of hacking and the characteristics of
the resulting artifacts are discussed. Some re-
search questions following from these find-
ings are posed.

]
Introduction

The word ‘hack’ doesn’t really have
sixty-nine different meanings. In fact,
‘hack’ has only one meaning, an
extremely subtle and profound one
which defies articulation. (Steele et al
1983)

The meaning of the words “hacking” and
“hacker” as applied to computer work is
not very clear. Webster defines “to hack™
as “to cut with repeated irregular or un-

skilful blows”, and “a hacker” as “one
who forfeits individual freedom of action
or professional integrity in exchange for
wages or other assured reward”. These
definitions, however, bear no resem-
blance to the common usage of the words
“hacking” and “hacker” in the context of
computer work.

Part of the confusion surrounding the
word “hacker” may stem from the fact
that it has been applied to at least three
distinct communities: Computer workers
subscribing to a common set of values
and a shared culture; activists viewing
the computer as an instrument for politi-
cal empowerment; and digital vandals
who break into computer systems for fun
and profit (Hannemyr 1999).

In this essay, I shall ignore the politi-
cal and criminal aspects that popular me-
dia unfortunately has managed to make
synonymous with “hacking”. Instead, I

a
© Scandinavian Journal of Information Systems, 1998, 10(1&2):255-262

Published by AIS Electronic Library (AISeL), 1998

Scandinavian Journal of Information Systems, Vol. 10 [1998], Iss. 1, Art. 7

shall focus on “hacking” as a work prac-
tice, and on “hackers” as software devel-
opment practitioners.

My motivation for writing this essay
is primarily to give this practice the
recognition I believe it deserves. Hackers
have created a large body of non-trivial
computer software. Still, hacking is little
mentioned in literature describing mis-
cellaneous software development prac-
tices. A secondary consideration is my
belief that hacking or hacker-like ap-
proaches in some circumstances can
bring specific qualities to software
development processes and to the result-
ing artifacts. To understand these quali-
ties and their application is a challenge to
current software development research.

]

Samplings
Linux is subversive. Who would have
thought even five years ago that a world-
class operating system could coalesce as
if by magic out of part-time hacking by
several thousand developers scattered all
over the planet connected only by the
tenuous strands of the Internet. (Ray-
mond 1998)

Software created through the work prac-
tice known as “hacking” is implemented
by and within self-organising communi-
ties through a highly iterative process
where development of new and adapta-
tion of existing software components are
equal and integral parts of the develop-
ment process. Development phases such
as “implementation”, “debugging”, “us-
ability testing”, “release” and “mainte-
nance” are collapsed into an ongoing,
all-encompassing and sometimes perpet-
ual “hacking” phase. Words such as “de-

veloper”, “programmer” and “user” are

used interchangeably to signify oneself
and other process participants (applying
the term “hacker” to oneself is consid-
ered hubris). The derogatory term “lus-
er” is sometimes used to identify individ-
uals who “only” want to use the soft-
ware, but chooses not to participate in the
community effort surrounding it.

The Linux operating system kernel is
the most publicised example of software
produced through the practice of hacking
(IEEE 1999). Other significant develop-
ments include the TeX and LaTeX type-
setting systems, large portions of the
Unix operating system, and the body of
communication software that evolved to
become the Internet. Of particular inter-
est is a community effort known as the
GNU project, which has organised the
efforts of literally thousands of program-
mers to implement several hundred soft-
ware systems, ranging from simple
games (e.g. nethack) to massive software
development tools such as the GNU G++
kit, consisting of context sensitive edi-
tors, standard libraries, several compil-
ers, debuggers and profilers.

Comparing and contrasting these
software artifacts to counterparts created
outside the hacker community indicate
(Hannemyr 1999):

1. Software created by hackers has in
common such usage properties as
tailorability, adaptability and open-
ness. Commercial software, on the
other hand, favours such qualities as
extensibility, —completeness and
immutability.

2. Software created by hackers often
requires a steep learning curve, and
has little visual appeal. Commercial
software is deliberately designed to
appear more “user friendly”, and

|
G. Hannemyr 256

http://aisel.aisnet.org/sjis/vol10/iss1/7

Hannemyr: The Art and Craft of Hacking

focus more on production values (i.e.
use of colour, typography, anima-
tions and graphical design).

3. Software created by hackers is often
technically superior (sampling such
aspects as crash rate and availability
of task-oriented features). Most
users (sampling actual choices made
by non-hacker users when presented
with alternatives) prefer commercial
software.

Explaining these findings warrants fur-
ther research. My preliminary hypothe-
sis is that the steep learning curve and the
lack of production values that character-
ises most software implemented by
hackers, together with the denigrating at-
titude towards “lusers”, partly explain
why these software artifacts have limited
appeal to users outside the hacker com-
munity. Also, the present installed base
of end user software is commercial pack-
ages, whose extensibility, completeness
and immutability (deliberately?) make
interoperation with foreign software arti-
facts exceedingly difficult.

]
The Hacker Ethic

[Tim Bemners-Lee] didn’t patent the
[World Wide Web]. He didn’t copyright.
He made that openly available. And
that’s what has fuelled a great deal of the
network development, and all the inno-
vative ideas. [...] There is a continuing
ethic in the community to give back to
the network what it has given you. (Cerf
1997)

The idea of computer software as a com-
munal resource has been one of the iden-
tifying traits of the hacker community
since its inception in the sixties. In these

early days, most software was “given
away” as an appendage to the hardware it
ran on. There existed virtually no market
for software and since computer config-
urations was not well standardised and
operating systems and application soft-
ware had to be distributed as source for-
mat and adapted to each installation on
the site. Both the availability of source
code and the lack of price tags and for-
mal licensing affixed to the software cre-
ated an environment where is was legiti-
mate for programmers to work on im-
proving and adapting operating systems
and applications by “hacking” the source
code; and to freely share among them-
selves the improved programs, frag-
ments and algorithms that resulted from
such activities.

As the software industry matured, the
software sector became increasingly
commercial. Formal licensing agree-
ments, binary only distributions and non-
disclosure agreements became the norm
rather than the exception. Richard M.
Stallman gives this description of how
many hackers felt about these develop-
ments:

Many programmers are unhappy about

the commercialization of system soft-
ware. It may enable them to make more
money, but it requires them to feel in
conflict with other programmers in gen-
eral rather than feel as comrades. The
fundamental act of friendship among
programmers is the sharing of programs;
marketing arrangements now typically
used essentially forbid programmers to
treat others as friends. (Stallman 1985)

The commercialisation of the software
industry prompted Stallman to quit his
job at the MIT AI lab and to write The
GNU Manifesto. Part autobiography and
part call to arms, the manifesto outlines

]
G. Hannemyr 257

Published by AIS Electronic Library (AISeL), 1998

Scandinavian Journal of Information Systems, Vol. 10 [1998], Iss. 1, Art. 7

the rationale behind his resolve to create
free software:

I consider that the golden rule requires
that if I like a program I must share it
with other people who like it. Software
sellers want to divide the users and con-
quer them, making each user agree not to
share with others. I refuse to break soli-
darity with other users in this way. I can-
not in good conscience sign a
nondisclosure agreement or a software
license agreement. [...] So that I can
continue to use computers without dis-
honor, T have decided to put together a
sufficient body of free software so that 1
will be able to get along without any
software that is not free (ibid.).

In the manifesto, Stallman coins the con-
cept “free software”. As he later has tak-
en great care in pointing out, the word
“free” does not necessarily mean “grat-
is”. Stallman’s use of the phrase is in-
stead intended to convey the following
four aspects of freedom:

1. That it is free of any restrictions that
limits its use and application;

2. that it is freely distributable;

3. that it is freely portable between dif-
ferent operating platforms; and,

4. that the source code is available, so
users are free to modify and tailor
the software

To Stallman, and to most hackers, “pro-
prietary software” is an oxymoron. Soft-
ware that for technical or legal reasons
cannot be modified or adapted, is a dead
end.

—]
Hacking in the Real World

Modern societies have engineers, illiter-
ate societies has bricoleurs, or tinkerers.
[...] we, as engineers, are trained to opti-
mize, while as bricoleurs, we are trained
to satisfice (Dahlbom and Mathiasen
1993, p. 174).

When asked: “In your work, do you view
yourself as a ‘tinkerer’ or an ‘engi-
neer’?”’ one hacker answered: “Any real
developer has to be both. This is what
you have to learn from transmission out-
side the scriptures, from working with
other people: When you have to be bot-
tom-up and when you have to be top-
down.” This brief statement summarises
what I consider the three most pro-
nounced aspects of hacking: The empha-
sis on skills acquired through practice
(“outside the scriptures”), the impor-
tance of the community (“working with
other people”), and the equal emphasis
put on engineering (“top-down”) and
bricolage (“bottom-up”).

A graphic account of the hacker as a
programmer is to be found in a recent es-
say named The Cathedral and the Bazaar
by Eric S. Raymond (1998). Part diary
and part essay, it tracks the development
of a particular software system (fetch-
mail) implemented by Raymond himself
and a number of collaborators co-operat-
ing across the Internet.

Reading the fetchmail development
saga, [was first struck by the similarities
between the work practices described by
Raymond, and the software development
models posed as alternatives to the wa-
terfall model by a number of researchers
from the mid-eighties (e.g. STEPS
(Floyd 1989) and ETHICS (Mumford
1995)). All the basic ideas (rapid proto-
typing, iterative development, and strong

n
G. Hannemyr 258

http://aisel.aisnet.org/sjis/vol10/iss1/7

user participation) advocated in these
models is evident in Raymond’s practice,

VIZ.:

1 released early and often (almost never
less than every ten days, during periods
of intense development, once a day)
(Raymond 1998).

One interesting measure of fetchmail’s
success is the sheer size of the project
beta list [...] At time of writing it has 249
members and is adding two or three a

week (ibid.).

Users are wonderful things to have, and
not just because they demonstrate that
you are serving a need, that you’ve done
Properly cultivated,
they can become co-developers. [...
Given a bit of encouragement, your users
will diagnose problems, suggest fixes,
and help improve the code far more
quickly than you could unaided (ibid.).

something right.

But, as evident by the three quotes from
Raymond’s paper given above, there are
also some important differences:

Firstly, what distinguishes the prac-
tice described by Raymond from models
such as STEPS and ETHICS is the ab-
sence of formalism. Raymond is flying
by the seat of his pants, not following
any prescribed method.

Secondly, levering on modern tools
for automatic system updates and the In-
ternet as an infrastructure for user/pro-
grammer contact, Raymond speeds up
his development cycles to a frenzy, co-
opts his users as debuggers/co-develop-
ers, and indiscriminately adds everyone
who wants to participate to the project
beta list. This is different from the care-
fully metered out development cycles,
and the clear division of roles between
users and programmers in STEPS and

ETHICS.

Published by AIS Electronic Library (AISeL), 1998

Hannemyr: The Art and Craft of Hacking

Thirdly, users’ desire for participat-
ing in the endeavour is more or less taken
for granted in STEPS and ETHICS. Ray-
mond acknowledges that securing partic-
ipation from all parties may pose a prob-
lem, and argues that the project instigator
needs to have some of his/her focus on
other people’s motivation.

Fourthly, STEPS, ETHICS and simi-
lar models are presented as universal
approaches that can be used regardless of
circumstances. Raymond lists three nec-
essary pre-conditions for his work prac-
tice to be applicable: 1) The projected
system must fill an unfilled personal
need for the instigator; 2) the project
needs to secure user participation and
maintain continued user support; and, 3)
the instigator must have good interper-
sonal and communication skills.

I
Future directions

With the exception of Raymond’s fetch-
mail essay, and an enthusiastic, but frag-
mentary, attempt by Browne (1998) to
prescribe hacking as a method for decen-
tralised software development, I am not
aware of any serious effort to discuss
hacking as a programming practice. So
far, there is too little data available to
draw conclusions about its merits, quali-
ties and applicability.

I find it interesting to notice that,
however, some hacker-like practices are
being adopted in environments where
one would least expect it: Microsoft, for
instance, is successfully turning custom-
ers/users into debuggers as “beta” ver-
sions of new products are distributed in
massive quantities (literally tens of thou-
sands of copies) on the Internet. Micro-
soft employees also participate in some

]
G. Hannemyr 259

Scandinavian Journal of Information Systems, Vol. 10 [1998], Iss. 1, Art. 7

of online communities that have formed
around the company’s products. Net-
scape and Sunsoft have gone even fur-
ther down this route. By making the
source code of Netscape’s Navigator In-
ternet browser and Sunsoft’s Java lan-
guage open and freely available, actively
recruiting users as co-developers, and
letting staff spend company time partici-
pating in user/developer communities
emerging on the Internet. Netscape and
Sunsoft are experimenting with hacking
as means to develop key software pack-
ages.

My own conjecture, based upon
grounded research (interviews with
hackers, comparing and contrasting
hacker and non-hacker artifacts, and
more than twenty years as a community
participant) is that hacking transcends
the orthodox centralised and phased
view of software development and re-
places it with a distributed and evolution-
ary approach. Also, abandoning a repre-
sentative (democratic) user/developer di-
chotomy and putting in its place self-se-
lected (meritocratic) user cum developer
community may have profound effects
on how we view participatory design.

The potency evident through the
hacker community’s ability to sustain
huge co-operative efforts such as GNU
and Linux do in itself give grounds for
studying hacking as a software develop-
ment practice. The apparent adoption of
hacker-like practices by significant enti-
ties in the software industry compounds
this argument. I hope that this essay
stimulates others to participate in this re-
search. To get this ball rolling, the fol-
lowing questions are posed:

1. Component re-use:

Widespread and interorganisational
re-use of software component is fre-
quently and repeatedly proposed as a
means to cut costs and reduce lead
times in software development. In a
world of proprietary source code
there is no trivial way of doing this.
Various clever schemes such as
“object linking and embedding”,
“software ICs” and “object broker
architecture” have been proposed as
means to accomplish greater re-use.
How do these complex and sophisti-
cated methods compare in practice
to hackers’ cannibalistic and trans-
parent approach that emerge from
the existence of open source code?

. Time to market:

Two classic goals of software devel-
opment is high reliability and short
development lead times. At the same
time, we find that today the scope of
much software (and with it the com-
plexity of software development
projects) escalate, making these
goals harder to accomplish. Closed,
managed and centralised software
development seems to operate under
what is known in the industry as
Brooks’ Law, which postulates:
“Adding manpower to a late software
project makes it later” (Brooks 1975,
p. 25). Do the limitations inherent in
Brook’s Law also apply to the huge,
distributed and massively parallel
software development efforts under-
taken by hackers?

. Participatory design:

The backer community advocates
transcending the user/programmer
dichotomy that is inherent in our
present views on participatory
design, and replaces it with a merito-

n
G. Hannemyr 260

http://aisel.aisnet.org/sjis/vol10/iss1/7

cratic user cum programmer commu-
nity. How does this model operate in
practice? Is this a fair way to organ-
ise the software development proc-
ess, or does it open up for abuses
(e.g. does it allow programmers to
manipulate hapless users by means
of “model power” (Briten 1981))?

4. Design for heterogeneity:

A recent thesis (Thoresen 1999, p.
50) asserts that system development
theory lacks systematic approaches
to how heterogeneity can be accom-
modated. To what extent is the study
of hacker work practices, such as
open source development, brico-
lage, and continuous adaptation of
software artifacts through own use,
able to add to the theory in this par-

ticular area?

References

Bréten, Stein, (1981). Quality of Interaction
and Participation. On Model Power in
Industrial Democracy and Computer Net-
works. In: G. E. Lasker (ed.): Applied Sys-
tems and Cybernetics, vol. I, p. 191-200.

Brooks, Jr., Frederick P., (1975). The Mythi-
cal Man-month. Essays on Software Engi-
neering. Addison-Wesley.

Browne, Christopher B., (1998). Linux and
Decentralized Development. First Mon-
day, vol. 3:3 1998.

Cerf, Vint, (1997). Father of the Internet,
interview conducted by technical editor
Leo Laporte; Broadcast by MSNBC: The
Site, transcript, June 3, 1997.

Floyd, Christiane, (1989). STEPS to Soft-
ware Development with Users. Proceed-
ings of ESEC 1989, University of War-
wick, Coventry,

September 1989.

Published by AIS Electronic Library (AISeL), 1998

Hannemyr: The Art and Craft of Hacking

Hannemyr, Gisle, (1999). Technology and
Pleasure: Considering Hacking Construc-
tive. First Monday, vol. 4:2, February
1999.

IEEE Software, (1999). Focus: Linux, vol.
16:1, January/February 1999.

Mumford, Enid, (1995). Effective Systems
Design and Requirements Analysis. The
ETHICS Approach. Macmillan Press,
1995.

Raymond, Eric S, (1998). The Cathedral and
the Bazaar; First Monday, vol. 3:3, March,
1998.

Stallman, Richard M., (1985). The GNU
Manifesto. The GNU Emacs Manual.

Steele jr., Guy L, Donald R. Woods, Raphael
Finkel, Mark R. Crispin, Richard M. Stall-
man, Geoffrey S. Goodfellow, (1983). The
Hacker’s Dictionary. A Guide to the World
of Computer Wizards. Harper & Row.

Thoresen, Kari, (1999). Computer Use. Dr
Philos Thesis, March 1999, University of
Oslo, Department of Informatics.

[
G. Hannemyr 261

	Scandinavian Journal of Information Systems
	1998

	The Art and Craft of Hacking
	Gisle Hannemyr
	Recommended Citation

	tmp.1258734973.pdf.R_MEi

